[Εξώφυλλο]

Ορυκτολογική μελέτη μαύρων άμμων από τη Δυτική Χαλκιδική= Mineralogical study of black sands in West Halkidiki.

Δέσποινα Νικόλαος Δώρα

Περίληψη


Βασικό χαρακτηριστικό της γεωλογίας της Δυτικής Χαλκιδικής, είναι η εμφάνιση της Εσωτερικής Οφειολιθικής Λωρίδας (IRO). Τα υπερβασικά πετρώματα, ο γρανίτης του Μονοπήγαδου και τα μεταμορφωμένα πετρώματα της Σερβομακεδονικής μάζας τροφοδοτούν τις ακτές μέσω ενός συστήματος ρεμάτων. Οι μηχανικές διεργασίες στις οποίες υποβάλλεται το υλικό, από το μέσο μεταφοράς και τη κυματική δράση, οδηγούν στο σχηματισμό μαύρης άμμου και στην απόθεση της στις κοντινές ακτές. Ορυκτολογική  έρευνα παράκτιων αποθέσεων μαύρης άμμου από τη Ν. Ηράκλεια με τη μέθοδο της Σαρωτικής Ηλεκτρονικής Μικροσκοπίας (SEM), έδειξε ότι η σύσταση της αποτελείται κυρίως από χρωμίτη, μαγνητίτη, ιλμενίτη, ρουτίλιο, τιτανίτη, επίδοτο, αμφιβόλους, ζιρκόνιο, γρανάτες και χλωρίτη. Ανιχνεύθηκαν, επίσης, ποσότητες αλλανίτη, αστρίων, χαλαζία και βιοτίτη. Ομοίως, η ορυκτολογική έρευνα αποθέσεων μαύρης άμμου από τον Γλαρόκαβο, έδειξε ότι η σύσταση της αποτελείται κυρίως από μαγνητίτη, ιλμενίτη, χρωμίτη, ρουτίλιο, χλωρίτη, επίδοτο και γρανάτες, ενώ ανιχνεύθηκαν ασβεστίτης, ζιρκόνιο, αμφίβολοι και άστριοι. Η γεωχημική έρευνα των δειγμάτων με τη μέθοδο φασματοσκοπίας φθορισμού ακτινών – Χ (XRF), έδειξε σημαντικές διαφορές ως προς την σύσταση δειγμάτων των δύο περιοχών. Η σύγκριση μεταξύ των δειγμάτων δείχνει ότι το δείγμα της Ν. Ηράκλειας είναι πλουσιότερο σε Fe2O3 και ZrO2, 51,8% κ.β. και 1,99% κ.β., αντίστοιχα, και φτωχότερο σε Cr2O3, TiO2 και MnO, 3,09% κ.β., 11,62% κ.β. και 0,79% κ.β., αντίστοιχα, σε σχέση με το δείγμα του Γλαρόκαβου, όπου οι τιμές Fe2O3 και ZrO2 είναι 36,26% κ.β. και 0,91% κ.β., αντίστοιχα, ενώ τα Cr2O3, TiO2 και MnO έχουν τιμές 7,77% κ.β., 17,73% κ.β. και 1,23% κ.β., αντίστοιχα.
Λέξεις κλειδιά: Οφειόλιθοι, Χαλκιδική, μαύρη άμμος, χρωμίτης, SEM, XRF.

       Dominant feature of the geological setting of West Halkidiki, is the internal ophiolite complex. Ultramafic rocks, Monopigado’s granite and metamorphic rocks from Serbomacedonian massif supply the coasts through a drainage system. Black sand deposits on the nearest beaches have been formed due to the mechanical weathering as a result of transfer and wave power. Mineralogical investigation using scanning electron microscopy (SEM), on black sand deposits of N. Irakleia, showed that the main mineralogical components are chromite, magnetite, ilmenite, rutile, titanite, epidote, amphiboles, zircon, garnet and chlorite. Traces of allanite, feldspars, quartz and biotite were also found. The same method in Glarokavo’s sample showed as main components magnetite, ilmenite, chromite, rutile, chlorite, epidote and garnet, while calcite, zircon, amphiboles and feldspars were also traced. Geochemical analyses performed by using X-ray fluorescence (XRF) spectrometer, indicated critical differences in composition between the samples. N. Irakleia’s sample is richer in Fe2O3 and ZrO2, 51.8wt%. και 1.99wt%, respectively, but contains less Cr2O3, TiO2 and MnO, 3.09wt%, 11.62wt% και 0.79wt%, respectively, in comparison to Glarokavo’s sample, where Fe2O3 and ZrO2  contents were found 36.26wt% and 0.91wt% respectively, while Cr2O3, TiO2 and MnO contents reached 7.77wt%, 17.73wt% and 1.23wt%, respectively.
Key words: Ophiolites, Halkidiki, black sand, chromite, SEM, XRF.

Πλήρες Κείμενο:

PDF

Αναφορές


Ahmed,Z. (1984). Stratigraphic and textural variations in thec hromite composition of the ophiolitic Sakhakot-Qila Complex, Pakistan. Economic Geology, 79(6), 1334-1359.

