[Εξώφυλλο]

Τεχνολογική εξέλιξη και παθογένειες ιστορικών κονιαμάτων

Δάφνη Κυροπούλου

Περίληψη


123 δείγματα ιστορικών κονιαμάτων μελετήθηκαν στα πλαίσια διδακτορικής διατριβής. Ο σκοπός της διδακτορικής διατριβής είναι να εξετάσει την τεχνολογία και διάβρωση των ιστορικών  κονιαμάτων. Τα δείγματα αποσπάστηκαν από ταφικά μνημεία, οχυρωματικά έργα και  ιστορικά κτήρια που χρονολογούνται από την Ελληνιστική έως την Βυζαντινή εποχή. Το πρώτο δείγμα συλλέχθηκε από την εξωτερική επιφάνεια, ενώ τα υπόλοιπα δείγματα συλλέχθηκαν 1cm προς το εσωτερικό με σκοπό να κατασκευαστεί μία ιδανική γραμμή αναφοράς με ισοτοπικές τιμές για να προσδιορίσει τις παραμέτρους διάβρωσης. Τα δείγματα χαρακτηρίστηκαν ως προς την ισοτοπική, χημική και ορυκτολογική σύσταση. Τα σταθερά ισότοπα άνθρακα και οξυγόνου (13C και 18O) έδωσαν πληροφορίες για την προέλευση  του CO2 κατά τον σχηματισμό του ασβεστίτη, με αποτέλεσμα τον διαχωρισμό των διαφορετικών τεχνολογιών κατασκευής των κονιαμάτων και των μηχανισμών διάβρωσης. Η στοιχειακή και μορφολογική ανάλυση επιτεύχθηκε με την εφαρμογή της ηλεκτρονικής μικροσκοπίας σε συνδυασμό με την ανάλυση ενεργειακής διασποράς Χ-ray (SEM/EDXA), ενώ οι ορυκτές  φάσεις προσδιορίστηκαν με την χρήση πολωτικού πετρογραφικού μικροσκοπίου. Tα αποτελέσματα των αναλύσεων προσδιόρισαν την τεχνολογική εξέλιξη και διάβρωση των ιστορικών κονιαμάτων. Τα Ελληνιστικά κονιάματα αποτελούνται από ασβέστη και άργιλο-πυριτικά αδρανή και κύριο αδρανές τον χαλαζία. Τα Ρωμαϊκά και Βυζαντινά κονιάματα αποτελούνται από ασβέστη, ποζολάνη, και ποικίλα αδρανή όπως χαλαζίας, πλαγιόκλαστο αλλά και θραύσματα κεραμικών και πλίνθων. Οι βασικοί μηχανισμοί διάβρωσης που εντοπίστηκαν είναι η διαλυτοποίηση και ανακρυστάλλωση του ασβεστιτικής προέλευσης συνδετικού υλικού, η απώλεια συνοχής του συνδετικού υλικού και η κρυστάλλωση αλάτων. Οι τιμές των σταθερών ισοτόπων που μελετήθηκαν αποτελούν ένα εύρος τιμών από  -17,6‰ έως 3,6‰ και από  -25,9‰ έως 0,4‰  για δ13C και δ18Ο αντίστοιχα. Οι ιδανικές γραμμές για τα Eλληνιστικά και τα Ρωμαϊκά-Βυζαντινά κονιάματα εκφράζονται από τις συναρτήσεις παλινδρόμησης δ18O calcite matrix =0.61 δ13C calcite matrix -1.9 and δ18O calcite matrix =0.63 δ13C calcite matrix -2. Η ανάλυση των σταθερών ισοτόπων προσδιόρισε με ακρίβεια την προέλευση του ανθρακικού άλατος κι έτσι διακρίθηκαν οι διαφορετικές τεχνολογίες, οι περιβαλλοντικές συνθήκες σκλήρυνσης των κονιαμάτων, η προέλευση του CO2 και του νερού κατά την διάρκεια σχηματισμού του ασβεστίτη, το μέγεθος της διάβρωσης και τους πιθανούς μηχανισμούς διάβρωσης.

123 bulk samples of mortars were examined as part of this PhD research. The main aim of this work is to investigate the technology and degradation of mortar samples. The samples were collected from funerary monuments dated from Hellenistic to Byzantine time, affected by environmental degradation. The samples were collected in sections 6cm towards the surface using a drill-core material. The first sample was collected from the external layers, while the internal samples were collected 1cm below, in order to create an ideal Hellenistic and Byzantine mortar layer and to provide weathering gradients using isotopic analysis. The samples were characterized in terms of their isotopic, chemical and mineralogical composition. Stable isotope analysis (13C and 18O) provided information relative to the origin of CO2 and water during calcite formation making possible to distinguish different mortar technologies and degradation gradients. Compositional and morphological analyses were achieved using energy dispersive X-ray analysis in the scanning electron microscope while the mineralogical phases were detected using petrographic (polarised optical microscopy) analysis. The results of micro-morphological and petrographic examination elucidate the technological continuity and degradation of historic mortars. Hellenistic mortars are composed of lime enhanced with quartz aggregates. Roman and Byzantine mortars are composed of lime, pozzolan and a various aggregates such as quartz, feldspar, ceramic and rock fragments. The main degradation mechanisms are calcite recrystallization, loose of adhesion bonds in the binding material and salts crystallization. The isotopic values comprise a range of δ13C and δ18Ο values from -17,6‰ to 3,6‰ and -25,9‰ to 0,4‰ very different from that of local limestones used for mortar production. The ideal layers from Hellenistic and Byzantine era are expressed, by the regression lines δ18O calcite matrix =0.61 δ13C calcite matrix -1.9 and δ18O calcite matrix =0.63 δ13C calcite matrix -2. This study indicated that stable isotope analysis is an excellent tool to fingerprint the origin of carbonate and therefore indicate the variations in mortar’s technology, the environmental setting conditions of mortar, origin of CO2 and water during calcite formation and to determine the weathering depth and the potential secondary degradation mechanisms.

Πλήρες Κείμενο:

PDF

Αναφορές


Βελένης, Γ., Τριανταφυλλίδης, Κ. (1991). Τα βυζαντινά τείχη της Δράμας.Επιγραφικές μαρτυρίες, Βυζαντιακά 11, 99-116.

Ellis J.R. και Walbank F.W. (1992). Ακμή και Τέλος του Μακεδονικού Βασιλείου. Πολιτική Ιστορία, εν Σακελλαρίου Μ.Β. επιμ., Μακεδονία 4000 Χρόνια Ελληνικής Ιστορίας και Πολιτισμού, Αθήνα.

Hammond N.G.L. (1984). H μάχη της Πύδνας, The Journal of Hellenic Studies, 31.

Hammond N.G.L.(1992).Ίδρυση και Εδραίωση του Μακεδονικού Βασιλείου, εν Σακελλαρίου Μ.Β. επιμ., Μακεδονία 4000 Χρόνια Ελληνικής Ιστορίας και Πολιτισμού, Αθήνα.

Κακούρης Ι., (1976). Βυζαντινά κιονόκρανα από την Ανακτορούπολη Καβάλας, Μακεδονικά, ΙΣΤ, 215-234.

