[Εξώφυλλο]

Συμβολή στην εκτίμηση της σεισμικής επικινδυνότας με τη χρήση πολυμεταβλητών σεισμικών χρονοσειρών = Contibution to the seismiv hazard assessment by using multivariate seismiv time series.

Δημήτριος-Ευστάθιος Ε. Χοροζόγλου

Περίληψη


Η διερεύνηση της σεισμικής συμπεριφοράς αποτελεί σημαντική επιστημονική πρόκληση και αναπόσπαστη συνιστώσα ανάπτυξης της γνώση μας για την σεισμογένεση και την εκτίμηση της μελλοντικής σεισμικής δραστηριότητας. Οι κύριοι σεισμοί (π.χ. ) καθώς και οι μετασεισμοί αυτών μπορούν να προκαλέσουν καταστροφικές συνέπειες με απώλειες ανθρώπινων ζωών. Σκοπός της παρούσας διδακτορικής διατριβής είναι η εκτίμηση της μελλοντικής σεισμικής δραστηριότητας, για τον Ελληνικό χώρο, με βάση τη χρήση πολυμεταβλητών σεισμικών χρονοσειρών.
Στο δεύτερο και τρίτο κεφάλαιο της διατριβής, η εκτίμηση της μελλοντικής σεισμικής δραστηριότητας επιχειρείται μέσω της κατασκευής είτε ενός σεισμικού δικτύου συσχέτισης, που προϋποθέτει την δημιουργία πολυμεταβλητής σεισμικής χρονοσειράς, ή δικτύου επανάληψης. Κόμβο του σεισμικού δικτύου συσχέτισης αποτελεί η κάθε μεταβλητή της πολυμεταβλητής χρονοσειράς που αντιπροσωπεύει είτε καλά καθορισμένη σεισμική ζώνη είτε κυψελίδα η οποία προκύπτει από την διαίρεση του Ελληνικού χώρου. Κάθε παρατήρηση της πολυμεταβλητής σεισμικής χρονοσειράς αποτυπώνει είτε το σύνολο των σεισμών ή την σεισμική ροπή που απελευθερώνεται σε κάθε κόμβο, αντίστοιχα. Οι συνδέσεις του σεισμικού δικτύου συσχέτισης μεταξύ των κόμβων του δίνονται από τον γραμμικό συντελεστή συσχέτισης Pearson που υπολογίζεται για κάθε ζεύγος μεταβλητών της πολυμεταβλητής σεισμικής χρονοσειράς. Αντίθετα, κόμβο του δικτύου επανάληψης αποτελεί ο κάθε σεισμός και οι συνδέσεις του δίνονται όταν η διαφορά της σεισμικής ροπής μεταξύ των κόμβων του είναι μικρότερη από ένα αυθαίρετο κατώφλι. Έχοντας σχηματίσει το σεισμικό δίκτυο, η εκτίμηση της μελλοντικής σεισμικής δραστηριότητας επιτυγχάνεται είτε μέσω της χρήσης μέτρων δικτύου που το χαρακτηρίζουν ή μέσω της μελέτης των μη-τετριμμένων τοπολογικών ιδιοτήτων του, όπως της δομής του μικρόκοσμου και της ελεύθερης κλίμακας, που μπορεί να παρουσιάζει. Επομένως, η εκτίμηση της μελλοντικής σεισμικής δραστηριότητας, επιχειρείται από την μελέτη είτε της δυναμικής εξέλιξης των τιμών βασικών μέτρων δικτύου ή της δυναμικής εξέλιξης της δομής του σεισμικού δικτύου που εξετάζεται σε κυλιόμενα χρονικά παράθυρα είτε πριν ή μετά από κύριους σεισμούς ή μετασεισμούς, αντίστοιχα, που έγιναν στον Ελληνικό χώρο και τις γύρω περιοχές κατά την περίοδο 1999-2018. Βρέθηκε, ότι οι τιμές των μέτρων δικτύου, σε αρκετές περιπτώσεις, είναι στατιστικά σημαντικές όπως και ότι το σεισμικό δίκτυο παρουσιάζει την δομή του μικρόκοσμου λίγο πριν τους κύριους σεισμούς.
Στο τέταρτο κεφάλαιο της διατριβής, η εκτίμηση της μελλοντικής σεισμικής δραστηριότητας επιχειρείται μέσω του κανονικοποιημένου συντελεστή που υπολογίζει την συσχέτιση μεταξύ πολυμεταβλητών χρονοσειρών με την εύρεση γραμμικών συνδυασμών τους που συσχετίζονται ισχυρά. Οι μεταβλητές της πολυμεταβλητής χρονοσειράς παριστάνουν το μέγεθος του παρόντος σεισμού και τη χρονική διαδοχή του, σε ημέρες, μέχρι τον επόμενο σεισμό. Ο κανονικοποιημένος συντελεστής συσχέτισης χρησιμοποιείται ώστε να εξετάσει αν υπάρχει στατιστική σημαντικότητα, μέσω κατάλληλου στατιστικού ελέγχου, της συσχέτισης στο μέγεθος και στο χρόνο μεταξύ των πέντε τελευταίων σεισμών, ανά ζεύγη, πριν από κύριους σεισμούς που έγιναν στον Ελληνικό χώρο κατά την περίοδο 1964-2018 για κάθε σεισμική ζώνη. Τα αποτελέσματα, στις περισσότερες περιπτώσεις, υπογραμμίζουν την στατιστική σημαντικότητα της συσχέτισης μεταξύ των τελευταίων πέντε διαδοχικών, ανά ζεύγη, σεισμών πριν την γένεση κύριων σεισμών () για κάθε σεισμική ζώνη. Τέλος, παρουσιάζεται ο χάρτης που αφορά την πιθανότητα γένεσης του επερχομένου κύριου σεισμού () για κάθε σεισμική ζώνη που συμβάλει στην εκτίμηση της μελλοντικής σεισμικής δραστηριότητας.
Λέξεις κλειδιά: Δίκτυο συσχέτισης, Δίκτυο επανάληψης, Δίκτυο μικρόκοσμου, Δίκτυο ελεύθερης κλίμακας, Μέτρο δικτύου, Κανονικοποιημένος συντελεστής συσχέτισης, Πολυμεταβλητή χρονοσειρά, Σεισμική ζώνη, Σεισμική κυψελίδα, Σεισμική ροπή, Κύριος σεισμός, Μετασεισμική ακολουθία.

