[Εξώφυλλο]

Γεωφυσικές μετρήσεις τοίχων και θεμελιώσεων μνημείων

Δημήτριος Αγγελής

Περίληψη


Η παρούσα μεταπτυχιακή διατριβή πραγματεύεται την εφαρμογή μη καταστρε­πτι­κών γεωφυσικών μεθόδων στα τείχη του φρουρίου του Επταπυργίου, καθώς και στο έδαφος  θεμελίωσης περιφερειακά αυτού.  Στόχος  της διατριβής είναι η έρευνα της βέλτιστης μεθοδολογικής προσέγγισης στη γεωφυσική διασκόπηση των τειχών και των θεμελιώσεων με τη συνδυαστική ερμηνεία των αποτελεσμάτων διαφορετικών γεωφυσικών τεχνικών με τελικό ζητούμενο την εξαγωγή συμπερασμάτων για την εσω­τερική δομή τείχους και εδάφους. Για την επίτευξη του στόχου συνδυάστηκαν και εφαρμόστηκαν σε διάφορα τμήματα των τειχών οι μέθοδοι του γεωραντάρ και της ηλεκτρικής τομογραφίας με την ταυτόχρονη μοντε­λοποίηση δεδομένων γεωραντάρ, ενώ επί του εδάφους εφαρμόστηκαν οι μέθοδοι της ηλεκτρικής τομογραφίας και της πολυκάναλης ανάλυσης επιφανειακών κυμάτων.  Για την βέλτιστη ερμηνεία και επεξεργασία των δεδομένων αναπτύχθηκαν τρία προγράμματα Η/Υ (λογισμικά) σε γλώσσα Matlab  τα οποία βοήθησαν στην απεικόνιση τρισδιάστατων δεδομένων γεωραντάρ, στην παραγωγή πολυ­πλοκότερων συνθετικών μοντέλων, καθώς και στην δυνατότητα επεξεργασίας των αποτελεσμάτων τους. Από την έρευνα στα τείχη χαρτογραφήθηκαν περιοχές με σημαντικά προβλήματα υγρασίας, χαρτογραφήθηκαν και προσδιορίστηκαν διαφορετικές κατασκευαστικές φάσεις, ενώ εντοπίστηκαν και πιθανά δομικά εσωτερικά προβλήματα. Όσον αφορά την έρευνα στο έδαφος αυτή αποκάλυψε το βάθος του υποβάθρου, καθώς και πιθανά ρήγματα. Η επιλογή αλλά και ο τρόπος εφαρμογής των συγκεκριμένων μεθόδων αποδείχθηκε ιδιαίτερα ικανοποιητικός, καθώς φαίνεται πως η μία μέθοδος αλληλοσυμπληρώνει την άλλη με αποτέλεσμα  να επιτυγχάνεται βελτιωμένη ερμηνεία. Ακόμα πολύ σημαντική για την εξαγωγή συμπερασμάτων αποδείχθηκε και η μοντελοποίηση δεδομένων γεωραντάρ ως επιβεβαιωτικό εργαλείο στην ερμηνεία των γεωφυσικών εικόνων.


This thesis deals with the application of non-destructive geophysical techniques to the walls and to the foundations of the Heptapyrgion fortress, in combination with the modeling of geophysical data. The aim was to investigate and propose optimum methodological approaches regarding the wall and foundation geophysical investigation by means of combined geophysical prospection and finally to draw conclusions about the internal structure of the investigated wall and of the ground of the Heptapyrgion fortress. In order to achieve the above, the methods of ground penetrating radar (GPR) and electrical resistivity tomography (ERT) were used at specific locations of the Heptapyrgion walls along with the simultaneous modeling of GPR data, while on the ground the methods of electrical resistivity tomography (ERT) and multi-channel analysis of surface waves (MASW) were used. Furthermore, three Matlab based computer programs have been developed to help visualize three-dimensional GPR data, to boost the production of more complex theoretical synthetic models and to grant the ability of processing to their results. From the wall survey, it was possible to map areas with significant moisture problems, to map and identify different construction phases as well as to locate possible internal structural problems. Regarding the ground survey, that revealed the true depth of the geological background, as well as possible geological faults. In conclusion, the choice and the way of applying these methods proved to be successful as methods were complementary to each other and the result helps to obtain improved interpretations. Furthermore, the GPR model simulations proved to be an important tool regarding the interpretation.

Πλήρες Κείμενο:

PDF

Αναφορές


Annan A. P. (2003). Ground Penetrating Radar Principles, Procedures & Applications. Sensors & Software Incorporated.

Balanis, C. (1989). Advanced engineering electromagnetics. 1st ed. Hoboken: Wiley.

Constable, S. Parker. R., and Constable C. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289-300.

Conyers, L. (2016). Ground-penetrating radar for geoarchaeology. Oxford: Wiley.

Daniels, D. J. (2004). Ground penetrating radar. 2nd ed. The Institution of Electrical Engineers, London, United Kingdom.

Daniels, D. J., Gynton, D. J., Scott H. F. (1988). Introduction to subsurface radar, IEE Proceedings, Vol. 135, pt. F, pp. 278-320

Ellis, R. G., and Oldenburg D.W. (1994). Applied geophysical inversion. Geophysics, 42. 1020-1036.

