[Εξώφυλλο]

Ο ρόλος της ορυκτολογικής σύστασης του χρωμιτίτη και του στείρου στην επιλογή της κατάλληλης μεθοδολογίας αποδέσμευσης, της κοκκομετρίας τροφοδοσίας και των μεθόδων εμπλουτισμού μεταλλεύματος από την περιοχή Αετορράχες του όρους Βούρινου = The role of the mineralogical composition of chromitite and gangue in the selection of the appropriate release methodology, the feeding granulometry and the methods of mineral enrichment from the area of Aetorraches of mount Vourinos.

Βασίλειος Παύλος Πάτκος

Περίληψη


Από την θέση «Αετοράχες» του Ν. Βούρινου, συλλέχθηκαν 4 δείγματα μεταλλεύματος χρωμιτίτη, συνολικού βάρους 60 kg περίπου, στα οποία πραγματοποιήθηκε η διερεύνηση δυνατότητας εμπλουτισμού προς παραγωγή συμπυκνώματος χρωμίτη κατάλληλο για όλες τις βιομηχανικές εφαρμογές. Τα δείγματα εξετάστηκαν σε μεταλλογραφικό και πετρογραφικό μικροσκόπιο και ακολούθησε η θραύση και ταξινόμηση των εξεταζόμενων υλικών σε εργαστηριακά κόσκινα βρογχίδας "1,5", "1,0", "0,5", "0,3" & "0,125" mm. Σε κάθε κοκκομετρικό κλάσμα έγινε περαιτέρω εξέταση της ορυκτολογικής σύστασης με την μέθοδο της περιθλασιμετρίαςακτίνων-Χ (XRD) και της χημικής σύστασης με τη μέθοδο της φασματοσκοπίας ακτίνων-Χ φθορισμού (XRF). Επιπλέον, αντιπροσωπευτικό δείγμα από κάθε κοκκομετρικό κλάσμα, μετά από πλύση και ξήρανση εξετάστηκε σε στερεοσκόπιο προκειμένου να εκτιμηθεί ο βαθμός αποδέσμευσης  του μεταλλεύματος. Σε επιλεγμένα κοκκομετρικά κλάσματα, διενεργήθηκε ξηρός μαγνητικός διαχωρισμός σε εντάσεις 0,3 έως 1,5 Α, ενώ επελέγησαν αντιπροσωπευτικά δείγματα προκειμένου να γίνουν δοκιμές σε εργαστηριακή παλλόμενη τράπεζα. Στα προϊόντα διαχωρισμού των παραπάνω μεθόδων πραγματοποιήθηκαν ορυκτολογικές αναλύσεις με τη μέθοδο της περιθλασιμετρίαςακτίνων-Χ (XRD) και χημικές αναλύσεις με τη μέθοδο της φασματοσκοπίας ακτίνων-Χ φθορισμού (XRF). Ικανοποιητική αποδέσμευση του μεταλλεύματος έχουμε στα κοκκομετρικά κλάσματα "-0,5 έως +0,3" και "-0,3 έως +0,125" mm, ενώ παρατηρήθηκε αυξημένο ποσοστό (περίπου 20% κ.β.) λεπτομερούς προϊόντος  (-0,125 mm) κατά τη θραύση, μέσης περιεκτικότητας 20% κ.β. σε Cr2O3. Από τα αποτελέσματα του ξηρού μαγνητικού διαχωρισμού, φάνηκε πως σημαντική ποσότητα υλικού σε ένταση 0,75 Α (περίπου 40% κ.β.), μπορεί να απομακρυνθεί έχοντας περιεκτικότητα σε Cr2O3 περίπου 1,5% κ.β., δημιουργώντας έτσι ένα προσυμπύκνωμα χρωμίτη έως και 38%  κ.β. σε Cr2O3. Οι δοκιμές σε δονούμενη τράπεζα έδειξαν τη δυνατότητα παραγωγής συμπυκνώματος με περιεκτικότητα πάνω από 54% κ.β. σε Cr2O3) με ικανοποιητική ανάκτηση στα επιμέρους κλάσματα (έως και 80% κ.β.). Η απώλεια πύρωσης των προϊόντων της τράπεζας, παρουσιάζει σαφέστατη αυξητική τάση (από 0,9 σε 13,61% κ.β.) από το συμπύκνωμα προς το απόρριμμα, ενώ στην αρχική τροφοδοσία και σε όλα τα κοκκομετρικά κλάσματα, η απώλεια πύρωσης παραμένει σχεδόν σταθερή (από 9,8 έως 12% κ.β.), γεγονός που υποδηλώνει την επιτυχία του διαχωρισμού. Παρόλη την θετική ανταπόκριση των δειγμάτων στις δοκιμές εμπλουτισμού, παραμένει το ζήτημα του εμπλουτισμού των λεπτομερών υλικών, τα οποία ως ποσότητα (περίπου 20% κ.β.) και περιεκτικότητα (περίπου 20% κ.β. σε Cr2O3), μειώνουν τη συνολική ανάκτηση του περιεχομένου Cr2O3, με άμεσο αντίκτυπο στην οικονομικότητα της εκμετάλλευσης. Γι’ αυτό και θα πρέπει να διερευνηθεί περαιτέρω η εξέταση της εμπλουτισιμότητας του χρωμίτη με συνδυασμένες μεθόδους μαγνητικού διαχωρισμού, βαρυτομετρικού διαχωρισμού ή και επίπλευσης.