Μοροπούλου Α. (2002). Εισαγωγή στην παθολογία και αποκατάσταση μνημείων και συνόλων, Εργαστηριακές σημειώσεις για το μάθημα Δομικά Υλικά,Τμήμα Χημικών Μηχανικών, ΕΜΠ.

Μπάκολας – Καραγιάννης Α. (2002). Κριτήρια και μέθοδοι σχηματισμού ιστορικών κονιαμάτων, διδακτορική διατριβή, Τμήμα Χημικών Μηχανικών, ΕΜΠ.

Μπέσσιος Μ.,. (2010). Πιερίδων Στέφανος: Πύδνα, Μεθώνη και οι αρχαιότητες της βόρειας Πιερίας.

Μπέσσιος Μ. και Παππά Μ. (1995). Πύδνα, Πιερική Αναπτυξιακή, Θεσσαλονίκη, 1995.

Μπέσσιος, M. (1989). Ανασκαφές στο βόρειο νεκροταφείο της Πύδνας. Το αρχαιολογικό έργο στην Μακεδονία και την Θράκη 3: 155-160.

Μπέσσιος, M. (1992). Ανασκαφές στην Βόρεια Πιερία. Το Αρχαιολογικό Έργο στην Μακεδονία και την Θράκη 6: 245-248.Κεφάλαιο 9

Μπέσσιος M., και Τριανταφύλλου Σ. (2002). Ομαδικός τάφος από το βόρειο νεκροταφείο της αρχαίας Πύδνας. Το Αρχαιολογικό Εργο στην Μακεδονία και την Θράκη 14: 385-394.

Μπούρας Χ.Θ., (1999). Ιστορία της αρχιτεκτονικής. Αρχιτεκτονική στο Βυζάντιο, Ισλάμ και Δ.Ευρώπη κατά τον Μεσαίωνα, Εκδοτικός οίκος Μέλισσα,Αθήνα.

Μπούρας Χ. (2001).Βυζαντινή και Μεταβυζαντινή Αρχιτεκτονική στην Ελλάδα,Μέλισσα, Αθήνα.

Όμηρος, Ιλιάδα

Όμηρος, Οδύσσεια

Παπαγιάννη Ι., Πάχτα Β., Στεφανίδου Μ. (2012). Ανάλυση κονιαμάτων από ψηφιδωτό δάπεδο στο Παλάτων των Αιγών και προτάσεις για υλικά συντήρησης,3 ο Πανελλαδικό Συνέδριο Συντήρησης, ΕΤΕΠΑΜ, 1-2 Νοεμβριου 2012, Αθήνα (πρακτικά σε CD).

Πάχτα Β. (2011). Μελέτη εξέλιξης τεχνολογίας κονιαμάτων, Διδακτορική διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Ραθώση Χριστίνα, (2005). Αρχαιολογικά κεραμικά ΒΔ Πελοποννήσου και προέλευση πρώτων υλών τους: Πετρογραφική, ορυκτολογική, γεωχημική και αρχαιομετρική προσεγγιση. Διδακτορική διατριβή, Πανεπιστήμιο Πατρών.

Τουρατσόγλου Ι. (1992). Ακμή και Τέλος του Μακεδονικού Βασιλείου, Η Τέχνη κατά τους Ελληνιστικούς Χρόνους, εν Σακελλαρίου Μ.Β. επιμ., Μακεδονία 4000 Χρόνια Ελληνικής Ιστορίας και Πολιτισμού, Αθήνα.

Τσουρής Ε., (1998). 12η Εφορεία Βυζαντινών Αρχαιοτήτων, Το έργο του ΥΠΠΟ στον τομέα της Πολιτιστικής Κληρονομιάς 1 (1997), τεχνική έκθεση,Αθήνα, 181-182.

Τσουρής Ε., (1999). 12η Εφορεία Βυζαντινών Αρχαιοτήτων, Το έργο του ΥΠΠΟ στον τομέα της Κληρονομιάς 2 (1998), τεχνική έκθεση, Αθήνα, 209-210.

Τσουρής Ε., (2000). 12η Εφορεία Βυζαντινών Αρχαιοτήτων, Το έργο του ΥΠΠΟ στον τομέα της Πολιτιστικής Κληρονομιάς 3 (1999), τεχνική έκθεση,Αθήνα, 232-233.

Τσουρής Ε., (2009). Οι τοιχοποιίες των βυζαντινών μνημείων της Θράκης 4ος-15ος αιώνας, Ν. Μπάρκας (επιμ.), Πρακτικά 1ου Εθνικού Συνεδρίου «Ιστορία των

δομικώνκατασκευών», Ξάνθη, 29 Νοεμβρίου – 1 Δεκεμβρίου 2007, Τμήμα Αρχιτεκτόνων Μηχανικών ΔΠΘ, Ψηφιακή έκδοση.

Τσουρής Ε., (2012). Η αμυντική οργάνωση των Θρακικών και Μακεδονικών ακτών από τον 9ο μέχρι τον 15ο αιώνα, στο: Π. Δαμούλος (επιμ.), Συνέδριο «Η Οχυρωματική Αρχιτεκτονική στο Αιγαίο και ο Μεσαιωνικός Οικισμός Αναβάτου Χίου», Χίος, 26-28 Σεπτεμβρίου 2008, Πρακτικά, Χίος 2012, 561-588.

Τσουρής Ε.,Δαδάκη Στ., Δουκατά Ν., Ζήκο Μ., Λυχουνά Α., Μπακιρτζή Α.,Μπρίκα Α., (2001). Υστερορρωμαϊκά και βυζαντινά οχυρωματικά έργα στην ανατολική Μακεδονία και τη δυτική Θράκη, Ώρες Βυζαντίου. Έργα και ημέρες στο Βυζάντιο, Αρχαιολογική συνάντηση «Τα κάστρα της Ελλάδος», Θεσσαλονίκη 14-16 Δεκεμβρίου 2001, ομιλία χωρίς δημοσιευμένα πρακτικά.

Tσουρής Ε. Δαδάκη Στ. Λυχούνα Μ., (2006). Οχυρώσεις στις παρυφές της ευρύτερης πεδιάδας των Φιλίππων, Δ ́ Επιστημονική συνάντηση «Η Δράμα και η περιοχή της. Ιστορία και πολιτισμός», Δράμα, 16-19 Μαΐου 2002, 117-136.

Τσουρής Ε., Μπρίκα Α., (2006). Βυζαντινές οχυρώσεις στον Έβρο. Ι. Μεσημβρία – Ποταμός – Άβας – Τραϊανούπολις – Φέρες, Βυζαντινά 26, 153-209.

Φιλοκύπρου Μ. και Ιωαννου Γ. (2008), Χαρακτηρισμός αρχαίων ασβεστοκονιαμάτων της Κύπρου, 1 ο Πανελλήνιο Συνέδριο Δομικών Υλικών και Στοιχείων, ΤΕΕ, Αθήνα, 1-13.

Ψωμιάδης Δαυίδ, (2011). Παλαιοπεριβαλλοντικές και ιζηματολογικές συνθήκες σχηματισμού των ακτολίθων (ψηφιδοπαγών αιγιαλών) του Βορειο-Αιγαιακού χώρου,Διδακτορική διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Walbank F.W. (1992). Ακμή και Τέλος του Μακεδονικού Βασιλείου.Πνευματικός Βίος, εν Σακελλαρίου Μ.Β. επιμ., Μακεδονία 4000 Χρόνια Ελληνικής Ιστορίας και Πολιτισμού, Αθήνα.