The investigation of the complex seismicity behavior constitutes a major scientific challenge and an indispensable component in improving our knowledge concerning seismogenesis and seismic hazard assessment. The strong earthquakes (e.g. ) as well as the aftershocks of them can cause catastrophic consequences with losses of human lives. The purpose of this doctoral thesis is the estimation of the future seismic activity for the Greek area, using the multivariate seismic time series.
In the second and third chapter of thesis, the estimation of the future seismic activity is attempted through the construction of either a correlation network or a recurrence plot. The node of the seismic correlation network is each variable of the multivariate seismic time series that represents a seismic zone as the Greek territory is divided. Each observation of multivariate seismic time series captures either the sum of the earthquakes that occurred or the cumulative seismic moment that released at each node, respectively. The connections of the seismic correlation network among of its nodes are given by the Pearson correlation coefficient. On the contrary, the node of the recurrence plot is each earthquake and the connections among of its nodes are given when the difference of magnitudes is less than an arbitrary threshold. Having formed the seismic network, the estimation of the future seismic activity is achieved either through the use of network measures or through the study of its non-trivial topological properties, such as the small-world and scale-free structure. Therefore, the estimation of seismic activity is attempted by studying either the dynamic evolution of network values or the dynamic evolution of network structure in sliding time windows either before or after from main shocks or strong aftershocks, respectively, that occurred in the Greek territory spanning the period 1999-2018. It is revealed that the values of network measures are, in many cases, statistically significant as well as that the seismic network presents the structure of the small-world shortly before the occurrence of main shocks.
In the fourth chapter of the thesis, the estimation of the future seismic activity is attempted through the canonical correlation analysis which calculates the correlation between multivariable time series by finding their strongly correlated linear combinations. The variables of the multivariate time series represent the magnitude of earthquake and its time succession, in days, until the occurrence of next earthquake. The canonical correlation analysis is used to examine whether there is statistical significance, using the appropriate statistical test, of the correlation between the last successive five earthquakes, per pair, that occurred before the occurrence of main shocks in the Greek territory spanning the period 1964-2018 for each seismic zone. The results reveal that the statistical significance of the correlation is present between the last five successive earthquakes, per pair, that occurred before the occurrence of main shocks in each seismic zone. In addition, the map for the probabilities of occurrence of the upcoming main shocks () for each seismic zone, is presented, to help the estimation of the future seismic activity for the Greek area.
Keywords: Correlation Network, Recurrence plot, Small-world network, Scale-free network, Network measure, Canonical Correlation Analysis (CCA), Multivariate time series, Seismic zone, Seismic cell, Seismic moment, Main shock, Aftershock sequence.

Πλήρες Κείμενο:

PDF

Αναφορές


Abe S, Suzuki N (2004a) Small-world structure of earthquake network. Physica A 337, 357-362.

Abe S, Suzuki N (2004b) Scale-free network of earthquakes. Europhysics Letters 65, 581-586.

Abe S, Suzuki N (2005) Scale-invariant statistics of period in directed earthquake network. The European Physical Journal B 44, 115-117.

Abe S, Sarlis NV, Skordas ES, Tanaka HK, Varotsos PA (2005) Origin of the usefulness of the natural-time representation of complex time series. Physical Review Letters 94, 170 601.