From the "Aetoraches mine" of S. Vourinos mt, Prefecture of Western Macedonia Greece, were collected 4 samples of chromite ore, with a total weight of 60 kg approximately, in which the possibility for the production of chromite concentrate, suitable for all industrial applications was investigated. Thin sections of the samples were examined under a metallographic and petrographic microscope. The samples crushed and classified in laboratory sieves No "1.5", "1.0", "0.5", "0.3" & "0.125" mm. In each granulometric fraction, was performed further examination of the mineral composition using the X-ray diffraction (XRD) method and the chemical composition using the X-ray fluorescence spectroscopy (XRF) method. In addition, a representative sample from each granulometric fraction, was examined under stereoscope, in order to estimate the degree of liberation. In selected granulometric fractions, dry magnetic separation was performed in currencies of 0.3 to 1.5 A and representative sample of granulometric fractions were tested in a laboratory shaking table.In the products of the above methods mineralogical analyzes were performed by the method of X-ray diffraction (XRD) and chemical analyzes by the method of X-ray fluorescence spectroscopy (XRF). Satisfactory liberation of the ore is found in the granulometric fractions "-0.5 to +0.3" and "-0.3 to +0.125" mm, while an increased percentage (approximately 20 wt.%) of fine product “-0.125” mm was observed on crushing with an average content of 20 wt.% in Cr2O3.From the results of the dry magnetic separation, it appeared that a significant amount of material at a currency of 0.75 A (approximately 40% by weight), can be removed having a Cr2O3 content of about 1.5 wt.%, thus creating a chromite pre-concentrate up to 38 wt.% in Cr2O3.The vibrating table tests showed the ability of producing a concentrate with a content of more than 54 wt.% in Cr2O3, with satisfactory recovery in the individual fractions (up to 80 wt.%). The loss on ignition of the shaking table products, clearly increases (from 0.9 to 13.61 wt.%) from the concentrate to the tailing, while in the feeding material in all the granular fractions the loss on ignition remains almost stable (from 9.8 to 12 wt.%), which indicates the success of the separation. Despite the positive response of the samples to the enrichment tests, the question of the enrichment of the fine materials remains, which as quantity (about 20 wt.%) and content (about 20 wt.% in Cr2O3), reduces the overall recovery of Cr2O3 content, with a direct impact in the economy of the mining process. It is necessary the chromite enrichment test to be further investigated with combined methods of magnetic separation, gravimetric separation and flotation.

