[Εξώφυλλο]

Τίτλος εργασίας στην ελληνική : Συνδυαστική εφαρμογή σεισμικών και γεωηλεκτρικών μεθόδων για τον εντοπισμό εγκοίλων: εφαρμογή στη περιοχή ανέγερσης του νέου πανεπιστημίου δυτικής Μακεδονίας στην Κοζάνη = Combined application of seismic and electrical methods for karstic voids detection: a case study at the campus of the new university of western Macedonia, Kozani

Ευτυχία Αμανάτιος Αμανατίδου

Περίληψη


Η παρούσα διατριβή έχει ως αντικείμενο την εφαρμογή γεωφυσικών μεθόδων στη περιοχή ανέγερσης του νέου Πανεπιστημίου Δυτικής Μακεδονίας. Στόχος της διατριβής ήταν η έρευνα της βέλτιστης μεθοδολογικής προσέγγισης για τον εντοπισμό καρστικών εγκοίλων εφαρμόζοντας μεθόδους που χρησιμοποιούνται ευρέως σε αντίστοιχες μελέτες καθώς και μεθόδους η αποτελεσματικότητα των οποίων τίθεται υπό αξιολόγηση. Οι μέθοδοι που εφαρμόστηκαν είναι η ηλεκτρική τομογραφία (ERT), η σεισμική τομογραφία διάθλασης (SRT) και η πολυκάναλη ανάλυση επιφανειακών κυμάτων (MASW). Επιπλέον προτάθηκε μια διαφορετική προσέγγιση στη μελέτη των κυμάτων χώρου χρησιμοποιώντας μια επιφανειακή διάταξη πηγών-γεωφώνων, αντίστοιχη με αυτή που χρησιμοποιείται σε έρευνες μεταξύ γεωτρήσεων (cross-hole). Η έρευνα επικεντρώθηκε σε δύο θέσεις, όπου υπήρξε επιφανειακή εκδήλωση καρστικών δομών. Η μέθοδος της ηλεκτρικής τομογραφίας πραγματοποιήθηκε σε αρχικό στάδιο για την οριοθέτηση των γνωστών εγκοίλων και τον εντοπισμό επιπλέον καρστικών δομών. Οι σεισμικές μέθοδοι εφαρμόστηκαν στη συνέχεια, με στόχο την αξιολόγηση των δυνατοτήτων τους σε καρστικό περιβάλλον και τη συνδυαστική ερμηνεία του συνόλου των γεωφυσικών δεδομένων. Τα αποτελέσματα της έρευνας ανέδειξαν πλεονεκτήματα και μειονεκτήματα κάθε μεθόδου, καθιστώντας σαφή την χρησιμότητα συνδυαστικής ερμηνείας. Τα έγκοιλα απεικονίζονται ως αντιστατικές δομές στο γεωηλεκτρικό μοντέλο, ταυτόχρονα όμως το ευρύτερο αντιστατικό περιβάλλον προκαλεί αμφιβολίες στην ερμηνεία. Η εφαρμογή των σεισμικών μέθοδών αποδείχθηκε καθοριστική στην αποσαφήνιση του γεωηλεκτρικού μοντέλου και την εξαγωγή των τελικών συμπερασμάτων. Η σεισμική τομογραφία διάθλασης απέδωσε τα έγκοιλα ως δομές χαμηλής ταχύτητας, με σαφή διαφοροποίηση από το συμπαγές ασβεστολιθικό υπόβαθρο. Το αποτέλεσμα της αντιστροφής ενισχύθηκε περεταίρω με την αντιστροφή συνθετικών δεδομένων, τα οποία κατασκευάστηκαν με σκοπό την προσομοίωση των συνθηκών της περιοχής. Η μέθοδος της MASW χρησιμοποιήθηκε ως συμπληρωματική τεχνική, επιβεβαιώνοντας την ύπαρξη καρστικοποιημένων περιοχών. Και οι δύο μέθοδοι κρίθηκαν εξαιρετικά χρήσιμες και αποτελεσματικές στον εντοπισμό καρστικών δομών.