Adams, A. E., MacKenzie, W. S. and Guildford, C., (1991). Atlas of sedimentary rocks under the microscope. Longman Scientific and Technical, 104

Addleson L, Rice C., (1991). Performance of materials in Buildings Study for the Principles and Agencies of chang. Butterworth-Heinemann Ltd., Oxford.

Adkins J.F., McIntyre K., Schrag D.P., (2002). The salinity, temperature, and δ 18 O of the glacial deep ocean. Science 298, 1769-1773.

Allen G., (2003). Hydraulic lime mortar for stone, brick and block masonry:a best practice guide. Shaftesbury: Donhead, UK.

Ambers, J., (1987). Stable carbon isotope ratios and their relevance to the determination of accurate radiocarbon dates for lime mortars. Journal of

Archaeological Science, 14, 569–576.

Aschurst J., (1998). Mortars, plasters and renders in conservation. Ecclesiastical architects’ and surveyors’ association, London.

Bacastow R.B., Keeling C.D., Lueker T.J., Wahlen M., Mook W.G., (1996).The 13 C Suess effect in the world surface oceans and its implications for oceanic uptake of CO2: Analysis of observations at Bermuda. Global Biogeochemical Cycles 10 (2), 335-346.

Baertschi P., (1976). Absolute 18 O content of standard mean ocean water.Earth and Planetary Science Letters 31, 341-344.

Bakolas, A., Biscontin, G., Moropoulou, A. and Zendri, E. (1995).

Characterization of the lumps in the mortars of historic masonry, Thermochimica acta, 269,809-816.

Bakolas A., Biscontin G., Moropoulou A., Zendri E. (1998). Characterization of structural Byzantine mortars by thermogravimetric analysis. Thermochimica

Acta 321, 151– 160.

Balksten K. (2010). Understanding Historic Mortars – a Condition for Performing Restorations with Traditional Materials. Proceedings 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, J.Válek, C. Groot and J. J. Hughes (eds), Prague, 11-18

Baronio G, Binda L.(1997). Study of the pozzolanicity of some bricks and clays. Construction and Building Materials 11. 41-46

Baronio, G., Binda, L. and Tedeschi, C. (1999). Microscopical study of Byzantine Mortars: observation of reaction layers between limeand brick dust' in 'Proceedings of the 7th Euroseminar on Microscopy Applied to Building Materials', June 29-July 2, 1999, Pietersen Hans S., Larbi Joe A. and Janssen H.

A. (eds) Delft, 407-416.

Baronio G, Binda L and Lombardini N. (1997). The role of brick pebbles and dust in conglomerates based on hydrated lime and crushed bricks. Construction and

Building Materials 11, 33-40

Bemis B.E., Spero H.J., Bijma J., Lea D.W., (1998). Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and

revised paleotemperature equations. Paleoceanography 13, 150-160.

Berger W.H., Vincent E., (1986). Deep-sea carbonates: Reading the carbon isotope. Geologische Rundschuu 75, 249-269.

Bickert T., Mackensen A., (2003). Last Glacial to Holocene changes in South Atlantic deep water circulation. In: Wefer G., Mulitza S., Rathmeyer V., (eds.),

The South Atlantic during the Late Quaternary. Springer, Berlin. 671-695.

Bigeleisen J., Wolfsberg M., (1958). Theoretical and experimental aspects of isotope effects in chemical kinetics. Advanced Chemistry and Physics 1, 15-76.

Bolton J. (2010). Irish medieval mortars: implications for the formulation of new replacement mortars.Proceedings 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, J. Válek, C. Groot and J. J.Hughes (eds), Prague, 19-27.

Borges C., Silva A. C., Veiga M.R. (2010). Ancient Mortars Under Action of Marine Environment: a Physico-Chemical Characterization, in 2nd Historic Mortars Conference and RILEM TC 203-RHM Final Workshop HMC2010 Prague, Czech Republic 22-24 September 2010 Edited by J. Válek, C. Groot and J.J. Hughes RILEM Publications S.A.R.L., 29-41.

Borsoi G., Silva A.S., Menezes P, Antonio, Candeias A. and J.(2010)a.Mirão Chemical, Mineralogical and Microstructural Characterization of Historical Mortars from the Roman villa of Pisões, Beja, Portugal. Proceedings 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, Prague, J. Válek, C. Groot and J. J. Hughes (eds), Prague, 43-54.

Borsoi, G.Silva S., Menezes P., Candeias A., Mirão J.. (2010)b.Petrographical study of Meroitic mortars from an Amun temple (el-Hassa) Proceedings 2nd Historic Mortars Conference HMC2010 and RILEM TC 203- RHM Final Workshop, J. Válek, C. Groot and J. J. Hughes (eds.), Prague, 41-43.

Bouchar A. (2010). Famous men busts decorating a Parisian facade:Characterization and decay process of a cast artificial stone from the XIXth century.Proceedings 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, J. Válek, C. Groot and J. J. Hughes (eds.), Prague, 55-63.

Bourgès, S. Cord, V. Vergès-Belmin, (2010). Ancient mortars under action of marine environment: a physicochemical characterization, Proceedings 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, J. Válek, C. Groot and J. J. Hughes (eds.), Prague, 29-41.

Brandon J. Christopher (2010), How Did the Romans form Concrete

Underwater? in 2nd Historic Mortars Conference and RILEM TC 203-RHM Final Workshop HMC2010 Prague, Czech Republic 22-24 September 2010 Edited by J. Válek, C. Groot and J. J. Hughes, RILEM Publications S.A.R.L., 73-81.

Broecker W.S.,(1974). Chemical Oceanography. Harcourt Brace Jovanovich, Inc., New York, 214.

Broecker W.S., (1982). Ocean chemistry during glacial times. Geochimica et Cosmochimica Acta 46, 1689-1705.

BS 6100: Part 6.6.1: (1992). Glossary of building and civil engineering terms, British Standard Institution.

Callebaut K., J. Elsenb, Van Balenc K., Viaenea W. (2001). Nineteenth century hydraulic restoration mortars in the Saint Michael's Church (Leuven,Belgium) Natural hydraulic lime or cement? Cement and Concrete Research 31,397-403.

Caple Chris (2006). Objects: reluctant witnesses to the past. London; New York: Routledge.

Caro F., Piccardi M. P., and Savini Mazzilli M.T. (2008). Characterization of plasters and mortars as a tool in archaeological studies: the case of Ladrirago

Castle in Pavia, Northen Italy. Archaeometry 50, 85-100.

Cavallo, G., Journet, A., Mosca, C. and Corredig, G. (2010). Mortars from Historic Buildings of Switherland: Petrographic Examination. Proceedings 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, J. Válek, C. Groot and J. J. Hughes (eds) Prague, 83-90.

Chadwick J., (1932). The existence of a neutron. Proc. Roy. Soc. London,Series. A, 136, 692-708.

Chadwick J. (1973). Documents in Mycenaean Greek, Cambridge.