Abe S, Suzuki N (2006) Complex-network description of seismicity. Nonlinear Processes in Geophysics 13, 145-150.

Abe S, Suzuki N (2007) Dynamical evolution of clustering in complex network of earthquakes. The European Physical Journal B 59, 93-97.

Abe S, Suzuki N (2009) Main shocks and evolution of complex earthquake networks. Brazilian Journal of Physics 39(2A), 428-430.

Abe S, Pasten D, Munoz V, Suzuki N (2011) Universalities of earthquake-network characteristics. Ch Sc Bull 56(34), 3697-3701.

Abe S, Suzuki N (2012) Universal law for waiting internal time in seismicity and its implication to earthquake network. Europhysics Letters 97(4), 1-21. doi:10.1209/0295-5075/97/49002.

Abe S, Suzuki N (2016) Complex-network description of seismicity. Nonlinear Processes in Geophysics 13, 145-150.

Aki K (1981) A probabilistic synthesis of precursory phenomena, in Earthquake Prediction: An International Review, Maurice Ewing Series 4, DW. Simpson and PG. Richards (Editors). American Geophysical Union 4, 566-574.

Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406(6794), 378-382.

Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47-97.

Alonso A, Geys H, Molenberghs G, Kenward M, Vangeneugden T (2003) Validation of surrogate markers in multiple randomized clinical trials with repeated measurements. Biometrical Journal 45(8), 931-945.

Altınok Y, Kolçak D (1999) An application of the semi-Markov model for earthquake occurrences in North Anatolia, Turkey. Balkan Geophysical Society 2, 90-99.

Aydin NY, Duzgun HS, Wenzel F, Heinimann HR (2017) Integration of stress testing with graph theory to assess the resilience of urban road networks under seismic hazards. Natural Hazards, 1-32.

Baek WH, Lim G, Kim K, Chang KH, Jung JW, Seo SK, Yi M, Lee DI, Ha DH (2011) Robustness of the Topological Properties of a Seismic Network. Journal of the Korean Physical Society 58(6), 1712-1714.

Baiesi M, Paczuski M (2004) Scale-free networks of earthquakes and aftershocks. Physical Review E 69(6), 066106.

Baiesi M, Paczuski M (2005) Complex networks of earthquakes and aftershocks. Nonlinear Processes in Geophysics 12, 1-11.

Bak P, Tang C (1989) Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research 94, 635-637.

Bak P, Christensen K, Danon L, Scanlon T (2002) Unified Scaling Law for Earthquakes. Physical Review Letters 88, 178501(1-4).

Barabasi A, Albert R (1999) Emergence of scaling in random networks. Science 286, 509-512

Barrat A, Barthelemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, United Kingdom, 361.

Bartlett MS (1947) The general canonical correlation distribution. Annals of Mathematical Statistics, 18, 1-17.

Basfirinci S (2009) An evaluation and an application of using canonical correlation analysis in marketing research. International Journal of Economic and Administrative Studies, 1(3), ISSN 1307-9832.

Bath M (1978) Seismic risk in Fennoscandia. Tectonophysics 57, 285-295.

Belkacem FZB, Zekri N, Terbeche M (2015) Statistical characterization of a small-world network applied to forest fires. Springer Proceedings in Mathematics and Statistics 128, 27-37.

Bell M, Perera S, Piraveenan M, Bliemer M, Latty T, Reid C (2018) Network growth models: A behavioural basis for attachment proportional to fitness. The Physiological Society 7, 1-15.

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57, 289-300.

Bialonski S, Horstmann MT, Lehnertz K (2010) From brain to earth and climate systems: Small-world interaction networks or not?. Journal of Nonlinear Science 20(1), 1-9.

Billio M, Getmansky M, Lo AW, Pelizzon L (2012) Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors. Journal of Financial Economics 104(3), 535-559.

Borovsky J (2014) Canonical correlation analysis of the combined solar wind and geomagnetic index data sets, Network. Journal of Geophysical Research: Space Physics 119, 5364-5381.

Brillinger D (1982) Some Bounds for Seismic Risk. Bulletin of the Seismological Society of America 72,1403-1410

Bullmore ET, Fornito A, Zalesky A (2016) Fundamentals of Brain Network Analysis. Academic Press, eBook ISBN: 9780124081185, p 494.

Busuioc A, Tomozeiu R, Cacciamani C (2007) Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. International Journal of climatology 28(4), 449-464.

Cao DS, Liu S, Zeng WB, Liang YZ (2015) Sparse canonical correlation analysis applied to omics studies for integrative analysis and biomarker discovery. Journal of Chemometrics 29, 371-378.

Carbone V, Sorriso-Valvo L, Harabaglia P, Guerra I (2005) Unified scaling law for waiting times between seismic events. Europhysics Letters 71(6), 1036-1042.

