Δορυφορική μελέτη ενός μέσης κλίμακας νεφικού συστήματος κατακόρυφης ανάπτυξης στην Ελλάδα = Use of satellite data for a study of mesoscale connective system in Greece.

Ζωή Κωνσταντίνος Μπεκιάρη


Η παρούσα εργασία αφορά την μελέτη ενός μέσης κλίμακας νεφικού συστήματος κατακόρυφης ανάπτυξης (MCS), το οποίο εξελίχθηκε πάνω από τον ελλαδικό χώρο στις 16 και 17 Ιουλίου 2017. Αρχικά, ερευνάται η συνοπτική κατάσταση που επικράτησε τη συγκεκριμένη χρονική περίοδο, καθώς και τα δυναμικά αίτια που ήταν υπεύθυνα για την δημιουργία και την ένταση του συστήματος. Για το σκοπό αυτό παρατίθενται χάρτες μετεωρολογικών παραμέτρων που απευθύνονται στα διαφορά επίπεδα της ατμόσφαιρας, κατακόρυφες τομές κατά μήκος της περιοχής ενδιαφέροντος, καθώς επίσης και τεφιγράμματα της Αθήνας, της Θεσσαλονίκης και του Bridizi. Ακολούθως, πραγματοποιείται ανάλυση και περιγραφή δορυφορικών εικόνων, προερχόμενες από το δορυφόρο MSG (Meteosat Second Generation). Η μελέτη των δορυφορικών προϊόντων αποτελεί το βασικό σκοπό και κύριο μέρος της εργασίας αυτής. Τα δορυφορικά προϊόντα που χρησιμοποιούνται προέρχονται από μεμονωμένα κανάλια, από διαφορές καναλιών και από συνδυασμούς RGB. Οι πληροφορίες που λαμβάνονται από τις εκάστοτε δορυφορικές εικόνες αφορούν την έκταση του νεφικού συστήματος, τα στάδια εξέλιξης του, τη μορφή και το σχήμα των επιμέρους τμημάτων που συνθέτουν το MCS, καθώς και τις περιοχές που επηρέασε το καταιγιδοφόρο αυτό σύστημα. Αναφορικά, κατά τη διάρκεια εξέλιξης του, το σύστημα απέκτησε τη μορφή ενός μέσης κλίμακας συμπλέγματος πολυκύτταρων καταιγίδων, λίγο αργότερα το χαρακτηριστικό σχήμα-V, ενώ λίγο πριν τη διάλυση του, το σχήμα και η έκταση του το ενέταξαν στην κατηγορία ενός κυκλικού καταιγιδοφόρου συστήματος μέσο-β κλίμακας. Επιπλέον, στην εργασία αυτή αναλύονται με λεπτομέρεια το ύψος των κορυφών των νεφών μεγάλης κατακόρυφης ανάπτυξης και τα φυσικά χαρακτηριστικά τους, όπως είναι η σύσταση και το οπτικό τους πάχος. Τέλος, πραγματοποιείται παράθεση δυναμικών παραμέτρων σε δορυφορικές εικόνες, προκειμένου να γίνει καλύτερη κατανόηση του φαινόμενου και της συμβολής των αιτιών που το προκάλεσαν.

The present thesis is concerned with the study of a Mesoscale Convective System (MCS), developed over the Greek territory on July 16 and 17, 2017. First, the synoptic condition of the time period and the dynamic causes responsible for the creation and intensity of the system are being examined. For this purpose, maps of meteorological parameters addressed to different levels of the atmosphere, vertical cross-sections along the area of interest, as well as skew-t diagrams of Athens, Thessaloniki and Bridizi are presented. Thereafter, satellite images from the MSG (Meteosat Second Generation) satellite are analyzed. The study of satellite products is the main purpose and the main part of this thesis. The satellite products come from single channels, channel differences and RGB combinations. Information obtained from the satellite images concern the extent of the system, the stages of development, the form and shape of the individual components of MCS, as well as the areas affected by the storm system. To mention, during the evolution, the system acquired the form of a Multicell Cluster Storm, shortly after the characteristic V-shape (large-scale Wedge Type) and before its dissipation, its shape and extent placed the system in the category of a Meso-β Circular Convective System (M-βCCS). In addition, this thesis analyzes in detail the cloud top height and the cloud microphysics, such as their composition and optical thickness. Finally, dynamic parameters are plotted in satellite images, in order to better understand the phenomenon and its causes.