Charola, A.E., Henriques F.M.A. (1999). Hydraulicity in lime mortars revisited, in: P.J.M. Bartos, C.J.W.P. Groot, J.J. Hughes (eds.), Proceedings of the

RILEM International «Historic mortars: characteristics and tests», Paisley, 97-106.

Clark, ID. Fontes, J-C., Fritz P., (1992). Stable isotope disequilibria in travertine from high pH waters: laboratory investigations and field observations

from Oman. Geochima Cosmochima Acta 56, 2041–2050.

Clark, I and Fritz, P. (1997). Environmental isotopes in Hydrogeology. Lewis Publishers. New York.

Collepardi M., (1999). Degradation and Restoration of Masonry Walls of Historical Buildings. Materials and Structures, 23, 81-102.

Collepardi M., (1999). Thaumasite formation and deterioration in historic buildings. Cement and Concrete Composites 21, 147-154.

Coplen T.B, Kendall C., Hopple J. (1983). Comparison of stable isotope reference samples. Nature 302, 236- 238.

Coplen T.B. (1994). Reporting of stable hydrogen, carbon and oxygen isotopic abundances. International Union of Pure and Applied Chemistry, 66, 273-276.

Coplen T.B. (1995). Discontinuance of Smow and PDB. Nature 375, 285.

Conophagos Costantine (1982). Concrete and special plaster waterproofing in Ancient Laurion, Early Pyrotechnology-The evolution of the first fire-using

industries. Wertime T. and Wertime S. (eds), Smithsonian Institution Press, Washington D.C. 117-124.

Craig H. (1957). Isotopic standards for carbon and oxygen and correction factors for macss-spectrometric analysis of carbon dioxide. Geochimicha Acta 12, 133-149.

Craig, H. (1961). Isotopic variations in meteoric waters. Science 133, 1702-1703.

Craig H. and Craig V. (1972). Greek marbles: determination of provenance by isotopic analysis. Science 176, 401-403.

Cultrone G. (2007). Durability of masonry systems: Α laboratory study. Construction and building materials 21, 40-51.

Dadaki S., (2010). Historical overview of the antiquities of 12 th EBA, 12 th Ephoreia of Byzantine antiquities, Archaeological report (Unpublished).

Davey N. (1961). A history of building materials. Phoenix House Publication, London.

Deer, W. A., Howie, R. A and Zussman, J., (1992). An introduction to the rock forming minerals. 2nd edition, Longman Scientific and Technical, 696.

Derry L.A., France-Lanord C., (1996). Neogene growth of the sedimentary organic carbon. Paleoceanography 11, 267-276.

Diekamp, A., Konzett, J. and Mirwald, P.W. (2008). Mineralogical characterization of historic mortars from Tyrol, Austria and South-Tyrol, Italy. Proceedings 1st Historic Mortars Conference HMC2008 J. Válek, C. Groot and J.J. Hughes (eds), Lisbon.

Dietzel M, Usdowski E, Hoefs J (1992). Chemical and 13 C/ 12 Cand 18 O/ 16 O- isotope evolution of alkaline drainage waters and the precipitation of calcite.

Applied Geochemistry 7, 177–184.

Dix B., (1982). The manufacture of lime and its uses in the Western Roman provinces. Oxford Journal of Archaeology 33, 1-345.

Dornieden T.H., Gorbushina A.A., Krumbein W.E. (2000), Biodecay of cultural heritage as a space/time-related ecological situation-an evaluation of a series of studies. International Journal of Biodeteriorataion and Biodegradation, 46,261-270.

Dotsika et al, (2009). Isotopic analysis for degradation diagnosis of calcite matrix in mortar and plaster. Analytical and Bioanalytical Chemistry, 395, 2227–

Dotsika E., Poutoukis D., Tzavidopoulos I., Maniatis Y. Ignadiatou D., Raco B., (2009). A natron source of Pikrolimni Lake in Greece? Geochemical evidence.

Journal of Geochemical Exploration, 103, 133-143.

Dotsika E., Lykoudis S., Poutoukis D., (2010). Spatial distribution of the isotopic composition of precipitation and spring water in Greece. Global and Planetary Change 71, 141–149.

Eiler, J.M., Schauble, E., (2004).18 O 13 C 16 O in Earth’s atmosphere. Geochimica Cosmochima Acta , 68, 4767–4777.

Elert K., Rodriguez-Navarro C., Pardo E-S., Hansen E., Cazalla O., (2002).Lime mortars for the conservation of historic building. Studies in Conservation 47, 62-75.

Elsen, J., A. Brutsaert, M. Deckers, R. Brulet, (2004), Microscopical study of ancient mortars from Tournai (Belgium.Materials Characterization 53, 289–295.

Elsen J., (2006), Microscopy of historic mortars- a review. Cement and Concrete Research 36, 1416-1424.

Elsen J., Koenraad Van Balen and Gilles Mertens, (2010). Hydraulicity in Historic Lime Mortars: a Review. Proceedings 2nd Historic Mortars Conference

HMC2010 and RILEM TC 203-RHM Final Workshop, J. Válek, C. Groot and J. J.Hughes (eds ) Prague, 129-145.

El-Turki, A., Ball, R.J., Allen, G.C., (2007). The influence of relative humidity on structural and chemical changes during carbonation of hydraulic lime. Cement and Concrete Research, 37, 1233–1240.

Emiliani C., Shackleton N.J., (1974). The Brunhes epoch: Isotopic paleotemperatures and geochronology. Science 183, 511-514.

Epstein et al. (1953). Revised carbonate-water isotopic temperature scale.GSA Bulletin 64, 1315-1326.

Epstein S., Mayeda T., (1953). Variation of O 18 content of waters from natural sources. Geochimica et Cosmochimica Acta 4, 213-224.

Epstein S., Buchsbaum H.A., Lowenstam H.A., Urey H.C. (1953). Revised carbonatewater isotopic temperature scale. Bulletin of the Geological Society of America 64, 1315-1326.

Erez J., Luz B., (1983). Experimental paleotemperature equation for planktonic foraminifera. Geochimica et Cosmochimica Acta 47, 1025-1031.

Espinosa-Marzal RM, Scherer GW., (2010). Advances in understanding damage by salt crystallization. Accounts of Chemical Research, 43(6), 897–905.

Fairbanks R.G., (1989). A 17,000-year glacio-eustatic sea level record:Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637-642.

Fetter, C. W. (1994). Applied Hydrogeology. Prentice-Hall. New Jersey.

Fratini F, Pecchioni E, Cantisani E (2008). The petrographic study in the ancient mortars characterization. 1st historical mortars conference, 24th to 27th September, Lisbon, Portugal: 1- 10.

Freestone, I. C., (1995). Ceramic Petrography. American Journal of Archaeology 99, 111-115.

Gartner, E.M., Young, J.F., Damidot, D.A., Jawed, I. (2002). Hydration of Portland cement. in: Bensted J. & Barnes P. (eds). Structure and Performance of Cements, Spon, UK, 57-114.

Gentilini C., Franzoni E., Bandini S., Nobile L., (2012). Effect of salt crystallisation on the shear behaviour of masonry walls: An experimental study. Construction and Building Materials, 37, 181–189.

Ghosh P., and Brand W.A, (2003). Stable isotope ration mass spectrometry in global climate change research. International Journal of Mass Spectrometry 228, 1–33.