Πλήρες Κείμενο:

PDF

Αναφορές


Abdelhaffez S.G., 2012. Correlation Between Work Index and Mechanical Properties of some Saudi Ores. Materials Testing 54(2), 108-112.

Anonymous, 1972. Penrose field conference on ophiolites. Geotimes, 17, 24-25.

Arai S., 1997. Origin of podiform chromitites. J. Asian Earth Sci., 15, 303-310.

Barnes, S.-J., Boyd, R., Korneliussen, A., Nilsson, L.-P., Often, M., Pedersen, R.B. and Robins,B., 1988. The use of mantle normalization and metal ratios indiscriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: examples from Norway. In: H.M. Prichard, P.J. Potts, J.F.W.

Bowles and S. Cribb (Editors), Geo-platinum 87. Elsevier, Barking, pp. 113-143.Barry A., Wills, J. and Finch A., 2016. Wills' Mineral Processing Technology (Eighth Edition), Butterworth-Heinemann.

Bond F.C., 1961. Crushing & Grinding Calculations, Part I. British Chemical Engineering, pp. 378-548.

Coleman R.G., 1977. Ophiolites, ancient oceanic lithosphere? Springer, Heidelberg.

Daltry V.D. and Wilson A.H., 1997. Review of platinum - group mineralogy: compositions and elemental associations of the PG- minerals and unidentified PGE-phases. Mineral. Petrol., 60: 185-229.

Deer W.A., Howie R.A., and Zussman J., 1962. Rock-Forming Minerals, Vol. 5: Non-Silicates, Longmans, London.

Deer W.A., Howie R.A., and Zussman J., 1992. An introduction to the rock forming minerals, 2ndedition Longman, Essex, UK.

Dick H.J.B. and Bullen Th., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridodites and spatially associated lavas. Contribution to Mineralogy and Petrology, 86, 54-76.

Drzymala J., 2007. Mineral Processing, Foundations of theory and practice, of minerallurgy, 1st English edition. Wroclaw University of Technology, 508 p.

Economou M., Dimou E., Economou G., Vacandios I., Grivas E., Rassios A. and Dabitzias S., 1986. Chromite deposits of Greece. In: Chromites UNESCO’S-197 project, Metallogeny of ophiolites. Theophrastus Pub. S.A Athens, 129-159.

Economou-Eliopoulos, M., Frei, R. and Mitsis, I., 2020. Factors Controlling the Chromium Isotope Compositions in Podiform Chromitites. Minerals, 10, 10.

Ericsson T. and Filippidis A., 1986. Cation ordering in the limited solid solution Fe2SiΟ4-Zn2SiΟ4. American Mineralogist, 71, 1502-1509.

Evans A.M., 1987. An introduction to ore geology. Blackwell Oxford, UK

Filippidis A. and Annersten H., 1980. Mineral-chemical investigation of an ultramafic nickel bearing body in the Swedish Caledonides. In UNESCO - An International Symposium on Metallogeny of Mafic and Ultramafic Complexes: the Eastern Mediterranean-Western Asia Area, and its Comparison with Similar Metallogenic Environments in the World, Proc. (S.S. Augustithis, ed.) 2, 115-130

Filippidis A. and Annersten H., 1981. Nickel partitioning between silicates and ore minerals in serpentinized ultramafic rocks from the Swedish Caledonides. Univ. Uppsala Dep. Mineral. Petrology(UUDMP) Res. Rep.24.

Filippidis A., 1982. Experimental study of the serpentinization of Mg-Fe-Ni olivine in the presence of sulfur. Canadian Mineralogist, 20, 567-574.

Filippidis A., 1985. Formation of Awaruite in the system Ni-Fe-Mg-Si-O-H-S and Olivine hydration with NaOH solution, An experimental study. EconomicGeology, 80, 1974-1980.