Carrubba S, Minagar A, Chesson JAL, Frilot IC, Marino A (2012) Increased determinism in brain electrical activity occurs in association with multiple sclerosis. Journal of Neurology Research 34, 286-290.

Chelidze T (2017) Complexity of seismic process: A mini-review. International Journal of Physics and Astronomy 1(6), 1-8, 10.15406/paij.2017.01.00035.

Chorozoglou D, Kugiumtzis D (2014) Testing the randomness of causality networks from multivariate time series. International Symposium on Nonlinear Theory and its Applications, NOLTA 2014, Luzern, Switzerland, September 14-18, 229-232.

Chorozoglou D, Kugiumtzis D, Papadimitriou E (2015) Small-world property and distinct evolution of complex networks from historical earthquakes in Greece, submitted to the International Conference "SCience in TEchnology - SCinTE - 2015", Athens, Greece, November 5-7, 258-262.

Chorozoglou D, Kugiumtzis D, Papadimitriou E (2017) Application of complex network theory to the recent foreshock sequences of Methoni (2008) and Kefalonia (2014) in Greece. Acta Geophysica 65(3), 543-553.

Chorozoglou D, Kugiumtzis D, Papadimitriou E (2018) Testing the structure of earthquake networks from multivariate time series of successive main shocks in Greece. Physica A 499C, 28-39.

Chorozoglou D, Kugiumtzis D (2018) Testing the randomness of correlation networks from multivariate time series. Journal of Complex Networks 7(2), 190-209, doi.org/10.1093/comnet/cny020.

Chorozoglou D, Papadimitriou E (2019) Monitoring earthquake network measures between main shocks in Greece. Journal of Seismology 23(3), 505-519.

Cohen R, Erez K, Ben-Avraham D, Havlin S (2000) Resilience of the Internet to random breakdowns. Physical Review Letters 85(21), 4626-4628.

Cornell CA (1968) Engineering seismic risk analysis. Bulletin of the Seismological Society of America 58, 1583-1606.

Corral A (2004) Long-Term Clustering, Scaling, and Universality in the Temporal Occurrence of Earthquakes. Physical Review Letters 92, 108501.

Daskalaki E, Papadopoulos GA, Spiliotis K, Siettos C (2014) Analysing the topology of seismicity in the Hellenic arc using complex networks. Journal of Seismology 18, 37-46.

Daskalaki E, Spiliotis K, Siettos C, Minadakis G, Papadopoulos GA (2016) Foreshocks and short-term hazard assessment of large earthquakes using complex networks: the case of the 2009 L’Aquila earthquake. Nonlinear Processes in Geophysics 23, 241-256.

Degani A, Shafto M, Olson L (2006) Using canonical correlation analysis: Use of composite heliographs for representing multiple patterns. Diagram Conference, Stanford, CA. 166.

Del Genio C, Kim H, Toroczkai Z, Bassler K (2010) Efficient and exact sampling of simple graphs with given arbitrary degree sequence. Plos One 5(4), e10012, 10.1371/journal.pone.0010012.

Donges JF, Zou Y, Marwan N, Kurths J (2009) The backbone of the climate network export. Europhysics Letters 87, 48007, 10.1209/0295-5075/87/48007.

Donges JF, Heitzig J, Donner RV, Kurths J (2012) Analytical framework for recurrence network analysis of time series. Physical Review E 85, 046105, doi:10.1103/PhysRevE.85.046105.

Donner RV, Small M, Donges JF, Marwan N, Zou Y, Xiang R, Kurths J (2011) Recurrence-based time series analysis by means of complex network methods. International Journal of

Bifurcation and Chaos 21, 1019-1046.

Dunn J, Doeksen G (1977) Canonical correlation analysis of selected demographic and health personnel variables. Southern journal of agricultural economics 9(2), 95-99.

Emmert-Streib F, Dehmer M (2010) Influence of the Time Scale on the Construction of Financial Networks. Plos One 5(9), e12884.

Erdős P, Rényi A (1959) On random graphs. Pub Math (Debrecen) 6, 290-297.

Estévez J, García-Marín A, Báez-Benitez J, Casas-Castillo MC, Telesca L (2018) Introduction to the special issue on “hydro-meteorological time series analysis and their relation to climate change. Acta Geophysica 66(3), 317-318.

Fiedor P (2014) Networks in financial markets based on the mutual information rate. Physical Review E 89(5-1), 052801.

Fornito A, Bullmore ET, Zalesky A (2016) Fundamentals of Brain Network Analysis. Cambridge Acad Pr, eBook ISBN: 9780124081185, p 476.

Foucart T (1999) Multiple linear regression on canonical correlation variables. Biometrical Journal, 41(5), 559-572.

Galton F (1889) Natural Inheritance, Macmillan, London.