Gibbons P, (1995). Preparation and use of lime mortars: an introduction to the principles of using lime mortars: Scottish lime centre, Historic Scotland.

Goldberg P. (1983). Applications of Micromorphology in Archaeology. In: (eds) Bullock P. and Murphy C.P., Soil Micromorphology. A.B. Berkhamsted 139-150.

Gosselin C., Scrivener L.K., Feldman S.B. Schwartz W. (2010). The hydration of Modern Roman Cements used for current architectural conservation

Proceedings 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, J. Válek, C. Groot and J. J. Hughes (eds), Prague, 993-992.

Gourdin, W. H., and W. D. Kingery, (1975). The Beginnings of Pyrotechnology: Neolithic and Egyptian Lime Plaster. Journal of Field Archaeology 2, 133-150.

Grossi C.M. and Brimblecombe P., (2007). Effect on long-term changes in air pollution and climate on the decay and blackening of European stone building,

Building stone decay: From diagnosis to conservation. Prikkryl R. and Simith B. J, (eds) , Geological Society, Special Publication 271, London, 117-130.

Grossman E.L., Ku T.-L., (1986). Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology 59, 59-74.

Hale, J., Heinemeier, J., Lancaster, L., Lindroos, A., Ringbom, A., (2003).Dating ancient mortar. American Scientist 91, 130–137.

Hayes J.M., (1982). An introduction to isotopic measurements and terminology. Spectra 8, 3-8.

Hayes J.M., Strauss H., Kaufman A.J., (1999). The abundance of 13 C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology 161, 103-125.

Hays P.D., Grossman F.I., (1991). Oxygen isotopes in meteoric calcite cements as indicators of continental palaeoclimate. Geology 19, 441– 444.

Herz, N, and Dean, N. (1986). Stable isotopes and archaeological geology:the Carrara marble, northern Italy. Applied Geochemistry 1, 139– 151.

Herz, N. (1987). Carbon and oxygen isotopic ratios: a database for classical Greek and Roman marble. Archaeometry 29, 35–43.

Herz Norman, (1988). The oxygen and carbon isotopic data base for classical marble, Classical Marble: Geochemistry, Technology, Trade: Nato Asi Series E:

Applied Sciences, Vol. 153, Herz and Waelkens (eds), Kluwer Academic Publishers, 305-314.

Herz, N. (1992). Provenance determination of Neolithic to classical Mediterranean marbles by stable isotopes. Archaeometry 34, 185–194.

Heuzey L., (1876). Mission archeologique de Macedoine, Paris.

Hoefs Jochen, (2004). Stable isotope geochemistry, 5 th revised edition,Springer, New York.

Holmes S., and Wingate, (1997). Building with lime, Intermediate technology publications, London.

Holser W.T., (1997). Geochemical events documented in inorganic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 173-182.

Hughes, J. J. and Callebaut, K., (1999). Practical sampling of historic mortars', in 'Historic Mortars: Characteristics and Tests. Proceedings of a RILEM

International Workshop, Paisley 1999, Bartos P. J. M., Groot C. J. W. and Hughes J. j. (eds), RILEM 1999, 17-26.

Hughes J., and Cuthbert S., (2000). The petrography and microstructure of medieval lime mortars from the west of Scotland: Implications for the formulation of repair and replacement mortars. Materials and Structures, 33, 594-600.

Hughes J.J and Valek J., (2000). Mortars in historic buildings. A review of the conservation, technical and scientific literature, Historic Scotland, Technical Conservation, Research and Education Division.

Hutcheon I. and Abercrombie H. (1990). Carbon and dioxide in clastic rocks and silicate hydrolysis. Geology 18, 541-544.

Indermühle A., Stocker T.F., Joos F., Fischer H., Smith H.J., Wahlen M.,Deck B., Mastroianni D., Tschumi J., Blunier T., Meyer R., Stauffer B., (1999).

Holocene carbon-cycle dynamics based on CO 2 trapped in ice at Taylor Dome.Antarctica. Nature 398 (6723), 121-126.

IUPAC, (1998). Isotopic compositions of the elements 1997. Pure Applied Chemistry 70, 217-235.

Jackson M, Marra F, Deocampo D, Vella A, Kosso C, Hay R (2007).Geological observations of excavated sand (harenae fossiciae) used as fine aggregate in Roman pozzolanic mortars. Journal of Roman Archaeology 20, 25-53.

Jakubek M., Schlütter F., Wioleta Oberta and Jadwiga W. Łukaszewicz.(2010). Medieval Gypsum Mortars Used for Architectural Details in the Castle of the Teutonic Order in Toruń, Poland Proceedings 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, J. Válek, C. Groot and J. J. Hughes (eds), Prague –227-237.

Jarc S., Maniatis Y., Dotsika E., Tambakopoulos D., and Zupanciti N., (2010). Scientific characterization of the Pohorje marbles, Slovenia. Archaeometry 52, 177-190.

Jiménez-López C., Romanek C.S., Huertas F.J., Ohmoto H., Caballero E.,(2004). Oxygen isotope fractionation in synthetic magnesian calcite. Geochimica et Cosmochimica Acta 68, 3367-3377.

Karkanas, P. (2002). Micromorphological studies in Greek prehistoric sites:new insights in the interpretation of the archaeological record. Geoarchaeology: An International Journal, 17, 237–259.

Karkanas, P., & Eustratiou, N. (2003). In search of the everyday time in Neolithic Makri. Microstructure and microstratigraphy of floors, occupational

surfaces, and open areas of the settlement. IE Scientific Conference: The archeological work in Macedonia and Thrace. Thessaloniki: Greece, 1-8.

Karkanas (2007). Identification of Lime Plaster in Prehistory Using Petrographic Methods: A Review and Reconsideration of the Data on the Basis of

Experimental and Case Studies. Geoarchaeology: An International Journal, 22,775–796.

Keeling C.D., Bacastow R.B., Tans P.P., (1980). Predicted shift in the 13 C/ 12 C ratio of atmospheric carbon dioxide. Geophysical Research Letters 7, 505-508.

Kim S.-T., O'Neil J.R., (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61,3461-3475.

Kingery W.D and Gourdin, (1975). The beginnings of pyrotechnology: Neolithic and Egyptian lime plaster. Journal of field archaeology 2, 133-150.

Kingery W.D., Vandiver P., Prickett Martha (1988). The beginnings of pyrotechnology, Part II: Production and use of lime and gypsum plaster in the pre-pottery Neolithic Near East. Journal of field archaeology 15, 219-244.

Kosednar-Legenstein et al. (2008). Stable isotope investigation in historic lime mortar and plaster-Results from field and experimental study. Applied Geochemistry 23, 2425-2437.

Krautheimer R., (1986). Early Christian and Byzantine Architecture. Yale University Press, 152- 168.

Kraus K., Middendorf B., and Hughes J.J (2010). Historic mortars in thin sections - Concept for a petrographic atlas with CD. Proceedings 3nd Historic Mortars Conference HMC2013, 11-13 September J. Válek, C. Groot and J. J.Hughes (eds), Scotland, in press.

Lamprecht H. O., (1984). Opus Caementicium, Beton – Verlag, 21-40.