Πλήρες Κείμενο:



Arnaud Y., Desbois M. and Maizi J. (1992): Automatic tracking and characterization of convective systems on Meteosat pictures. J. Appl. Meteorol., 31, 443–453

Augustine J. A., Tollerud E. I. and Jamison B. D. (1989): Distributions and other general characteristics of mesoscale convective systems during 1986 as determined from GOES infrared imagery. Pp. 437–442 in preprint volume of the 12th

Conference on weather analysis and forecasting, 2–6 October 1989, Monterey, CA, US

Bluestein H. B. and Jain M. H. (1985): Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711–1732

Brandes E. A. (1990): Evolution and structure of the 6-7 May 1985 Mesoscale Convective System and Associated Vortex. NOAA. Env. Laborat., National, Severe Storms Laboratory, Oklahoma, 118, 109-126

Browning K. A. and Hill F. F. (1984): Structure and evolution of a mesoscale convective system near the British Isles, Quart. J. R. Met. SOC., 110, pp. 897-913

Browning K. A. (1985): Conceptual models of precipitation systems. Meteorological Magazine, 114(1359), 293-319

Brunner J. C., Ackerman S. A., Bachmeier A. S. and Rabin R. M. (2007): A Quantitative Analysis of the Enhanced-V Feature in Relation to Severe Weather. Vol 22, 853-872

Cohen J., Silva Dias M. A. F. and Nobre C. (1995): Environmental conditions associated with Amazonian squall lines: A case study. Mon. Wea. Rev 123:3163–3174

Collander R. S. (1993): A ten-year summary of severe weather in mesoscale convective complexes, Part 2: Heavy rainfall. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 638–641

Cotton W. R. and R. Anthes (1989): Cloud and Storm Dynamics. Academic Press, 630-657

Curic M., Janc D. and Vuckovic V. (2009): The influence of merging and individual storm splitting on mesoscale convective system formation. Elsevier, Atmospheric Research 9, 21–29

Educational Website: http://www.theweatherprediction.com/

Feidas H. (2011): Study of a Mesoscale Convective Complex over the Eastern Mediterranean basin with Meteosat Data. EUMETSAT Meteorological Satellite Conference 5-9 September 2011, Oslo, Norway, 8pp

Feidas H. and Giannakos A. (2011): Identifying precipitating clouds in Greece using multispectral infrared Meteosat Second Generation satellite data. Theor Appl Climatol 104:25-42

Feidas H. (2017): Satellite-observed features of a mesoscale convective complex over SE Europe. International Journal of Remote Sensing, 38:22, 6219-6246

Feidas H. (2018): Spectral features of convective cloud tops. Autumn School 2018 on the “Use of Satellite Data and Products for severe weather nowcasting”, 24 - 28 September 2018, Thessaloniki, Greece

Feidas H. (2018): Storm types and their characteristics. Autumn School 2018 on the “Use of Satellite Data and Products for severe weather nowcasting”, 24 - 28 September 2018, Thessaloniki, Greece

Fritz S., Laszlo I. (1993): Detection of water vapor in the stratosphere over very high clouds in the tropics. Journal of Geophysical Research, 98, D12, pp 22959-22967

Fritsch J. M., and Forbes G. S. (2001): Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–357

Fujita T. T. (1978): Manual of downburst identification for Project NIMROD. SMRP 156, University of Chicago. 104 pp.