The presented thesis deals with the combined application of geophysical methods in the area where the new University of Western Macedonia is to be build. The aim of the thesis was to investigate the optimal methodological approach regarding the detection of karstic features in limestone rocks. Various methods widely used in relevant studies and methods whose efficiency is under evaluation were examined. Electrical Resistivity Tomography (ERT), Seismic Refraction Tomography (SRT) and Multichannel Analysis of Surface Waves (MASW) were applied. An additional approach was proposed in P-wave’s propagation study, applying a geophone-source array similar to the one used in cross-hole surveys. The geophysical survey took place at two different sites, where the karstic features were observed on the surface. Initially, the geoelectric method was applied for the delimitation of the known voids and the detection of additional karstic features. Seismic methods were then applied in order to evaluate their potential in karstic environments, as well as the overall combined interpretation of geophysical data. The results highlighted the main advantages and disadvantages of each method, confirming the importance of joint interpretation. Karstic voids were presented as high resistivity features, while at the same time the overall geoelectric model interpretation was ambiguous because of the high-resistivity environment. Seismic methods proved to be crucial for the clarification of the ambiguous results of the previous ERT survey at the area. Seismic refraction tomography depicts the potential cavities as low-velocity features, clearly differentiated from the limestone bedrock. Synthetic data inversion further verified the reliability of the refraction tomography results. The MASW method was used as a complementary technique, confirming the characterization of karstified areas. Both methods have been considered as a useful and reliable tool for precise mapping of shallow karstic features.

Πλήρες Κείμενο:

PDF

Αναφορές


Abd El Aal, A. (2017, March). Identification and characterization of near surface cavities in Tuwaiq Mountain Limestone, Riyadh, KSA, “detection and treatment”. Egyptian Journal of Petroleum, 26(1), pp. 215-223. doi:10.1016/j.ejpe.2016.04.004

Abu-Shariah, M. I. (2009, February). Determination of cave geometry by using a geoelectrical resistivity inverse model. Engineering Geology, 105, pp. 239-244. doi:10.1016/j.enggeo.2009.02.006

Aki, K., & Lee, W. (1976, August). Determination of three-dimensional velocity anomalies under a seismic array using first P-arrival times from local earthquakes, 1. a homogeneous initial model. Journal of Geophysical Research, 81(23), pp. 4381-4399. doi:10.1029/JB081i023p04381

Aki, K., & Richards, P. (1980). Quantitative Seismology: Theory end Methods. San Francisco: W. H. Freeman.

Beres, M., Luetscher, M., & Olivier, R. (2001). Integration of ground-penetrating radar and microgravimetric methods to map shallow caves. Journal of Applied Geophysics, 46, pp. 249-262.

Campman, X., van Wijk, K., Riyanti, C. D., Scales, J., & Herman, G. (2004). Imaging scattered seismic surface waves. Near Surface Geophysics, 2, pp. 223-230.

Cardarelli, E., Cercato, M., Cerreto, A., & Di Filippo, G. (2010). Electrical resistivity and seismic refraction tomography to detect buried. Geophysical Prospecting, 58, pp. 685-695. doi:10.1111/j.1365-2478.2009.00854.x

Cardarelli, E., Filippo, G. D., & Tuccinardi, E. (2006, December). Electrical resistivity tomography to detect buried cavities in Rome: a case study. Near Surface Geophysics, 4(6), pp. 387-392. doi:10.3997/1873-0604.2006012

Cerveny, V. (2001). Seismic Ray Theory. Cambridge: CAMBRIDGE UNIVERSITY PRESS.

Chalikakis, K., Plagnes, V., Guerin, R., Valois, R., & Bosch, F. P. (2011, September). Contribution of geophysical methods to karst-system exploration: An overview. Hydrogeology Journal, 19(6), pp. 1169-1180. doi:10.1007/s10040-011-0746-x

Chen, X. (1993). A systematic and efficient method of computing normal modes for multilayered half space. Geophysical Journal International, 115, pp. 391-409.

Constable, S., Parker, R., & Constable, C. (1987, March). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), pp. 289-300.