Lanas J., Perez Bernal J.L.,. Bello M.A. Alvarez Galindo J.I, (2004).Mechanical properties of natural hydraulic lime-based mortars. Cement and Concrete Research 34, 2191–2201.

Larbi J.A, (2004). Microscopy applied to the diagnosis of the deterioration of brick masonry. Construction and Building Materials 18, 299.

Lechtman H.N. and Hobbs L.W. (1986). Roman concrete and the Roman architectural revolution, Ceramics and civilization VII: High technology ceramics, past, present and future, the nature of innovation and change in ceramic technology, Kingery W.D. ( ed) American ceramic society Inc, USA, 81-128.

Leslie A. and Hughes J. (2002). Binder Microstructure in lime mortars:implications for the interpretation of analysis results. Quarterly journal of engineering geology and hydrogeology, 35, 257-263.

Letourneux J.-P. and Feneuille S. (2010). Mineralogical and Microstructural Analysis of Mortars from Kushite Archaeological Sites Proceedings 2nd Historic

Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, J. Válek, C. Groot and J. J. Hughes, (eds) Prague, 247- 255.

MacDonald W., (1958). Some Implications of Later Roman Construction.Journal of the Society of Architectural Historians, 17 (4), 2-8.

MacDonald W. L., (1965). The architecture of the Roman Empire. Yale University Press, 152-168.

Malacrino C. G., (2010). Constructing the ancient world. Architectural techniques of the Greeks and Romans, Getty Publications, 72-137.

Manfra, L. Masi, U. Turi, . B., (1975). Carbon and oxygen isotope ratios of marbles from some ancient quarries of western Anatolia and their archaeological significance. Archaeometry 17, 215–221.

Mango K., (1976). Byzantine Architecture. Harry N. Abrams Inc, 14-20.

Maravelaki-Kalaitzaki P., Bakolas A., and Moropoulou A., (2003). Physico-chemical study of Cretan ancient mortars. Cement and Concrete Research, 33, 651-661.

Martinez Ramirez S, Puertas F, Blanco-Varela MT, Thompson GE. (1997).Studies on degradation of lime mortars in atmospheric simulation chambers.Cement and Concrete Research, 27, 777–84.

Massazza F. (2007). Pozzolana and pozzolanic cements. In: Hewlett PC (ed) Lea’s chemistry of cement and concrete, 4th ed. Elsevier, UK, 471–602.

McCrea J.M., (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of chemical physics 18 (6), 849-857.

Mertens G, Van Balen K, Elsen J (2009). Microscopy as a tool for the provenance determination of raw materials and production technology used in ancient mortars from Tournai (Belgium), 12th Euroseminar on Microscopy Applied to Building Materials, University of Dortmund, German.

Middendorf, B., Hughes, J.J., Callebaut, K., Barino, G. and Papayianni, I.(2005). Investigative methods for the characterisation of historic mortars – Part 1:

Mineralogical characterization. Materials and Structures, 38, 761-769.

Μiller, S.G.,(1971). Hellenistic Macedonian Architecture: Its style and painted ornamentation, Pryn Manr College.

Miroslava Gregerová, Dalibor Všianský, Rudolf Procházka and Ludmila,Kurdíková. (2010). Petrographic Examination of Gothic Mortars of the House of Lords of Kunštát in Brno, Czech Republic J. Válek, C. Groot and J. J. Hughes,175-185.

Moropoulou A., Bakolas A., and Bisbikou K., (1995). Characterization of ancient, byzantine and later historic mortars by thermal and X-ray diffraction

techniques. Thermochimical Acta 269/270, 779-795.

Moropoulou A., Bakolas A., Bisbikou K., (2000). Investigation of the technology of historic mortars. Journal of Cultural Heritage 1, 45-58.

Moropoulou A., Bakolas A., Moundoulas P., Aggelakopoulou E.,Anagnostopoulou S., (2005). Strength development and lime reaction in mortars for repairing historic masonries. Cement & Concrete Composites 27, 289–294.

Morse J.W., Mackenzie F.T., (1990). Geochemistry of Sedimentary Carbonates. Developments in Sedimentology 48. Elsevier, Amsterdam. 707

Northrop D.A., Clayton R.N., (1966). Oxygen isotope fractionation in systems containing dolomite. Journal of Geology 74, 174.

Οates, J.A.H. (1998). Lime and Limestone, Chemistry and Technology.Production and uses, Wiley-VCH, Germany.

O’ Brien P. F., Bell E., Pavia Santamaria S., Boyland P, Cooper T.P., (1995).Role of mortars in the decay of granite. Science of the Total Environment 167, 103- 110.

Odler, I. (2007). Hydration, setting and hardening of Portland cement. In: Hewlett P.C. Ed. Lea’s chemistry of cement and concrete. Elsevier, UK, 241-289.

O'Neil J.R., Epstein S., (1966). Oxygen isotope fractionation in the system dolomitecalcite- carbon dioxide. Science 152, 198-201.

O'Neil, J.R., and Barnes, I., (1971). 13 C and 18 O compositions in some fresh- water carbonates associated with ultramafic rocks and serpentinites: western

United States. Geochimica and Cosmochim. Acta 35, 687–697.

Ousterhout R., (1999), Master Builders of Byzantium. Princeton University Press, Νew Jersey, 133-222.

Pachiaudi, C., Marechal, J., van Strydonck, M., Dupas, M., Dauchot- Dehon, M., (1986). Isotopic fractionation of carbon during CO 2 absorption by mortar. Radiocarbon 28, 691–697.

Papayianni I. (2006), The longevity of old mortars. Applied Physics A 83,685–688.

Papayianni I., Pachta V. (2008). Technology of mortars used for the substratum of mosaics. Proceedings of the 4th Symposium of the Hellenic Society

for Archaeometry National Hellenic Research Foundation, Athens, edited by Yorgos Facorellis, Nikos Zacharias, Kiki Polikreti. BAR International Series 1746, 437-440.

Papayianni I., and Stefanidou M. (2007), Durability aspects of ancient mortars of the archaeological site of Olynthos. Journal of Cultural Heritage 8,193-196.

Papayianni I., Stefanidou M. (2006), Strength-porosity relationships in Lime-Pozzolan mortars. Construction and Building Materials, 20, 700-705.

Papayianni Ι., Stefanidou Μ., Pachta V., Konopisi S., ( 2013), Content and topography of salts in historic mortars. 3rd Historic Mortars Conference 11-14 September 2013, Glasgow, Scotland.

Pavía S. (2015), Analysis of mortar: visual and petrographic analysis of aggregate, binder and additions. Editor(s) Lynch & Manning, Archaeological Monograph Series 10: High Island (Ardoileán), Co. Galway: Excavation of an Early Medieval Monastery. Dublin, Dept of Arts, Heritage and The Gaeltacht, 319 – 331.

Pavía S., (2008)a. A petrographic study of the technology of hydraulic mortars at masonry bridges, harbours and mill ponds. Concrete Research and Bridge Infrastructure Symp., Galway, December 2008, edited by Cannon E., West, R. and Fanning P. , Galileo Editions, 253 – 264.

Pavía S. (2008)b. A petrographic study of mortar hydraulicity, in proc. of Historic Mortars Conference. Characterization, Diagnosis, Conservation, Repair & Compatibility, Lisbon.