Fujita T. T. (1981): Mesoscale aspects of convective storms. Proc. IAMAP Symp. Nowcasting: Mesoscale Observation and Short-Range Prediction. Hamburg, European Space Agency, 3-10

Fujita T. T. (1982): Infrared, stereo-height, cloud-motion, and radar-echo analysis of SESAME-day thunderstorms. Preprints, 12th Conference on Severe Local Storms (San Antonio), AMS, Boston, pp. 213-216

George J. J. (1960): Weather and Forecasting for Aeronautics. Academic Press, 410-415

Georgiev C. G. and Kozinarova G. (2009): Usefulness of satellite water vapour imagery in forecasting strong convection: A flash-flood case study. Atmos. Res., 93 295303

Georgiev C. G. and Santurette P. (2009): Mid-level jet in Intense Convective Environment as seen in the 7.3 µm Satellite Imagery. Atmos. Res. 93, 277–285

Georgiev C. G. (2011): Satellite Image Interpretation and Applications. EUMeTrain Online Course , 10 –30 June 2011

Georgiev C. G. (2011): Usefulness of MPEF DIVergence product in diagnosing the environment of deep convection. 6th European Conference on Severe Storms (ECSS 2011), 3 - 7 October 2011, Palma de Mallorca, Balearic Islands, Spain

Georgiev C. G. and Santurette P. (2018): Diagnosing upper-level dynamics by WV imagery as a key forecast issue. EUMETSAT – AUTH Training Workshop “Use of satellite data and products for severe weather nowcasting”, 24 – 28 Sep 2018, Thessaloniki, Greece

Georgiev C. G. and Santurette P. (2018): Use of Water Vapour imagery in nowcasting severe convection over South-Eastern Europe. EUMETSAT – AUTH Training Workshop “Use of satellite data and products for severe weather nowcasting”, 24 – 28 Sep 2018, Thessaloniki, Greece

Hane C. E., 1986: Extratropical squall lines and rainbands. Mesoscale Meteorology and Forecasting, P. Ray, Ed., American Meteorological Society, 359–389

Heymsfield G. M., Szejwach G., Schotz S. and Blackmer R. H., JR (1983): Upper-Level Structure of Oklahoma Tornadic Storms on 2 May 1979. II: Proposed Explanation of “V” Pattern and Internal Warm Region in Infrared Observations. Journal of the Atmospheric Sciences, Vol 40, 1756-1767

Heymsfield G.M. and Blackmer R.H., JR (1988): Satellite-observed characteristics of Midwest severe thunderstorm anvils. Vol.116, 2200-2224

Houze R. A. Jr. (1977): Structure and dynamics of a tropical squall-line system. Mon. Weather Rev., 105, 1540–1567

House R. A., Jr. (1993): Cloud Dynamics. chap. 4, 107-129, Academic Press, California, U.S.

Houze R. A. Jr. (2004), Mesoscale convective systems. Rev. Geophys., 42, RG4003

Inoue T. (1985): On the Temperature and Effective Emissivity Determination of Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in the 10-Mm Window Region. Journal of Meteorological Society of Japan 63: 88–99

Inoue T. (1987): A Cloud Type Classification with NOAA-7 Split-Window Measurements. Journal of Geophysics Research 92: 3991–4000

Jirak I. L., W. R. Cotton, and R. L. McAnelly (2003): Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 2428-2449

Kerkmann J., H. J. Lutz, M. König, J. Prieto, P. Pylkko, H. P. Roesli, D. Rosenfeld et al. (2006): MSG Channels, Interpretation Guide, Weather, Surface Conditions and Atmospheric Constituents. Available online at http://eumetrain.org/IntGuide/. Accessed 21 July 2016

Kolios S. and Feidas H. (2010): A warm season climatology of mesoscale convective systems in the Mediterranean basin using satellite data. Theor Appl Climatol 102:29–42

Leary C.A. and Houze R. A., JR. (1979): The Structure and Evolution of Convection in a Tropical Cloud Cluster, J. Atmos. Sci., 36, 437-457

Lutz H. J., Inoue T., Schmetz J. (2003): Comparison of a Split-window and a Multi-spectral Cloud Classification for MODIS Observations. Journal of the Met. Soc. of Japan, Vol.81, No.. 3, pp. 623-631