De Waele, J., Gutiérrez, F., Parise, M., & Plan, L. (2011). Geomorphology and natural hazards in karst areas: A review. Geomorphology, 134, pp. 1-8. doi:10.1016/j.geomorph.2011.08.001

De Waele, J., Plan, L., & Audra, P. (2009). Recent developments in surface and subsurface karst geomorphology: An introduction. Geomorphology, 106, pp. 1-8. doi:10.1016/j.geomorph.2008.09.023

Debeglia, N., Bitri, A., & Thierry, P. (2006). Karst investigations using microgravity and MASW; Application to Orléans, France. Near Surface Geophysics, 4, pp. 215-225.

Doll, W. E., Nyquist, J. E., Carpenter, P. J., Kaufmann, R. D., & Carr, B. J. (1998). Geophysical Surveys of a Known Karst Feature, Oak Ridge Y-1 2 Plant, Oak Ridge, Tennessee. Environmental and Engineering Geophysics, 3, pp. 133-146.

Ellis, R. G., & Oldenburg, D. W. (1994). Applied geophysical inversion. Geophysics, 42, pp. 1020-1036.

El-Qady, G., Hafez, M., Abdalla, M. A., & Ushijima, K. (2005, December). Imaging subsurface cavities using geoelectric tomography and ground-penetrating radar. Journal of Cave and Karst Studies, 67(3), pp. 174-181.

Epting, J., Huggenberger, P., & Glur, L. (2009, November). Integrated investigations of karst phenomena in urban environments. Engineering Geology, 109(3-4), pp. 273-289. doi:10.1016/j.enggeo.2009.08.013

F.J.Martínez-Moreno, A.Pedrera, P.Ruano, J.Galindo-Zaldívar, S.Martos-Rosillo, L.González-Castillo, . . . Marín-Lechado. (2013, July). Combined microgravity, electrical resistivity tomography and induced polarization to detect deeply buried caves: Algaidilla cave (Southern Spain). Engineering Geology, 162, pp. 67-78. doi:10.1016/j.enggeo.2013.05.008

Fadhli, Z., Saad, R., Nordiana, M. M., Azwin, N., & Bery, A. A. (2015). Mapping Subsurface Karst Formation Using 2-D Electrical Resistivity Imaging (2-DERI). Electronic Journal of Geotechnical Engineering, 20(1).

Farooq, M., Park, S., Song, Y. S., Kim, J. H., Tariq, M., & Abraham, A. A. (2012, June). Subsurface cavity detection in a karst environment using electrical resistivity (er): a case study from yongweol-ri, South Korea. Earth Sciences Research Journal, 16(1), pp. 75-82.

Ford, D., & Williams, P. (2007). Karst Hydrogeology and Geomorphology. West Sussex: John Wiley & Sons Ltd.

Foti, S. (2000). Multistation methods for geotechnical characterization using surface waves. Torino, Italy: Politecnico di Torino.

Gambetta, M., Armadillo, E., Carmisciano, C., Stefanelli, P., Cocchi, L., & Tontini, F. C. (2011, April). Determining geophysical properties of a nearsurface cave through integrated microgravity vertical gradient and electrical resistivity tomography measurements. Journal of Cave and Karst Studies, 73(1), pp. 11-15. doi:10.4311/jcks2009ex0091

Gan, F., Chen, Y., Zhao, W., Chen, Y., & Liu, W. (2013, January). Integrated Geophysical Methods for Groundwater Exploration in a Karst Area with or Without Thin Cover – A Case Study from Tai’an City, Shandong Province, China. Full Proceedings of the Thirteenth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. doi:10.5038/9780979542275.1134

Gan, F., Han, K., Lan, F., Chen, Y., & Zhang, W. (2017, January). Multi-geophysical approaches to detect karst channels underground — A case study in Mengzi of Yunnan Province, China. Journal of Applied Geophysics, 136, pp. 91-98. doi:10.1016/j.jappgeo.2016.10.036

Giorgi, L., & Leucci, G. (2014, July). Detection of Hazardous Cavities Below a Road Using Combined Geophysical Methods. Surveys in Geophysics, 35(4), pp. 1003-1021. doi:10.1007/s10712-013-9277-4

Golub, G. H., & Reinsch, C. (1970). Singular Value Decomposition and Least Square Solutions. Numer. Math, 14, pp. 403-420.