Gerstenberger M, Wiemer S, Jones L, Reasenberg P (2005) Real-time forecasts of tomorrow's earthquakes in California. Nature 435(7040), 328-331.

Girvan M, Newman ME (2002) Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99, 7821-7826.

Gohary A, Hanzaee K (2014) Personality Traits as Predictors of Shopping Motivations and Behaviors: A Canonical Correlation Analysis. Arab economics and business journal 9, 166-174.

Gosset WS (1908) The probable error of a mean. Biometrica 6, 1-25.

Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34, 185-188.

Hainzl S, Zöller G, Kurths J (1999) Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes. Journal of Geophysical Research 104, 7243-7254.

Härdle W, Simar L (2007) Canonical Correlation Analysis, Applied Multivariate Statistical Analysis, Chp 14, 321-330, Springer, Berlin, Heidelberg.

Hardoon D, Szedmak S, Shawe-Taylor J (2004) Canonical Correlation Analysis: An Overview with Application to Learning Methods. Neural Computation 16, 2639-2664.

Harris RA (1998) Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. Journal of Geophysical Research 103, 24, 347.

Heiberger RH (2014) Stock network stability in times of crisis. Physica A 393, 376-381.

Herrera C, Nava FA, Lomnitz C (2006) Time-dependent earthquake hazard evaluation in seismogenic systems using mixed Markov Chains: An application to the Japan area, Earth Planets Space 58, 973-979.

Hill DP, Reasenberg PA, Michael A, Arabaz WJ, Beroza G, Brumbaugh D, Brune JN, Castro R, Davis R, DePolo D (1993) Seismicity remotely triggered by the magnitude 7.3 Landers, California. Science 260(5114), 1617-1623.

Hlinka J, Hartman D, Palus M (2012) Small-world topology of functional connectivity in randomly connected dynamical systems, Chaos 22(3), 033107.

Hong S, Chen X, Jin L, Xiong M (2013) Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Research 41, e95.

Horvath S (2011) Weighted Network Analysis, Applications in Genomics and Systems Biology. Springer, New York, eBook ISBN: 978-1-4419-8819-5, p 421.

Hotelling H (1935) The most predictable criterion. Journal of Educational Psychology 26, 139-142.

Hotelling H (1936) Relation between two sets of variates. Biometrika 28, 321-377.

Howard RA (1971) Dynamic Probabilistic Systems, 1(2), John Wiley and Sons, New York.

Iaci R, Sriram T, Yin X (2010) Multivariate association and dimension reduction: A generalization of canonical correlation analysis. Biometrics 66(4), 1107-1118.

Janer C, Biton D, Batac R (2017) Incorporating space, time, and magnitude measures in a network characterization of earthquake events. Acta Geophysica 65, 1153-1166.

Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411, 41-42.

Jimenez A, Tiampo KF, Posadas AM (2008) Small world in a seismic network: the California case. Nonlinear Processes in Geophysics 15, 389-395.

Jones LM, Molnar P (1979) Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on fault. Journal of Geophysical Research 84, 3596-3608.

Kagan Y, Knopoff L (1978) Statistical study of the occurrence of shallow earthquakes. Geophys J Roy Astr S 55, 67-86.

Kagan Y, Jackson D (1991) Seismic Gap Hypothesis: Ten Years After. Journal of Geophysical research 96(B13), 419-431.

Kanamori H, Anderson L (1975) Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America 65(5), 1073-1095.

Karakostas V (2009) Seismicity patterns before strong earthquakes in Greece. Acta Geophysica 57(2), 367-386, DOI: 10.2478/s11600-009-0004-y.

Karakostas V, Papadimitriou E, Mesimeri M, Gkarlaouni C, Paradisopoulou P (2014) The 2014 Kefalonia Doublet (Mw6.1 and Mw6.0), Central Ionian Islands, Greece: Seismotectonic Implications along the Kefalonia Transform Fault Zone. Acta Geophysica 63(1).

Kasthurirathna D, Piraveenan M. (2015) Emergence of scale-free characteristics in socio-ecological systems with bounded rationality. Scientific Reports 5, 10448, 1-16.

King GCP (2007) Fault interaction, earthquake stress changes, and the evolution of seismicity. Treatise on Geophysics 4, 225.

Kugiumtzis D (2002) Statistically transformed autoregressive process and surrogate data test for nonlinearity. Physical Review E 66, 025201.

Kugiumtzis D, Kimiskidis VK (2015) Direct causal networks for the study of transcranial magnetic stimulation effects on focal epileptiform discharges. International Journal of Neural Systems 25(5), 1550006, 10.1142/S0129065715500069.

Kugiumtzis D, Koutlis Ch, Tsimpiris A, Kimiskidis VK (2017) Dynamics of Epileptiform Discharges Induced by Transcranial Magnetic Stimulation in Genetic Generalized Epilepsy.

International Journal of Neural Systems 27(7), 1750037, 10.1142/S012906571750037X.