Filippidis A., 1991. Further comments on the opaque mineral assemblages in ultramafic rocks-An experimental study. Ofioliti, 16(1), 1-6.

Filippidis A., 1996. Chemical variation of olivine in the serpentinite of the central section in the Xerolivado chrome mine of Vourinos, Greece. N. Jb. Miner. Abh., 170(2), 186-205.

Filippidis A., 1997a. Chemical variation of chromite in the Gorgona olivine-orthopyroxenite, Thrace, Greece. N. Jb. Miner. Mh., 3, 113-130

Filippidis A., 1997b. Chemical variation of chromite in the central sector of Xerolivado chrome mine of Vourinos, Western Macedonia, Greece. N. Jb. Miner., Mh., 8, 354-370

Filippidis A., Kassoli-Fournaraki A. and Kantiranis N., 2000. Chromites in the southern sector of Xerolivado chrome mine of Vourinos, Macedonia, Greece. 1st Congress of the Economic Geology, Mineralogy and Geochemistry Committee of the Geological Society of Greece, Kozani, Greece, 12-13/02/2000, Proceedings, 485-497

Garuti G. and Zaccarini F.1997. In situ alteration of platinum-group minerals at low temperature evidence from serpentinized and weathered chromitites of the Vourinos complex (Greece). Canadian Mineralogist, 35, 611-626.

Gasik I.M., 2013. Technology of Chromium and Its Ferroalloys. In Gasik M. (ed) Handbook of Ferroalloys, 1st Edition, Theory and Technology. Butterworth-Heinemann, Oxford UK, 268-317.

Grieco G. and Merlini A., 2011. Chromite alteration processes within Vourinos ophiolite. International Journal of Earth Sciences, 101(6), 1-11

Grivas, E., Rassios, A., Konstantopoulou, G., Vacondios, I., and Vrahatis, G., 1993. Drilling for “blind” podiform chrome ore bodies at Voidolakkos in the Vourinos ophiolite complex, Greece. Economic Geology 88, 461-468.

Hansen H.C.B. and Taylor R.M., 1990. Formation of synthetic analogues of double metal-hydroxy carbonate minerals under controlled pH conditions: I. The synthesis of pyroaurite and reevesite. Clay Minerals, 25, 161-179.

Hess H.H., 1966. Νotes on operation of Frantz isodynamic magnetic separator, Princeton University.

Indian Minerals Yearbook 2015. Part-III: Mineral Reviews, chromite (advance release). Government of India Ministry of Mines. Indian Bureau of Mines, 54th Edition, March 2017, 21σ.

Irvine T.N., 1965. Chromian spinel as a petrogenetic indicator, part I. Theory. Canadian J. Earth Sci., 2, 648-671.

Irvine T.N., 1967. Chromian spinel as a petrogenetic indicator, part II. Petrology applications. Canadian J. Earth Sci., 2, 71-103.

Irvine T.N., 1977. Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation. Geology, 5, 273-277.

Kantiranis N., Sikalidis K., Godelitsas A., Squires C., Papastergios G.& Filippidis A., 2011. Extra framework cation release from heulandite-type rich tuffs on exchange with NH4+. Journal of Environmental Management, 92, 1569-1576.

Kapsiotis A., Grammatikopoulos T.A., Zaccarini F., Tsikouras B., Garuti G. and Hatzipanagiotou K., 2006. Platinum-group mineral characterisation in concentrates from

low-grade PGE chromitites from the Vourinos ophiolite complex, northern Greece. Applied Earth Science, 115(2), 49-57

Kapsiotis A., Rassios A.E., Uysal I., Grieco G., Akmaz R.M., Saka S., Bussolesi M., 2018. Compositional fingerprints of chromian spinel from the refractory chrome ores of Metalleion, Othris (Greece): Implications for metallogeny and deformation of chromitites within a “hot” oceanic fault zone. Journal of Geochemical Exploration, 185, 14-32.