Grandjean, G. (2006). Imaging subsurface objects by seismic P-wave tomography: numerical and experimental validations. Near Surface Geophysics, 4, pp. 279-287.

Grandjeana, G., & Leparoux, D. (2004). The potential of seismic methods for detecting cavities and buried objects: experimentation at a test site. Journal of Applied Geophysics, 56, pp. 93-106. doi:10.1016/j.jappgeo.2004.04.004

Guérin, R., Baltassat, J.-M., Boucher, M., Chalikakis, K., Galibert, P.-Y., Girard, J.-F., . . . Valois, R. (2009). Geophysical characterisation of karstic networks – Application to the Ouysse system (Poumeyssen, France). C. R. Geoscience, 341(10-11), pp. 810-817. doi:10.1016/j.crte.2009.08.005

Gutiérrez, F., Parise, M., DeWaele, J., & Jourde, H. (2014, November). A reviewon natural and human-induced geohazards and impacts in karst. Earth-Science Reviews, 138, pp. 61-88. doi:10.1016/j.earscirev.2014.08.002

Haskell, N. A. (1953, January). The Dispersion of Surface Waves on Multilayered Media. Bulletin of the Seismological Society of America, 43(1), pp. 17-34. doi:10.1029/SP030p0086

Hayashi, K., & Suzuki, H. (2004). CMP cross-correlation analysis of multichannel surface wave data. Exploration Geophysics, 35, pp. 7-13.

Hisada, Y. (1994). An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths. Part I. Bulletin of Seismological Society of America, 84, pp. 1456-1472.

Hisada, Y. (1995). An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths. Part II. Bulletin of Seismological Society of America, 85, pp. 1080-1093.

Ismail, A., & Anderson, N. (2012, August). 2-D and 3-D Resistivity Imaging of Karst Sites in Missouri, USA. Environmental & Engineering Geoscience, 18(3), pp. 281-293.

Karabutul, S., Cinku, M., & Tezel, O. (2017). Geophysical Application On Cave Detection; A Case Study In Yarimburgaz, Küçükçekmece Lake, Nw Istanbul, Turkey. 9th Congress of the Balkan Geophysical Society 5-9 November. Antalya, Turkey.

Kearey, P., Brooks, M., & Hill, I. (2002). An Introduction to Geophysical Exploration. Oxford: Blackwell Science.

Kirsch, R. (2006). Groundwater Geophysics-A Tool for Hydrogeology. Berlin: Springer.

Koulakov, I. (2009). Code PROFIT for forward modeling and tomographic inversion based on active refraction seismic profiling data. Novosibirsk, Russia.

Kritikakis, G. (2017). Users’ manusl for kriSIS v1.05. Technical University of Crete, Applied Geophysics Lab, Chania.

LaBrecque, D. J., Miletto, M., Daily, W., Ramirez, A., & Owen, E. (1996). The effects of noise on Occam's inversion of resistivity tomography data. Geophysics, 61, pp. 538-548.

Leucci, G. (2003, January). Evaluation of karstic cave stability using integrated geophysical methods. GeoActa, 2, pp. 75-88.

Levenberg, K. (1944). A Method for the Solution of Certain Non-Linear Problems in Least Squares. The Quarterly of Applied Mathematics, 2, pp. 164-168.

Li, S., Zhou, Z., Ye, Z., Li, L., Zhang, Q., & Xu, Z. (2015, May). Comprehensive geophysical prediction and treatment measures of karst caves in deep buried tunnel. Journal of Applied Geophysics, 116, pp. 247-257. doi:10.1016/j.jappgeo.2015.03.019

Lines, L. R., & Treitel, S. (1984). Tutorial: a review of least-squares inversion and its application to geophysical problems. Geophysical Prospecting, 32, pp. 159-186.