Pavía S, Caro S (2008). An investigation of Roman mortar technology through the petrographic analysis of archaeological material. Construction and Building Materials 22, 1807-1811.

Pavía S. Santamaría Y.,. Bolto J.R, (1997). The susceptibility of Historic Brick Masonry to Decay. The Journal of Architectural Conservation, 3, 58 – 67.

Perdikatsis V., Kilikoglou V., Sotiropoulou S., Chryssikopoulou E. (2000). Physicochemical characterisation of pigments from Theran wall paintings, In The Wall Paintings of Thera. Proceedings of the First International Symposiu, Vol 1.Petros M. Nomikos Conference Centre, Thera, Greece, 103-118.

Perry S.H., Duffy A. P., (1997). The short term effects of mortar joints on salt movement in stone. Atmospheric Environment, 31, 1997, 1297-1305.

Quay P.D., Tilbrook B., Wong C.S., (1992). Oceanic uptake of fossil fuel CO2:Carbon-13 evidence. Science 256, 74-79.

Rafai, N., Letolle, R., Blanc, P., Gegout, P., Revertegat, E., (1992).Carbonation–decarbonation of concretes studied by the way of carbon and oxygen stable isotopes. Cement and Concrete Research 22, 882–890.

Rilem Technical Committee-167 COM: Characterisation of old mortars, with respect to their repair.

Riontino C., Sabbioni C., Ghedini N., Zappia G., Gobbi G., Favoni O., (1998). Evaluation of atmospheric deposition on historic buildings by combined thermal analysis and combustion techniques. Thermochimica Acta, 321, 215-222.

Robertson D.S. (1959). A Handbook of Greek and Roman Architecture. Cambridge University Press, 147-266.

Rohling E.J., Fenton M., Jorissen F.J., Bertrand P., Ganssen G., Caulet J.P.,(1998). Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394, 162-165.

Rossi-Manaresi, R., Tucci, A. (1991). Pore structure and the disruptive or cementing effect of salt crystallization in various types of stone. Studies in Conservation 36, 56-58.

Rosvall, J. (1988). Air Pollution and Conservation. Amsterdam: Elsevier.

Sabbioni C., Zappia G., Ghedini N., Gobbi G., Favoni O., (1998). Black crusts on ancient mortrs. Atmospheric Environment, 32 (1998) 215-223.

Sabbioni C, Zappia G, Riontino C, Blanco-Varela MT, Aguilera J, Puertas F, et al. (2001). Atmospheric deterioration of ancient and modern hydraulic mortars. Atmospheric Environment 35, 539–48.

Sabbioni C., Zappia G., Riontino C., Blanco-Varela M.T., Aguilera J.,Puertas F., Van Baien K., Toumbakari E.E., (2001). Atmospheric deterioration of ancient and modem hydraulic mortars. Atmospheric Environment 35, 539-548.

Sackett W.M., (1991). A history of the δ 13 C composition of oceanic plankton. Marine Chemistry 34, 153-156.

Sarnthein M., Winn K., Jung S.J.A., Duplessy J.C., Labeyrie L., Erlenkeuser H., Ganssen G., (1994). Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9, 209-268.

Scherer, G.W., (2004). Stress from crystallization of salt. Cement and Concrete Research 34, 1613-1624.

Schrag D.P., Hampt G., Murray D.W., (1996). Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272, 1930-1932.

Shackleton N.J., Opdyke N.D., (1973). Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volume on a 105 and 106 year scale. Quaternary Research 3, 39-55.

Shackleton N.J., (1985). Oceanic carbon isotope constraints on oxygen and carbon dioxide in the Cenozoic atmosphere. In: Sundquist E.T. and Broecker W.S.

(eds), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, AGU, Washington D.C., Geophys. Monogr. Serier 32, 412-417.

Sharp Z., (2007). Principles of Stable Isotope Geochemistry. Pearson Prentice Hall, Upper Saddle River, NJ, 344.

Siddall R. (2013). Medieval Mortars and the Gothic Revival:The Cosmati Pavement at Westminster Abbey, Proceedings 3 rd Historic Mortars Conference HMC2013, J. Válek, C. Groot and J. J. Hughes (eds), Schotland, in press.

Silva DA, Wenk HR and Monteiro PJM (2005). Comparative investigation of mortars from Roman Colosseum and cistern. Thermochimica Acta 438, 35-40.

Soddy F., (1914). Intra-atomic charge. Nature 92, 399-400.

Stefanidou, M., (2007). A contribution to salt crystallization into the structure of traditional repair mortars through capillarity, 11th euroseminar on microscopy applied to building materials 5-9 June, Porto, Portugal.

Stefanidou M., Pachta V., Konopisi S., Karkadelidou F., Papayianni I. (2014). Analysis and characterization of hydraulic mortars from ancient cisterns and baths in Greece. Materials and Structure, 47, 571-580.

Stefanidou M., and Papayianni I. (2005). The role of aggregates on the structure and properties of lime mortars. Cement and Concrete Composites 27,914-919.

Stefanidou, M., and Papayianni, I., (2006). Salt accumulation in historic and repair mortars. Heritage, Weathering and Conservation, Fort RM. Alvarez de Buergo, Gomez-Heras & Vazquez-Calco., Taylor & Francis, 269-272.

Stefanidou M., Papayianni I., Pachta V. (2012). Evaluation of inclusions in mortars of different historical periods from Greek monuments. Archaeometry 54, 737-751.

St John, D. A., Poole, A. W., Sims, I. (1998). Concrete petrography. Arnold,London.Tans P.P., Berry J.A., Keeling R.F., (1993). Oceanic 13 C/ 12 C observations: A new window on oceanic CO 2 uptake. Global Biogeochemical Cycles 7, 353-368.

Tarutani T., Clayton R.N., Mayeda T.K., (1969). The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochimica et Cosmochimica Acta 33, 987-996.

Theoulakis, P., Moropoulou, A., (1997). Microstructural and mechanical parameters determining the susceptibility of porous building stones to salt decay. Construction and Building Materials 11, 65-71.

Thompson P.T., Schwarcz H.P., Ford D.C., (1976). Stable isotope geochemistry, geothermometry and geochronology of speleothems from West Virginia. Geological Society of America Bulletin 87, 1730-1738.

Torraca G., (1988). Porous Building Materials, Materials Science for Architectural Conservation, ICCROM, 3rd edition.

Tsokas G.N, Sarris A., Pappa M., Bessios M., Papazachos C.B, Tsourlos P., Giannopoulos A., ( 1997). A Large-scale Magnetic Survey in Makrygialos (Pieria), Greece, Archaeological Prospection, 4, 123-137.

Tsolakidou A., Kiriatzi E., Day P.M. and Kilikogloy B. (2003). Chemical differentiation of ceramics and control groups: combined application of chemical and petrographic analyses on Early-Minoan ceramics. In: Mpassiakos I., Aloupi E. & Facorellis G.(eds). Archaeometry Issues in Greece Prehistory and Antiquity, Hellenic Society of Archaeometry/Society of Messenian Archaeological Studies, 249-257.

Tucker, M. E., (1991). Sedimentary petrology - 2nd edition. Blackwell Scientific Publications.

Urey H.C., Brickwedde F.G., Murphy G.M., (1932). A hydrogen isotope of mass 2 and its concentration. Physics Reviews, 40, 1-15.