Anonymous. (1972). Penrose field conference on ophiolites. Geotimes, 17(12), 24-25.

Bebien, J., & Mercier, J. L. (1977). Le cadre structural de l'association ophiolites-migmatites-granites de Guevgueli (Macedoine, Grece); une croute de bassininterarc?. Bulletin de la Sociétégéologique de France, 7(4), 927-934.

Bébien, J., Dubois, R., & Gauthier, A. (1986). Example of ensialic ophiolites emplaced in a wrench zone: Innermost Hellenic ophiolite belt (Greek Macedonia). Geology, 14(12), 1016-1019.

Beccaluva, L., Macciotta, G., Piccardo, G. B., &Zeda, O. (1989). Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chemical Geology, 77(3-4), 165-182.

Bell, E. A., Boehnke, P., & Harrison, T. M. (2017). Applications of biotite inclusion composition to zircon provenance determination. Earth and Planetary Science Letters, 473, 237-246.

Bernoulli, D., Manatschal, G., Desmurs, L., &Muntener, O. (2003). Where did Gustav Steinmann see the trinity? Back to the roots of an Alpine ophiolite concept. Special Papers-Geological Society of America, 93-110.

Brogniart, A. (1813). Essaid' une classification minéralogique des roches mélangées. Bossange.

Brogniart, A. (1821). Sur le gisement des ophiolithes. Bull. Soc. Philom. Ann. Min.

Christofides, G., Thimiatis, G., Koroneos, A., Sklavounos, S., & Eleftheriadis, G. (1994). Mineraloy and chemistry of Cr-chlorites associated with chromites from Vavdos and

Vasilika Ophiolite Complexes (Chalkidiki, Macedonia, N. Greece). Chemie der Erde, 54(2), 151-166.

Coleman, R. G. (1971). Plate tectonic emplacement of upper mantle peridotites along continental edges. Journal of Geophysical Research, 76(5), 1212-1222.

Dabitzias, S. G. (1980). Petrology and genesis of the Vavdos cryptocrystalline magnesite deposits, Chalkidiki Peninsula, northern Greece. Economic Geology, 75(8), 1138-1151.

Dickey Jr, J. S. (1976). A hypothesis of origin for podiform chromite deposits. In Chromium: its Physicochemical Behavior and Petrologic Significance (pp. 1061-1074).

Pergamon.

Dilek, Y. (2003). Ophiolite concept and its evolution. Special Papers-Geological Society of America, 1-16.

Dimitrijevic, M., & Ciric, G. (1967). Essai sur l'evolution de la masse Servo- Macedonienne. Acta Geologica Academiae Scientiarum Hungariecae, 11, 35-47.

Gansser, A. (1974). The ophiolitic melange, a world-wide problem on Tethyan examples: Eclogae Geol.

Gillson, J. L., 1959, Sand deposits of titanium minerals: Mining Eng., v. 11, p. 421-429.

Hopkins, M. D., Harrison, T. M., & Manning, C. E. (2010). Constraints on Hadean geodynamics from mineral inclusions in> 4 Ga zircons. Earth and Planetary Science Letters, 298(3-4), 367-376.

Hopkins, M., Harrison, T. M., & Manning, C. E. (2008). Low heat flow inferred from> 4 Gyr zircons suggests Hadean plate boundary interactions. Nature, 456(7221), 493-496.

Jennings, E. S., Marschall, H. R., Hawkesworth, C. J., &Storey, C. D. (2011). Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so. Geology, 39(9), 863-866.

Jung, D., & Mussalam, K. (1985). The Sithonia ophiolite: a fossil oceanic crust.

Kockel, F., Mollat, H., & Walther, H. W. (1977). Geological Map of the Chalkidhiki Paninsula and Adjacent Areas Greece.

Koroneos, A. (2008). Biotites from biotite-rich crusts of enclaves and clots in the Monopigadon pluton (Macedonia, northern Greece). Period. Mineral, 77, 3-20.

Koroneos, A. (2010). Petrogenesis of the Upper Jurassic Monopigadon pluton related to the Vardar/Axios ophiolites (Macedonia, northern Greece) and its geotectonic significance. Chemie der Erde-Geochemistry, 70(3), 221-241.

Magganas, A. C. (2002). Constraints on the petrogenesis of Evros ophiolite extrusives, NE Greece. Lithos, 65(1-2), 165-182.

Mercier, J. (1966). Etude géologique des zones internes des Hellénidesen Macédoine centrale (Grèce).. (Doctoral dissertation).

Michailidis, K. M., & Sklavounos, S. A. (1996). Chromite ores in the Gerakini-Ormylia ophiolites, Chalkidiki peninsula, northern Greece. CHEMIE DER ERDE-GEOCHEMISTRY, 56(2), 97-115.

Michard, A., Feinberg, H., & Montigny, R. (1998). Supra-ophiolitic formations from the Thessaloniki nappe (Greece), and associated magmatism: an intra-oceanic subduction predates the Vardar obduction. Comptes Rendus de l' Académie des Sciences-Series IIA-Earth and Planetary Science, 327(7), 493-499.