Lennartz S, Livina VN, Bunde A, Havlin S (2008) Long-term memory in earthquakes and the distribution of interoccurrence times. Europhysics Letters 81, 69001.

León DA, Valdivia JA, Bucheli VA (2018) Modeling of Colombian Seismicity as Small-World Networks. Seismological Research Letters 89(5), 1807-1816.

Le Pichon X, Angelier J (1981) The Aegean Sea. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 300(1454), 357-372.

Lippiello E, Arcangelis L, Godano C (2008) Influence of Time and Space Correlations on Earthquake Magnitude. Physical Review Letters 100, 038501.

Lippiello E, Cirillo A, Godano G, Papadimitriou E, Karakostas V (2016) Real time forecast of aftershocks from a single seismic station signal. Geophysical Research Letters 43, 6252-6258.

Livina VN, Havlin S, Bunde A (2005) Memory in the occurrence of earthquakes. Physical Review Letters 95, 208501.

Lomnitz C (1974) Global Tectonics and Earthquake Risk. Elsevier Scientific Publishing Co, Amsterdam-London-New York.

Lomnitz C, Nava F (1983) The Predictive Power of Seismic Gaps. Bulletin of the Seismological Society of America 73, 1815-1824.

Ma F, Yao B (2017) The relations between network-operation and topological-property in a scale-free and small-world network with community structure. Physica A 484, 182-193

Mardia KV, Kent JT, Bibby JM (1979) Multivariate Analysis, Academic Press.

Marwan N, Wessel N, Meyerfeldt U, Schirdewan A, Kurths J (2002) Recurrence Plot Based Measures of Complexity and its Application to Heart Rate Variability Data. Physical Review E 66:026702, doi:10.1103/PhysRevE.66.026702.

Marwan N, Trauth MH, Vuille M, Kurths J (2003) Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods. Climate Dynamics 21, 317-326, doi:10.1007/s00382-003-0335-3.

Marwan N, Donges JF, Zou Y, Donner RV, Kurths J (2009) Complex network approach for recurrence analysis of time series. Physics Letters A 373, 4246-4254, doi:10.1016/j.physleta.2009.09.042.

Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296, 910-913.

Masters S, Wallston Α (2005) Canonical Correlation Reveals Important Relations between Health Locus of Control, Coping, Affect and Values. Journal of health psychology 10(5), 720-731.

Matcharashvili T, Chelidze T, Peinke J (2008) Increase of order in seismic processes around large reservoir induced by water level periodic variation. Nonlinear Dynamics 51, 399-407.

McGuire J (2008) Seismic Cycles and Earthquake Predictability on East Pacific Rise Transform Faults. Bulletin of the Seismological Society of America 98(3), 1067-1084.

McKenzie D (1972) Active tectonics of the Mediterranean Region. Geophysical Journal of the Royal Astronomical Society 30(2), 109-185.

Milgram S (1967) The Small-World problem. Psychology Today 1(1), 61-67.

Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Structure and Algorithms 6(2-3), 161-180.

Nava FA, Herrera C, Frez J, Glowacka E (2005) Seismic hazard evaluation using Markov chains: Application to the Japan area. Pure and applied geophysics 162, 1347-1366.

Newman M, Strogatz S, Watts D (2001) Random graphs with arbitrary degree distributions and their applications. Physical Review E 64(2), 026118.

Newman MEJ (2003) Mixing patterns in networks. Physical Review E 67, 026126.

Newman M (2010) Networks, an introduction. Oxford University Press, eBook ISBN: 9780199206650, p 1042.

Omori F (1894) On the Aftershocks of Earthquakes. Sc Imp Univ Tokyo 7, 111-120

Opsahl T, Colizza V, Panzarasa P, Ramasco JJ (2008) Prominence and control: The weighted rich-club effect. Physical Review E 101, 168702.

Opsahl T, Colizza V, Panzarasa P, Ramasco JJ. Papaioannou CA, Papazachos BC (2000) Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources.

Bulletin of the Seismological Society of America 90, 22-33.

Palus M, Hartman D, Hlinka J, Vejmelka M (2011) Discerning connectivity from dynamics in climate networks. Nonlinear Processes in Geophysics 18, 751-763.

Papadimitriou E (2002) Mode of Strong Earthquake Recurrence in the Central Ionian Islands (Greece): Possible Triggering due to Coulomb Stress Changes Generated by the Occurrence of Previous Strong Shocks. Bulletin of the Seismological Society of America 92(8), 3293-3308.

Papadimitriou E, Wen X, Karakostas V, Jin X (2004) Earthquake Triggering along the Xianshuihe Fault Zone of Western Sichuan, China. Pure and applied geophysics 161(8), 1683-1707.

Papadimitriou E, Karakostas V (2005) Occurrence patterns of strong earthquakes in Thessalia area (Greece) determined by the stress evolutionary model B: A case study. Earth and Planetary Science Letters 235(3), 395-409.