Urey H.C., (1947). The thermodynamic properties of isotopic substances.Journal of the Chemical Society 562-581.

Usdowski E, Hoefs J (1993). Oxygen isotope exchange between carbonic acid, bicarbonate, carbonate, and water: a re-examination of the data of McCrea (1950) and an expression for the overall partitioning of oxygen isotopes between the carbonate species and water. Geochimica and Cosmochimica Acta 57, 3815–3818.

Van Balen K, Toumbakari EE, Blanco-Varela MT, Aguilera J, Puertas F,Palomo A, et al., (2002). Environmental deterioration of ancient and modern hydraulic mortar. Research Report No 15, EUR 19863. European Commission,Luxemburg: Office for Official Publications of the European Communities.

Van Strydonck, M., Dupas M., Keppens E., (1989). Isotopic fractionation of oxygen and carbon in lime mortar under natural environmental-conditions.Radiocarbon 31, 610–618.

Vicat L-J., Hawkwesworth J., Smith J. T., (1997). Mortars and cements,Shaftesburry, Donhead, UK.

Von Landsberg, D, (1992). The History of Lime Production and Use from Early Times to the Industrial Revolution. Zement-Kalk-Gips., 8, 199–203.

Walker R., Pavía S., (2011). Physical properties and reactivity of pozzolans,and their influence on the properties of lime-pozzolan pastes. Materials and Structures, 44, 1139-1150.

Walker R. and Pavía S., (2010). Behaviour and Properties of Lime-Pozzolan Pastes. 8th International Masonry Conference, Dresden, July 2010, edited by W. Jäger, B. Haseltine, A. Fried , conference proceedings Dresden, 353 – 362.

Ward-Perkins J.B., (1958). Notes on the Structure and Building Methods of Early Byzantine Architecture, in The Great Palace of the Byzantine Emperors 2,Rice T. D. ed., Edinburgh University Press, 52-104.

Whight G.R.H. (2005). Ancient building Technology, Parts 1: Text, Brill, Leiden, Boston.

Whitbread, I. K., (1986). The characterisation of argillaceous inclusions in ceramic thin sections. Archaeometry 28, 79-88.

Wong H.S., et al, (2006). Estimating transport properties of mortars using image analysis on backscattered electron images. Cement and Concrete Research 36, 1556-1566

Wright G. R. H., (2000). Ancient building technology. Historical Background, Brill, 115-116

Yates T. (2003). Mechanisms of air pollution damage to brick concrete and mortar. In: Brimblecombe P, (eds). Air pollution reviews: the effects of air pollution on the built environment. London: Imperial College Press, 107–32.

Yurtsever Y., and Gat J.R., (1981). Stable isotopes in precipitation: Data from the IAEA network, Stable isotope hydrology, Deuterium and Oxygen-18 in the water cycle, Gat J.R., and Gonfiantini R., (eds), Technical report series No.210,103-139.

Zappia G, Sabbioni C, Pauri MG, Gobbi G. (1994). Mortar damage to airborne sulfur compounds in a simulation chamber. Material Structures, 27, 469–73.

Zeebe R.E., Wolf-Gladrow D.A., (2001). CO 2 in Seawater: Equilibrium,Kinetics, Isotopes. Elsevier Oceanography Series 65, 346, Amsterdam.

Dotsika E., Kyropoulou D., Christaras V.,13 C and 18 O applied to detect degradation and various exogenic processes in historic mortars, Geochemical Journal, submitted

Dafni N. Kyropoulou, (2013). Dust ingress on library books, the Journal of the Institute of Conservation 36, 173-185.

Kyropoulou D., Dotsika E., (2013). Stable isotope analysis ( 13 C and 18 O) ,as a tool to investigate particulate matter in historic libraries, e-Preservation Science, 10, 109-113

Kyropoulou D., Dotsika E., Andrikou D., (2013). The transition from Hellenistic to Roman and Byzantine mortars in Greece,Proceedings of 3rd historic mortars conference HMC03, Scotland, UK, in press

Kyropoulou D., Dotsika E., Andrikou D., (2013). The transition from Hellenistic to Roman and Byzantine mortars in Greece, 3rd historic mortars conference HMC2013, Scotland, UK

E. Dotsika, D. Kyropoulou, E. Iliadis, B. Raco, S. Dadaki, S. Doukata-Demertzi and I. Iliadis (2012), Carbon and oxygen isotopes for environmental degradation of historic mortars, Environmental and analytical chemistry conference, Antwerp

Dotsika E., Kyropoulou D., Iliadis E., Dadaki S., Doukata-Demertzi S.,Iliadis I., (2012) Carbon and oxygen isotopes: a tool to diagnose degradation of historic mortars, Indoor air quality for museum and cultural institution conference,( IAQ), 2012, London

Kyropoulou Dafni, (2008). Dust at Trinity College Library, Conservation in Wales: ethics and Practice 3d December 2008, Cynon Valley Museum and Gallery, Aberdare

Χαντζή Π., Κυροπούλου Δ., Ντότσικα Ε., Αθανασιάδου Κ., Ηλιάδης Ε.,(2015), Ισοτοπικές τεχνικές εφαρμοσμένες σε ιστορικά κονιάματα, Εταιρεία έρευνας και προώθησης της επιστημονικής αναστήλωσης των μνημείων (ΕΤΕΠΑΜ), 4ο Πανελλήνιο Συνέδριο Αναστηλώσεων, 26-28 Νοεμβρίου 2015, Θεσσαλονίκη

Kyropoulou D., Dotsika E., Andrikou D., (2013). The technology of Hellenistic mortars from Pydna, Greece, Greek Archaeometric Society

Kyropoulou Dafni (2011). An investigation of deposited dust particles in archival collection, National Conservators Association

Kyropoulou D. Dotsika E., (2013). The emerging role of stable isotopes in reading the past, Ancient Mediterranean Landscape Reconstruction NCSR Demokritos, 29-31 October 2013

Kyropoulou Dafni (2011). Isotopic geochemistry a modern tool to investigate the museum environment, Demokritos Summer School

Kyropoulou Dafni (2011). Isotopic geochemistry a modern tool to study museum objects and their environment, Demokritos Summer School Πόστερ

Kyropoulou D., Andrikou D., Christaras V., Melfos V., Dotsika E., (2016), 13 C and 18 O apllied to detect the technology and degradation of historic mortars, 41 st Internaltional symposium on archaeometry (ISA), Kalamata, Greece

Kyropoulou D., Dotsika E., Chantzi P., Heliadis E, Karalis P. (2014),Conserving the past, building for the future: Chemical and isotope analysis of historic mortar, The Mediterranean city

Kyropoulou D., Dotsika E., (2013), SEM/EDXA an analytical tool to examine technology and deterioration of historic mortars, Proceedings of 3rd historic mortars conference HMC03, Scotland, UK Historic mortars conference

Kyropoulou Dafni (2012), Stable isotope ( 13 C and O) analysis for investigation of dust cementation in historic libraries, Indoor air quality in Museums and Cultural Institutions, UCL, London

Κyropoulou Dafni (2010), A technical investigation on the cementation processes of calcite based particles in loose dust samples – Preliminary results. Cost D42 Action Reference code: COST-STSM-D42-05902 243


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.