Machado L. A., Lima W. F., Pinto Jr, O., and Morales, C. A. (2009): Relationship between cloud-to-ground discharge and penetrative clouds: A multi-channel

satellite application. Instituto Nacional de Pesquisas Espaciais , Instituto de Astronomia, Atmospheric Research 93, 304-309

Maddox R. A. (1980): Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387

Mathon V., Laurent H. and Lebel T. (2002): Mesoscale Convective System Rainfall in the Sahel, LTHE, IRD, Grenoble, France, 41, 1081-1092

McAnelly R. L. and Cotton W. R. (1989): The precipitation life cycle of Mesoscale Convective Complexes over the central United States. Mon. Weather Rev., 117, 784–808

McCallum E. and Waters A. J.: Severe thunderstorms over south-east England, 20/21 July 1992: Satellite and radar perspective of a mesoscale convective system. Meteorological Office, Bracknell, 198-208

McCann D. W. (1983): The enhanced-V, a satellite observable severe storms signature. Mon. Wea.Rev., 111, 887–894

Meteorological Chart Site: www.wetter3.de

Morel C. and Senesi S. (2002): A climatology of mesoscale convective systems over Europe using satellite infrared imagery II: Characteristics of European mesoscale convective systems. Quart. J. Roy. Meteor. Soc., 128, 1953-1992

Negri A. J. (1982): Cloud-top structure of tornadic storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Amer. Meteor. Soc., 63, 1151-1159

Putsay M., Szenyan I. and Simon A. (2009): Case study of Mesoscale Convective Systems over Hungary on 29 June 2006 with satellite, radar and lightning data. Atmospheric Research, Elsevier, Vol.93, 82-92

Rabin R. M.: Nowcasting thunderstorm intensity from satellite: a review. NOAA/National Severe Storms Lab, Norman, OK USA Cooperative Institute for Meteorological Satellite Studies, Madison, WI USA

Santurette P. and Georgiev C. G. (2005): Weather Analysis and Forecasting: Applying Satellite Water Vapor Imagery and Potential Vorticity Analysis. ISBN: 0-12-619262-6. Academic Press, Burlington, MA, San Diego, London. Copyright ©, Elsevier Inc. 179pp

Santurette P. and Georgiev C. G. (2007): Water Vapour Imagery Analysis in 7.3/6.2µm for diagnosing thermo-dynamic context of intense convection. 2007 AMS-EUMETSAT Meteorological Satellite Conference, Amsterdam, The Netherlands, 24-28 September 2007

Santurette P. Georgiev C. G. and Piriou C. (2009): A diagnostic tool based on MSG 7.3μ/6.2μ Channels for the analysis and forecasting of deep convection. 5th European Conference on Severe Storms 12-16 October 2009-Landshut-GERMANY, 2pp

Santurette P. Georgiev C. G. and Piriou C. (2009): A diagnostic tool based on MSG 7.3µ/6.2µ channel for the analysis and forecasting of deep convection. 5th ECSS 12 - 16 October 2009 - Landshut, Germany

Santurette P. Georgiev C. G. and Piriou C. (2009): Diagnosis of atmospheric environment favourable for deep moist convection by using satellite imagery. 5th ECSS 12 - 16 October 2009 - Landshut, Germany

Satellite image site: https://www.eumetsat.int/website/home/index.html

Schmetz J., Tjemkes, S. A., Gube M. and van de Berg L. (1997): Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res. 19 (3), 433–441

Schmetz J., Pili P., Tjemkes S., Just D., Kerkmann J., Rota S. and Ratier A. (2002): An introduction to Meteosat Second Generation (MSG), Bull. Amer. Meteor. Soc.,83, 977-992

Schumacher R. S and Johnson R. H. (2005): Organization and Environmental Properties of Extreme-Rain-Producing Mesoscale Convective Systems. Dep. Atmos. Sci, Colorado State University,133, 961-976