Papadimitriou E, Karakostas V, Mesimeri M, Ghouliaras C, Kourouklas C (2017) The Mw6.5 17 November 2015 Lefkada (Greece) Earthquake: Structural Interpretation by Means of the Aftershock Analysis. Pure and applied geophysics 174(10), 3869-3888.

Papadopoulos GA, Charalampakis M, Fokaefs A, Minadakis G (2010) Strong foreshock signal preceding the L’Aquila (Italy) earthquake (Mw 6.3) of 6 April 2009. Natural Hazards and Earth System Sciences 10, 19-24, doi:10.5194/nhess-10-19.

Papaioannou CA, Papazachos BC (2000) Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bulletin of the Seismological Society of America 90, 22-33.

Papana A, Kyrtsou C, Kugiumtzis D, Diks C (2017) Financial networks based on Granger causality: A case study. Physica A 482, 65-73.

Papazachos BC (1975) Foreshocks and earthquake prediction. Tectonophysics 28:213-226.

Papazachos BC, Papaioannou C (1994) Long-term earthquake pre- diction in the Aegean area based on a time and magnitude predictable model. Pure and Applied Geophysics 140(4), 593-612.

Papazachos BC, Kiratzi AA, Karakostas BG (1997) Toward a Homogeneous Moment-Magnitude Determination for Earthquakes in Greece and the Surrounding Area. Bulletin of the Seismological Society of America 87(2), 474-483.

Papazachos BC, Papadimitriou EE, Kiratzi AA, Papazachos CB, Louvari EK (1998) Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication. Bollettino di geofisica teorica ed applicata 39(3), 199-218.

Papazachos BC (1999) Seismological and GPS evidence for the Aegean Anatolia interaction. Geophysical Research Letters 26(17), 2653-2656.

Pastén D, Torres F, Toledo B, Muñoz V, Rogan J, Valdivia JA (2016) Time-based network analysis before and after the Mw 8.3 Illapel earthquake 2015 Chile. Pure and applied geophysics 173(7), 2267-2275.

Pearson K (1896) Mathematical contributions to the theory of evolution III, Regression, heredity and panmixia. Philosophical transactions of the Royal Society of London 187, 253-318.

Pearson K (1898) Mathematical contributions to the theory of evolution V. On the Reconstruction of the stature of prehistoric races. Philosophical transactions of the Royal Society of London 192, 169-244.

Pertsinidou C, Tsaklidis G, Papadimitriou E, Limnios N (2016a) Application of hidden semi-Markov models for the seismic hazard assessment of the North and South Aegean Sea, Greece.

Journal of Applied Statistics 44(6), 1064-1085.

Pertsinidou C, Tsaklidis G, Papadimitriou E (2016b) Seismic hazard assessment in the Northern Aegean Sea (Greece) through discrete Semi-Markov modeling. Bulletin of the Geological Society of Greece XLVII 2013 Proceedings of the 13th International Congress Chania 44(6), 1417-1428.

Poincaré H (1890) Sur la probleme des trois corps et les équations de la dynamique. Acta Mathematica 13, 1-271.

Porta A, Faes L (2016) Wiener-Granger causality in network physiology with applications to cardiovascular control and neuroscience. Proc IEEE 104, 282-309.

Riley MA, Balasubramaniam R, Turvey MT (1999) Recurrence quantification analysis of postural fluctuations. Gait Posture 9, 65-78.

Roumelioti Z, Benetatos C, Kiratzi A (2009) The 14 February 2008 earthquake (M6.7) sequence offshore south Peloponnese (Greece): Source models of the three strongest events, Tectonophysics 471(1), 272-284.

Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neurοscience 52, 1059-1069.

Sahoo BB, Jha R, Singh A, Kumar D (2019) Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophysica 67(5), 1471-1481.

Schinkel S, Dimigen O, Marwan N (2008) Selection of recurrence threshold for signal detection. The European Physical Journal A 164, 45-53.

Scordilis E, Karakaisis G, Karakostas B, Panagiotopoulos D, Comninakis P, Papazachos B (1985) Evidence for Transform Faulting in the Ionian Sea: The Cephalonia Island Earthquake

Sequence of 1983. Pure and Applied Geophysics 123, 388-397.

Scholz CH (2010) Large earthquake triggering, clustering, and the synchronization of faults. Bulletin of the Seismological Society of America 100, 901-909.

Schorlemmer D, Wiemer S, Wyss M (2005). Variations in earthquake-size distribution across different stress regimes. Nature 437(7058), 539-542.

Schreiber T, Schmitz A (1996) Improved Surrogate Data for Nonlinearity Tests. Physical Review Letters 77(4), 635-638.

Statheropoulos M, Vassiliadis N, Pappa A (1998) Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmospheric Environment 32(6), 1087-1095.