Luo, Y., Xia, J., Liu, J., Xu, Y., & Liu, Q. (2008). Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves. Journal of Applied Geophysics, 64, pp. 115-124. doi:10.1016/j.jappgeo.2008.01.003

Marquadt, D. W. (1963). An algorithm for least-square estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, pp. 431-441.

Martínez-Moreno, F. J., Galindo-Zaldívar, J., Pedrera, A., Teixido, T., Ruano, P., Peña, J. A., . . . Martín-Rosales, W. (2014). Integrated geophysicalmethods for studying the karst systemof Gruta de las Maravillas (Aracena, Southwest Spain). Journal of Applied Geophysics, 107, pp. 149-162. doi:10.1016/j.jappgeo.2014.05.021

McMechan, G. A., & Yedlin, M. J. (1981, June). Analysis of dispersive waves by wave field transformation. Geophysics, 46(6), pp. 869-874. doi:10.1190/1.1441225

McMechan, G. A., Loucks, R. G., Zeng, X., & Mescher, P. (1998). Ground penetrating radar imaging of a collapsed paleocave system in the Ellenburger dolomite, central Texas. Journal of Applied Geophysics, 39, pp. 1-10.

Meju, M. A. (1994). Geophysical Data Analysis: Understanding Inverse Problem Theory and Practic. Tulsa, Oklahoma: Society of Exploration Geophysicis.

Metwaly, M., & AlFouzan, F. (2013, July). Application of 2-D geoelectrical resistivity tomography for subsurface cavity detection in the eastern part of Saudi Arabia. Geoscience Frontiers, 4(4), pp. 469-476. doi:10.1016/j.gsf.2012.12.005

Miller, R. D., Xia, J., & Park, C. B. (2005). Seismic techniques to detect dissolution features (karst) at a proposed power-plant site. In D. K. Butler, Near-surface geophysics (pp. 663-679). Tulsa, Okla: Society of Exploration Geophysicists.

Miller, R. D., Xia, J., Park, C. B., & Ivanov, J. (1999). Multichannel analysis of surface waves to map bedrock. The Leading Edge, 18, pp. 1392-1396.

Milsom, J. (2003). Field Geophysics. West Sussex: John Wiley & Sons Ltd.

Mochales, T., Casas, A. M., Pueyo, E. L., Pueyo, O., Román, M. T., Pocoví, A., . . . Ansón, D. (2008, January). Detection of underground cavities by combining gravity, magnetic and ground penetrating radar surveys: a case study from the Zaragoza area, NE Spain. Environmental Geology, 53(5), pp. 1067-1077. doi:10.1007/s00254-007-0733-7

Mountrakis, D., Sapountzis, E., Kilias, A., Eleftheriadis, G., & Christofides, G. (1983). Paleogeographic conditions in the western Pelagonian margin in Greece during the initial rifting of the continental area. Canadian Journal of Earth Sciences, 20, pp. 1673-1681. doi:10.1139/e83-158

Nasseri-Moghaddam, A. (2006). Study of the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic medium. Waterloo, Ontario,Canada: University of Waterloo.

Nasseri-Moghaddam, A., Cascante, G., & Hutchinson, J. (2005, March). A New Quantitative Procedure to Determine the Location and Embedment Depth of a Void Using Surface Waves. Journal of Environmental and Engineering Geophysics, 10(1), pp. 51-64.

Nasseri-Moghaddam, A., Cascante, G., Phillips, C., & Hutchinson, D. J. (2007). Effects of underground cavities on Rayleigh waves—Field and numerical experiments. Soil Dynamics and Earthquake Engineering, 27, pp. 300-313. doi:10.1016/j.soildyn.2006.09.002

Niu, J., Oyediran, I. A., Liu, D., Huang, X., Cui, Z., Wang, H., & Shi, X. (2015, June). Quantitative foundation stability evaluation of urban karst area: Case study of Tangshan, China. Soils and Foundations, 55(3), pp. 493-503. doi:10.1016/j.sandf.2015.04.002

Nolet, G. (1987). Seismic Tomography: With Applications in Global Seismology and Exploration Geophysics. Dordrecht: Springer Netherlands.