Scotfield R. A. and Oliver V.J. (1977): A scheme for estimating convective rainfall from satellite imagery. NOAA Tech. Memo. NESS 86, National Earth Satellite Service, Suitland MD 47 pp

Scotfield R. A. (1985): Satellite convective categories associated with heavy precipitation. Preprints, Sixth Conf. on Hydrometeorology, Indianapolis, IN, Amer. Meteor. Soc., 42–51

Scotfield R. A. (1987): The NESDIS Operational Convective Precipitation Estimation Technique, NOAA/NESDIS, Sat. App. Lab., Washington, 1773-1792

Senesi S., Bougeault P., Ch´eze J. L., Cosentino P. and Thepenier R. M. (1996): The Vaison-La-Romaine Flash Flood: Mesoscale Analysis and Predictability Issues. Weather and Forecasting, 11, 417-442

Setvak M., Rabin R. M. and Wang P. K. (2007): Contribution of the MODIS instrument to observations of deep convective storms and stratospheric moisture detection in GOES and MSG imagery. Atmos. Res. 83, 505-528

Setvák M., Lindsey D. T., Novák P., Wang P. K., Radová M., Kerkmann J., Grasso L., Shih-Hao Su, Rabin R. M., Sástka J., Charvát, Z. (2010): Satellite-observed cold-ring-shaped features atop deep convective clouds. Elsevier, Atmospheric Research, 97(1-2), 80-96

Setvak M. (2018): Satellite observations of storm tops: Part 2. EUMETSAT autumn school „Use of Satellite Data and Products for Severe Weather Nowcasting“, 24 – 28 September 2018, Thessaloniki, Greece

Silva Dias M. A. F. and Ferreira R. N. (1992): Application of a linear spectral model to the study of Amazonian squall lines during GTE/ABLE 2B. J. Geophys. Res 97:20405–20419

Tollerud E. I. and Collander R. S (1993): Mesoscale convective systems and extreme rainfall in the central United States. Extreme hydrological events: precipitation, floods and droughts. Proceedings of the Yokohama Symposium, July 1993. IAHS Publ. no. 213

University of Wyoming: Atmospheric soundings website, University of Wyoming, Department of Atmospheric Science, Laramie, USA.


Βαφειάδης Ι. (2000): Διερεύνηση των χαρακτηριστικών της τροπόπαυσης κατά την εμφάνιση των χαλαζοκαταιγίδων. Μεταπτυχιακή διατριβή ειδίκευσης, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, σελ. 102

Βλάχου Μ. και Χριστοδούλου Μ. (2010): Μνημόνιο πρόγνωσης καιρού. Οργανισμός Ελληνικών Γεωργικών Ασφαλίσεων – Κέντρο Μετεωρολογικών Εφαρμογών, σελ.57

Ζάνης Π. (2017): Παρουσιάσεις στα πλαίσια του μαθήματος “Θερμοδυναμική και Στατική της Ατμόσφαιρας” του Μεταπτυχιακού κύκλου σπουδών Μετεωρολογίας, Κλιματολογίας και Ατμοσφαιρικού Περιβάλλοντος του τμήματος Γεωλογίας, ΑΠΘ

Μπαλάμη Μ. (2001): Φυσική μελέτη θερινής καταιγίδας. Μεταπτυχιακή Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, σελ. 163

Πυθαρούλης Ι. (2017): Παρουσιάσεις στα πλαίσια του μαθήματος “Συνοπτική Μετεωρολογία” του Μεταπτυχιακού κύκλου σπουδών Μετεωρολογίας, Κλιματολογίας και Ατμοσφαιρικού Περιβάλλοντος του τμήματος Γεωλογίας, ΑΠΘ

Φείδας Χ. (2017): Παρουσιάσεις στα πλαίσια του μαθήματος “Δορυφορική Μετεωρολογία” του Μεταπτυχιακού κύκλου σπουδών Μετεωρολογίας, Κλιματολογίας και Ατμοσφαιρικού Περιβάλλοντος του τμήματος Γεωλογίας, ΑΠΘ

Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.