Kassoli-Fournaraki A., Filippidis A., Kolcheva K., Hatzipanayotou K., Koepke J., Dimadis E., 1995. Multi-stage alteration of the Gorgona ultramafic body, Central Rhodope Massif, Greece. Chemie der Erde, 55, 531-534.

Konstantopoulou G. and Economou-Eliopoulos M., 1990. Geochemistry of the Vourinos chromite ores, Greece. In Malpas J., Moores E.M., Panayiotou A. and

Xenophontas C., eds, Ophiolites: Oceanic Crystal Analogues. Int. Symposium “Troodos 1987”, Cyprus, Nicosia, Geological Survey Department, Proc. 605-613.

Konstantopoulou G. and Economou-Eliopoulos M., 1991. Distribution of platinum-group elements and gold within the Vourinos chromitite ores, Greece. Economic Geology, 86(8), 1672-1682. Survey Department, Proc. 605-613.

Lago B.L., Rabinowicz M., Nicolas A., 1982. Podiform chromite orebodies: A genetic model. Journal of Petrology, 23, 102-125.

Leblanc M. and Nicolas A., 1992. Les chromitites ophiolitiques. Chronique de la Recherche Miniere, 507, 3-25.

Locmelis M., Fiorentini L.M., Barnes J.S., Hanski J.E., Kobussen F.A., 2018. Ruthenium in chromite as indicator for magmatic sulfide liquid equilibration in mafic-ultramafic systems. 2018 Elsevier.

Long V.P.J., 1977. Electron probe microanalysis. In: Zussman J. (Ed) Physical Methods in determinative mineralogy. Academic Press, New York, pp. 273-341.

Lutterotti L., Bortolotti M., Ischia G., Lonardelli I., Wenk H.-R., 2007. Rietveld texture analysis from diffraction images. Z. Kristallogr. Suppl.,26, 125-130.

Lyakishev N.P. and Gasik M.I., 1998. Metallurgy of chromium. Alletron Press, NY, 626 p.

METSO minerals, Basics in mineral processing handbook (2015).

METSO minerals, Basics in mineral processing handbook (2018).

METSO minerals, Crushing and Screening Handbook (2007).

Moores E.M., 1982. Origin and emplacement of ophiolites. Reviews of Geophysics and Space Physics, 20(4), 735-760.

Naylor, M.A. and Harle, T.J., 1976. Palaeogeographic significance of rocks and structures beneath the Vourinos ophiolite, northern Greece. Journal of the Geological Society, London, 132, 667-675

Nord G.A., Annersten H. and Filippidis A., 1982a. The cation distribution in synthetic Mg-Fe-Ni olivines. American Mineralogists, 67, 1206-1211.

Nord G.A., Annersten H. and Filippidis A., 1982b. The cation ordering in Ni-Fe olivines. American Mineralogists, 67, 1212-1217.

Paktunc A.D., 1990. Origin of podiform chromite deposits by lultistage melting, melt segregation and magma mixing in the upper mantle. Ore Geol. Rev., 5, 211-222.

Ramdohr P., 1980. The ore minerals and their intergrowths. Pergamon Press, 2nd edition, London, UK.

Rassios A., 1981. Geology and evolution of the Vourinos complex, northern Greece. PhD Thesis, University of California (Davis), 499p.

Reddy N.V., Kumar K.P., Kumar G.S., 2006. Crushing laws. https://slideplayer.com/ slide/4459728/.

Roberts S., 1988. Ophiolitic chromitite formation: A marginal basin phenomenon? Economic Geology, 83, 1034-1036.

Roberts S., Rassios A., Wright L., Vacondios I., Vrachatis G., Grivas E., and Nesbitt R., 1988. Stuctural controls on the location and form of the Vourinos chromite deposits. In: Boissonnas J. and Omenetto P.: Mineral Deposits within the European Community. Soc. Geol. Appl. Miner. Deposits, Spec. Publ., 6, 249-266.