Nwokebuihe, S. (2014). The description of an effective sinkhole investigation approach: a case study of two sites in Greene County, Missouri. Missouri: Missouri University of Science and Technology.

Obi, J. C. (2016). Geophysical Imaging of Karst Features in Missouri. Missouri: Missouri University of Science and Technology.

Orfanos, C., & Apostolopoulos, G. (2012, March). Analysis of different geophysical methods in the detection of an underground opening at a controlled test site. Journal of the Balkan Geophysical Society, 15(1), pp. 7-18.

Paige, C., & Saunders, M. (1982, June). LSQR: Sparse linear equations and least squares problems. ACM Transactions on Mathematical Software, 8(2), pp. 195-209.

Pain, C. C., Herwanger, J. V., Worthington, M. H., & de Oliveira, C. R. (2002). Effective Multidimensional Resistivity Inversion using Finite Element Techniques. Geophys. J. Int, 151, pp. 710-728.

Parise, M., & Lollino, P. (2011). A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology, 134, pp. 132-143. doi:10.1016/j.geomorph.2011.06.008

Park, C. B., Xia, J., & Miller, R. D. (1998). Imaging dispersion curves of surface waves on multi-channel record. SEG Expanded Abstracts, pp. 1377-1380.

Park, S. K., & Van, G. P. (1991). Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics,, 56, pp. 951-960.

Parker Jr, E. H. (2010). Multichannel analysis of surface waves (MASW) in karst terrain: Implications for detecting subsidence features and lineaments. Athens, Georgia: University of Georgia.

Phillips, C., Cascante, G., & Hutchinson, J. (2001). Numerical simulation of seismic surface waves. 54th Canadian Geotechnical Conference, (pp. 1538-1545). Calgary, Alberta.

Piscitelli, S., Rizzo, E., Cristallo, F., Lapenna, V., Crocco, L., Persico, R., & Soldovieri, F. (2007). GPR and microwave tomography for detecting shallow cavities in the historical area of ‘‘Sassi of Matera’’ (southern Italy). Near Surface Geophysics, 5, pp. 275-284.

Putiska, R., Kusnirak, D., Dostal, I., Lacny, A., Mojzes, A., Hok, J., . . . Bosansky, M. (2014, December). Integrated geophysical and geological investigations of karst structures in Komberek, Slovakia. Journal of Cave and Karst Studies, 76(3), pp. 155-163. doi:10.4311/2013ES0112

Putiska, R., Nikolaj, M., Dostal, I., & Kusnirak, D. (2012). Determination of cavities using electrical resistivity tomography. Contributions to Geophysics and Geodesy, 42(2), pp. 201-211.

Reis, J. A., Castro, D. L., Jesus, T. E., & Filho, F. P. (2014, April). Characterization of collapsed paleocave systems using GPR attributes. Journal of Applied Geophysics, 103, pp. 43-56. doi:10.1016/j.jappgeo.2014.01.007

Rybakov, M., Goldshmidt, V., Fleischer, L., & Rotstein, Y. (2001). Cave detection and 4-D monitoring: A microgravity case history near the Dead Sea. Leading Edge, 20, pp. 896-900.

Samyn, K., Mathieu, F., Bitri, A., Nachbaur, A., & Closset, L. (2014, December). Integrated geophysical approach in assessing karst presence and sinkhole susceptibility along flood-protection dykes of the Loire River, Orléans, France. Engineering Geology, 183, pp. 170-184. doi:10.1016/j.enggeo.2014.10.013

Sasaki, Y. (1994). Inversion using the Finite Element Method. Geophysics,, 59, pp. 1839-1848.

Sheehan, J. R., Doll, W. E., & Mandell, W. A. (2005b). An Evaluation of Methods and Available Software for Seismic Refraction Tomography Analysis. Journal of Environmental and Engineering Geophysics, 10, pp. 21-34.