Steacy S, Gomberg J, Cocco M (2005a) Introduction to special section: Stress transfer, earthquake triggering, and time-dependent seismic hazard. Journal of Geophysical Research 110(B5), B05S01. 3, 6.

Steeples W, Steeples D (1996) Far-field aftershocks of the 1906 earthquake. Bulletin of the Seismological Society of America 86(4), 921-924.

Stein R, Barka A, Dieterich J (1997) Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International 128, 593-604.

Telesca L, Báez-Benitez J (2018) Investigating dynamical features in the long-term daily maximum temperature time series recorded at Adrián Jara, Paraguay. Acta Geophysica 66(3), 393-403.

Tenenbaum J, Havlin S, Stanley HE (2012) Earthquake networks based on similar activity patterns. Physical Review E 86, 046107.

Theiler J, Prichard D (1996) Constrained-realization Monte-Carlo method for hypothesis testing. Physica D, 94(4), 221-235.

Theodoulidis N, Cultrera G, De Rubeis V, Cara F, Panou A, Pagani M, Teves-Costa P (2008) Correlation between damage distribution and ambient noise H/V spectral ratio, Bulletin of Earthquake Engineering 6, 109-140.

Todros K, Hero A (2012) Measure Transformed Canonical Correlation Analysis with Application to Financial Data, Conference: Sensor Array and Multichannel Signal Processing Workshop (SAM), IEEE 7th.

Tsapanos TM, Papadopoulou AA (1999) A discrete Markov model for earthquake occurrence in Southern Alaska and Aleutian Islands. Balkan Geophysical Society 2(3), 75-83.

Utsu T (1961) A statistical study on the occurrence of aftershocks. The geophysical magazine 30, 521-605

Utsu T, Ogata Y, Matsura RS (1995) The Centenary of the Omori Formula for a Decay Law of Aftershock Activity. Journal of Physics of the Earth 43, 1-33.

Utsu T (2002) Statistical features of seismicity. International Handbook of Earthquake & Engineering Seismology Part A. Academic, San Diego, 719-732.

Vamvakaris DA, Papazachos CB, Papaioannou ChA, Scordilis EM, Karakaisis GF (2016) A detailed seismic zonation model for shallow earthquakes in the broader Aegean area. Natural Hazards and Earth System Sciences 16, 55-84.

Van den Heuvel M, Stam C, Boersma M, HulshoffPol H (2008) Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage 43, 528-539.

Varotsos PA, Sarlis NV, Skordas ES (2002) Long-range correlations in the electric signals that precede rupture. Physical Review E 66, 011902.

Viger F, Latapy M. (2015) Efficient and simple generation of random simple connected graphs with prescribed degree sequence. Journal of Complex Networks 4(1), 15-37.

Votsi I, Limnios N, Tsaklidis G, Papadimitriou E (2013) Hidden Markov models revealing the stress field underlying the earthquake generation. Physica A 392, 2868-2885.

Votsi I, Limnios N, Tsaklidis G, Papadimitriou E (2014) Hidden Semi-Markov Modeling for the Estimation of Earthquake Occurrence Rates. Communication in Statistics-Theory and Methods 43(7), 1484-1502.

Wang R, Jiang K, Feldman J, Bickel J, Huang H (2014) Interring gene association networks using sparse canonical correlation analysis. Annals of Applied Statistics 9(1), 300-323.

Wang X, Chen G (2003) Complex Networks: Small-World, Scale-Free and Beyond. Feature, 6-20.

Wang X, Koç Y, Derrible S, Ahmad SN, Pino WJA, Kooij RE (2017) Multi-criteria robustness analysis of metro networks. Physica A 474, 19-31.

Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393, 440-442.

Wessel P, Smith WHF, Scharroo R, Luis JF, Wobbe F. (2013) Generic Mapping Tools: Improved version released. EOS Trans AGU 94, 409-410.

Wiemer S, Wyss M (1997) Mapping the frequency‐magnitude distribution in asperities: An improved technique to calculate recurrence times?. Journal of Geophysical Research 102(B7), 15115-15128.

Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America 90(4), 859-869, 10.1785/0119990114.

Wu G, Chen F, Kang D, Zhang X, Marinazzo D, Chen H (2011) Multiscale Causal Connectivity Analysis by Canonical Correlation: Theory and Application to Epileptic Brain. IEEE

transactions on biomedical engineering 58(11), 3088-3096.

Yu GH, Huang CC (2001) A distribution free plotting position. Stochastic Environmental Research and Risk Assessment 15, 462-476.

Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2014) Frequency recognition in ssvep-based bci using multiset canonical correlation analysis. International Journal of neural Systems 24(2), 1450013.

Zhang X, Gan C (2018) Global attractivity and optimal dynamic countermeasure of a virus propagation model in complex networks. Physica A 490, 1004-1018.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.