Michard, A., Feinberg, H., &Montigny, R. (1998). The Chalkidiki supra-ophiolitic formations, and their bearing on the Vardarian obduction process. Δελτίον της Ελληνικής Γεωλογικής Εταιρίας, 32(1), 59-64.

Miyashiro, A. (1973). The Troodos ophiolitic complex was probably formed in an island arc. Earth and Planetary Science Letters, 19(2), 218-224.

Mussallam, K., Jung, D., &Burgath, K. (1981). Textural features and chemical characteristics of chromites in ultramafic rocks, Chalkidiki complex (Northeastern Greece). Tschermaks mineralogische und petrographische Mitteilungen, 29(2), 75-101.

Papadopoulos, A., Tzifas, I. T., &Tsikos, H. (2019). The Potential for REE and Associated Critical Metals in Coastal Sand (Placer) Deposits of Greece: A

Review. Minerals, 9(8), 469.

Pearce, J. A., Lippard, S. J., & Roberts, S. (1984). Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications, 16(1), 77-94.

Ricou, L. E. (1965). Contribution a l' étudegéologique de la bordure sud-ouest du Massif Serbo-Macédonien aux environs de Salonique (Doctoral dissertation,

Verlagnichtermittelbar).

Rozendaal, A., Philander, C., & Heyn, R. (2017). The coastal heavy mineral sand deposits of Africa. South African Journal of Geology 2017, 120(1), 133-152.

Stevens, R. E. (1944). Composition of some chromites of the western hemisphere. American Mineralogist: Journal of Earth and Planetary Materials, 29(1-2), 1-34.

Syrides, G. (1990). Lithostratigraphic, biostratigraphic and palaeogeographic study of the Neogene-Quaternary sedimentary deposits of Chalkidiki Peninsula, Macedonia, Greece. Scientific Annals of the School of Geology, University of Thessaloniki, 1(11), 1-243.

Thayer, T. P. (1970). Chromite segregations as petrogenetic indicators. In: Symposium on Bushveld Igneous Complex and other layered intrusions. Geol. Soc. S-Africa Spec. Publ., 1, 380-390.

Tsikouras, B., Pe-Piper, G., & Hatzipanagiotou, K. (1990). A new date for an ophiolite on the northeastern margin of the Vardar Zone, Samothraki, Greece. Neues

Jahrbuchfür Mineralogie Monatschefte, 11, 521-7.

Zachariadis, P. T. (2007). Ophiolites of the eastern Vardar zone, N. Greece. In Geophysical Research Abstracts (Vol. 8, p. 05560).

Ελληνική Βιβλιογραφία

Καφήρα, Β., Αλμπανάκης, Κ., &Οικονομίδης, Δ. (2015). Flood risk assessment using remote sensing and geographical information systems (GIS). An example from

Kassandra peninsula, Chalkidiki, Greece. Πανελλήνια και Διεθνή Γεωγραφικά Συνέδρια, Συλλογή Πρακτικών, 287-308.

Μουντράκης, Δ. (2010). “Γεωλογία και γεωτεκτονική εξέλιξη της Ελλάδας”, Εκδόσεις: University Studio Press

Μουντράκης, ∆., Γ. Συρίδης, Λ. Πολυµενάκος και Σ. Παυλίδης (1993). Η νεοτεκτονικήδοµή του ανατολικού περιθωρίου του βυθίσµατος Αξιού - Θερµαϊκού στην περιοχή της δυτικής Χαλκιδικής (κεντρική Μακεδονία), ∆ελτίο Ελληνικής Γεωλογικής Εταιρείας, 28(1), 379-395.

Βαβελίδης, Μ. «Σημειώσεις Γενικής Κοιτασματολογίας»

Τρανός, Μ. Δ., Κίλιας, Α. Α., & Μουντράκης, Δ. Μ. (1999). Geometry and kinematics of the Tertiary post-metamorphic Circum Rhodope Belt Thrust System (CRBTS), Northern Greece. Δελτίον της Ελληνικής Γεωλογικής Εταιρίας, 33, 5-16.

Διαδικτυακές Πηγές

http://www.geo.auth.gr/106/8_silicates/phyllo/biotite.htm

http://www.geo.auth.gr/106/8_silicates/soro/epidote.htm

http://www.geo.auth.gr/212/1_neso/titanite.htm

http://www.geo.auth.gr/212/1_neso/zircon.htm

https://el.wikipedia.org/wiki/%CE%91%CE%BC%CF%86%CE%AF%CE%B2%CE%BF%CE%BB%CE%BF%CE%B9

https://el.wikipedia.org/wiki/%CE%A7%CF%81%CF%89%CE%BC%CE%AF%CF%84%CE%B7%CF%82

https://www.ga.gov.au/education/classroom-resources/minerals-energy/australian-mineral-facts

https://www.nzsteel.co.nz/new-zealand-steel/the-story-of-steel/the-history-of-ironsand/

https://www.sandatlas.org/feldspar/

https://www.sandatlas.org/garnet/

https://www.sandatlas.org/ilmenite/

https://www.sandatlas.org/rutile/

https://www.sciencedirect.com/science/article/pii/S0070457107580015


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.