Sheehan, J. R., Doll, W. E., Watson, D. B., & Mandell, W. A. (2005a). Application of Seismic Refraction Tomography to Karst Cavities. In E. L. Kuniansky, U.S. Geological Survey Scientific Investigations Report 2005-5160, U.S. Geological Survey Karst Interest Group Proceedings, Rapid City, South Dakota, September 12-15, 2005 (pp. 29-38). doi:10.3133/sir20055160

Smith, D. V. (2005). The State of the Art of Geophysics and Karst: A General Literature Review. In E. L. Kuniansky, U.S. Geological Survey Scientific Investigations Report 2005-5160, U.S. Geological Survey Karst Interest Group Proceedings, Rapid City, South Dakota, September 12-15, 2005 (p. 296). doi:10.3133/sir20055160

Socco, L. V., & Strobbia, C. (2004, November). Surface-wave method for near-surface characterization: a tutorial. Near Surface Geophysics, 2, pp. 165-185.

Sumanovac, F., & Weisser, M. (2001, May). Evaluation of resistivity and seismic methods for hydrogeological mapping in karst terrains. Journal of Applied Geophysics, 47(1), pp. 13-28. doi:10.1016/S0926-9851(01)00044-1

Takeuchi, H., & Saito, M. (1972). Seismic surface waves. In B. A. Bolt, Methods in Computational Physics, Volume 11, Seismology: Surface Waves and Earth Oscillations. Academic Press.

Taslim, I. (2018). Identification of Groundwater Karst Reservoir With 3D Cave Mapping And 2D Inversi Resistivity. EAGE-HAGI 1st Asia Pacific Meeting on Near Surface Geoscience and Engineering. Indonesia. doi:10.3997/2214-4609.201800438

Thierry, P., Debeblia, N., & Bitri, A. (2005, January). Geophysical and geological characterisation of karst hazards in urban environments: Application to Orléans (France). Bulletin of Engineering Geology and the Environment, 64(2), pp. 139-150. doi:10.1007/s10064-004-0247-4

Thomson, W. T. (1950). Transmission of elastic waves through a stratified solid. Journal of Applied Physics, 21, pp. 89-93. doi:10.1063/1.1699629

Thurber, C. H. (1983, October). Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. Journal of Geophysical Research, 88, pp. 8226-8236. doi:10.1029/JB088iB10p08226

Thurber, C., & Ritsema, J. (2015). Theory and Observations - Seismic Tomography and Inverse Methods. In Treatise on Geophysics. Elsevier.

Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics, 4, pp. 1035-1038.

Tsourlos, P. (1995). Modelling, Interpretation and Inversion of Multielectrode Resistivity Survey Data. Department of Electronics. York: University of York.

Tsourlos, P., & Ogilvy, R. (1999). An algorithm for the 3-D Inversion of Tomographic Resistivity and Induced Polarization data: Preliminary Results. Journal of the Balkan Geophysical Society, 2, pp. 30-45.

Twomey, S. (1977). Introduction to the mathematics of inversion in remote sensing and indirect measurements. Amsterdam: Elsevier Science.

Ungureanu, C., Priceputu, A., & Li, A. (2017). Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites. Procedia Engineering, 209, pp. 202-209. doi:10.1016/j.proeng.2017.11.148

Valois, R., Bermejo, L., Guerini, R., Hinguant, S., Pigeaud, R., & Rodet, J. (2010). Karstic Morphologies Identified with Geophysics around Saulges Caves (Mayenne, France). Archaeological Prospection, 17, pp. 151-160. doi:10.1002/arp.385

van der Sluis, A., & van der Vorst, H. A. (1987). Numerical solution of large, sparse linear algebraic systems arising from tomographic problems. In G. Nolet, Seismic Tomography. Seismology and Exploration Geophysics, vol 5. Dordrecht: Springer Netherlands.

Vargemezis, G., Tsourlos, P., Papazachos, C., & Kostopoulos, D. (2007). Application of electrical resistivity tomography to the detection of the Ermakia (Northern Greece) cavity system. Proceedings og the 11th International Congress, Athens, May, 2007, (pp. 2060-2069). Athens.

Vidale, J. (1988, December). Finite-difference calculation of travel times. Bulletin of the Seismological Society of America, 78(6), pp. 2062-2076.