Franklin J.N. (1970). Well-posed stochastic extensions of illposed linear problems. Journal of Mathematical Analysis and Applications, 31, 682–716.

Giannakis, I., Giannopoulos, A. and Warren, C. (2016). A Realistic FDTD Numerical Modeling Framework of Ground Penetrating Radar for Landmine Detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), pp.37-51.

Giannopoulos, A. (2005). Modelling ground penetrating radar by GprMax. Construction and Building Materials (2005), 19, pp. 755–762.

Golub, G. H. and Reinsch, C. (1970). Singular Value Decomposition and Least Square Solutions. Numer. Math 14. 403-420.

Inan, U. and Marshall, R. (2011). Numerical electromagnetics. 1st ed. Cambridge University Press.

Jol, H. (2008). Ground Penetrating Radar Theory and Applications. 1st ed. Amsterdam: Elsevier Science.

Kim J.H. (2010). DC2DPro – User’s Manual, KIGAM, KOREA

Kim J.H., Yi M.J. (2010). DC3DPro 3D Geoelectrical Modelling and Inversion, User’s Manual. KIGAM, Korea.

Kim, J.H. (2004). RADPRO/GPR. User’s guide, KIGAM, S. Korea.

LaBrecque, D.J., Miletto, M., Daily, W., Ramirez, A. and Owen, E. (1996). The effects of noise on Occam's inversion of resistivity tomography data, Geophysics, 61, 538 548.

Lanczos, C. (1960). Linear differential operators. D. Van Nostrad Company Ltd.

Lay T. and Wallance C. T. (1995). Modern Global Seismology, International Geophysics Series, Vol. 58, Academic Press, pp. 521

Levenberg, K. (1944). A Method for the Solution of Certain Non-Linear Problems in Least Squares. The Quarterly of Applied Mathematics, 2. 164-168.

Lines, L.R., and Treitel S. (1984). Tutorial: a review of least-squares inversion and its application to geophysical problems. Geophysical Prospecting, 32, 159-186.

Marquardt D. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM Journal on Applied Mathematics, 11, 431–441.

Milsom, J. (2003). Field geophysics. 3rd ed. Chichester: Wiley

Pain, C.C., Herwanger, J.V., Worthington, M.H. and de Oliveira, C.R.E. (2002). Effective Multidimensional Resistivity Inversion using Finite Element Techniques. Geophys. J. Int., 151, 710- 728.

Park C.B., Miller R. and Xia J. 1999. Multichannel analysis of surface waves, Geophysics, Vol. 64

Park, S.K., and Van, G.P. (1991). Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics, 56, 951-960.

Peters, L. Jr., Daniels, J. J., Young, J. D. (1994). Ground penetrating radar as a subsurface environmental sensing tool, Proceedings of the IEEE, Vol. 82, pp. 1802-1822.

Porsani, J. L., Sauck, W. A., & Júnior, A. O. S. (2006). GPR for mapping fractures and as a guide for the extraction of ornamental granite from a quarry: A case study from southern Brazil. Journal of Applied Geophysics, 58(3), 177-187.

Pridmore, D., Hohmann, G., Ward, S., and Sill, W. (1981). An investigation of finite element modelling for electrical and electromagnetic data in three dimensions. Geophysics, 46, 1009-1024.

Sadiku, M. (2001). Numerical techniques in electromagnetics. 1st ed. Boca Raton, Fla.: CRC Press.

Sasaki, Y. (1994). 3-D Inversion using the Finite Element Method. Geophysics, 59, 1839-1848.

Socco V. and Strobbia C. (2004). Surface-wave method fir near-surface characterization: a tutorial, Near Surface Geophysics, p. 165-185

Tikhonov, A.N. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics. 4. 1035-1038.

Tsourlos, P. (1995). Modelling interpretation and inversion of multielectrode resistivity survey data: D. Phil. Thesis, University of York.

Tsourlos, P. and Ogilvy, R. (1999). An algorithm for the 3-D Inversion of Tomographic Resistivity and Induced Polarization data: Preliminary Results. Journal of the Balkan Geophysical Society, 2, 2, 30-45.

Ward, S. (1989). Resistivity and induced polarization methods: in Investigations in Geophysics no 5, Geotechnical and Environmental Geophysics vol I, ed. S.Ward SEG, Tusla, 147-189.

Warren, C., Giannopoulos, A. and Giannakis, I. (2016). gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Computer Physics Communications, 209, pp.163-170.

Yee, K. (1966). Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), pp.302-307.

Yi. M.J., Kim, J.H., Song, Y., Cho, S.J., Chung, S.H. and Suh, J.H. (2001). Three-Dimensional Imaging of Subsurface Structures using Resistivity Data. Geophysical Prospecting, 49, 483-497.

ΆΛΛΕΣ ΠΗΓΕΣ

http://masw.com/

www.geo.auth.gr/courses/ggp/ggp762e/PDF/LEC3_NEW.pdf

http://www.paraview.org

http://web.ics.purdue.edu/~braile/edumod/waves/Rwave.htm

https://faculty.unlv.edu/pburnley/GEOL442_642/RES/NOTES/ResistivityNotes015Layered_02.html


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.