Vidale, J. (1990, May). Finite-difference calculation of traveltimes in three dimensions. GEOPHYSICS, 55(5), pp. 521-526.

Ward, S. (1990). Resistivity and induced polarization methods. In Geotechnical and environmental geophysics. Tulsa, Oklahoma: Society of Exploration Geophysicists. doi:10.1190/1.9781560802785

Xia, J., Chen, C., Li, P. H., & Lewis, M. J. (2004). Delination of a collapse feature in a noisy environment using a multichannel surface wave technique. Geotechnique, 54(1), pp. 17-27.

Xia, J., Chen, C., Tian, G., Miller, R. D., & Ivanov, J. (2005, June). Resolution of High-frequency Rayleigh-wave Data. Journal of Environmental and Engineering Geophysics, 10(2), pp. 25-36.

Xia, J., Miller, R. D., Park, C. B., & Ivanov, J. (2000). Construction of 2-D vertical shearwave velocity field by the Multichannel Analysis of Surface Wave Technique. Proceedings of the SAGEEP, (pp. 1197-1206). Arlington, Vancouver, Canada.

Xia, J., Nyquist, J. E., Xu, Y., Roth, M. J., & Miller, R. D. (2007). Feasibility of detecting near-surface feature with Rayleigh-wave diffraction. Journal of Applied Geophysics, 62, pp. 244-253. doi:10.1016/j.jappgeo.2006.12.002

Yi, M. J., Kim, J. H., Song, Y., Cho, S. J., Chung, S. H., & Suh, J. H. (2001). Three-Dimensional Imaging of Subsurface Structures using Resistivity Data. Geophysical Prospecting, 49, pp. 483-497.

Yilmaz, O. (1987). Seismic data processing, Investigations in Geophysics, Vol 2. Society of Exploration Geophysicists.

Zelt, C. A., & Smith, R. B. (1992). Seismic traveltime inversion for 2-D crustal velocity structure . Geophys. J. Int., 108, pp. 16-34.

Zhu, J., Currens, J. C., & Dinger, J. S. (2011, November). Challenges of using electrical resistivity method to locate karst conduits—A field case in the Inner Bluegrass Region, Kentucky. Journal of Applied Geophysics, 75(3), pp. 523-530. doi:10.1016/j.jappgeo.2011.08.009

Αποστολόπουλος, Γ. (2013). Σημειώσεις Εφαρμοσμένης Γεωφυσικής. Αθήνα.

Αυγερινάς, Α. Β. (2014). Ανάλυση της παραμόρφωσης και κινηματική της Πελαγονικής ζώνης στη βόρεια Ελλάδα. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, τμήμα Γεωλογίας. Θεσσαλονίκη: ΑΠΘ.

Βουβαλίδης, Κ. (2011). Φυσική Γεωγραφία. Θεσσαλονίκη: εκδόσεις Δίσιγμα.

Βουδούρης, Κ. Σ. (2013). Τεχνική Υδρογεωλογία - Υπόγεια Νερά. Θεσσαλονίκη: εκδόσεις Τζιόλα.

Ι.Γ.Μ.Ε. (1980). Γεωλογικός χάρτης 1:50000 Φύλλο Κοζάνης. Γραφείο εκδόσεως γεωλογικών χαρτών του Ι.Γ.Μ.Ε.

Κρητικάκης, Γ. (2010). Επιφανειακά κύματα: Εφαρμογές σε περιβαλλοντικά και γεωτεχνικά προβλήματα. Πολυτεχνείο Κρήτης, τμήμα Μηχανικών Ορυκτών Πόρων. Χανιά: Πολυτεχνείο Κρήτης, εργαστήριο Εφαρμοσμένης Γεωφυσικής.

Μουντράκης, Δ. Μ. (2010). Γεωλογία και Γεωτεκτονική εξέλιξη της Ελλάδας. Θεσσαλονίκη: University Studio Press.

Τσιραμπίδης, Α. (2008). Ιζηματογενή Πετρώματα. Θεσσαλονίκη: εκδόσεις Γιαχούδη.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.