Ross R., Mercier J., Ave Lallemant H., Carter N. and Zimmerman J., 1980. The Vourinos ophiolite complex, Greece: the tectonite suite. Tectonoph., 70, 63-83.

Sam Rosenblum and Isabelle K. Brownfield. Magnetic Susceptibilities of Minerals, U.S. Geological Survey Open-File Report 99-0529, (1999, 38 σελ.)

Sato T., Akita N., Hamadate A. and Fukushi K., 2001. Formation and stability of magnesium hydrocarbonate minerals during serpentinization and weathering of serpentinites. Eleventh Annual V. M. Goldschmidt Conference, paper 3763.pdf.

Stamatakis G.Μ. and Mitsis I., 2013. The occurrences of Mg-hydroxycarbonates in serpentinites of the western section of the South Aegean volcanic arc (West Attica peninsula-Northeastern Argolis peninsula), Greece. Bulletin of the Geological Society of Greece, 47, 427-437.

Stevens R.E., 1944. Composition of some chromites of the Western hemisphere. Amer. Mineral., 29, 1-34.

Taylor R.M., Hansen H.C.B., Stanger G. and Bender Koch C., 1991. On the genesis and composition of natural pyroaurite. Clay Minerals, 26, 297-309.

Tripathy S.K., Singh V. and Ramamurthy Y., 2012. Improvement in Cr:Fe Ratio of Indian Chromite Ore for Ferro Chrome Production. International Journal of Mining Engineering and Mineral Processing, 1(3), 101-106.

Tsirambides A. and Filippidis A., 2012. Metallic mineral resources of Greece. Central European Journal of Geosciences, 4(4), 641-650.

Tzamos E., Kapsiotis A., Filippidis A., Koroneos A., Grieco G., Ewing Rassios A., Kantiranis N., Papadopoulos A., Gamaletsos N.P. and Godelitsas A., 2017. Metallogeny of the Chrome Ores of the Xerolivado-Skoumtsa Mine, Vourinos Ophiolite, Greece: Implications on the genesis of IPGE-bearing high-Cr chromitites within a

heterogeneously depleted mantle section. Ore Geology Reviews, 90, 226-242.

Tzamos Ε., Filippidis A., Rassios Α., Grieco Γ., Michailidis Κ., Koroneos Α., Stamoulis Κ., Pedrotti Μ. and Gamaletsos N.P., 2016. Major and minor element geochemistry of chromite from the Xerolivado–Skoumtsa mine, Southern Vourinos: Implications for chrome ore exploration. Journal of Geochemical Exploration, 165, Pages 81-93.

Wills B.A. and Napier-Munn T., 2006. Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral, 7th Edition, Pergamon.

Wylle G.A., Candela A.P. and Burke M.T., 1987. Compositional zoning in unusual Zn-rich chromite from the Sykesville district of Maryland and its bearing on the origin of “ferritchromit”. American Mineralogist, 72, 413-422.

Zaccarini F., Ifandi E., Tsikouras B., Grammatikopolous T., Garuti G., Mauro D., Bindi L., Stanley C., 2019. Occurrence of new phosphides and sulfide of Ni, Co, V, and Mo from chromitite of the Othrys ophiolite complex (Central Greece)(Article). Periodico di Mineralogia, 88(3), 105-119.

Zachos K., 1969. The chromite mineralization of the Vourinos ophiolite complex, Northern Greece. Economic Geology, 4, 147-153.

Ελληνική Βιβλιογραφία

Βουτετάκης Σ.Κ, 1960. Επί της δυνατότητος μαγνητικού εμπλουτισμού των χρωμιτών Νοτίου Βούρινου Κοζάνης. ΙΓΕΥ 1960, Γεωλογικαί και γεωφυσικαί Μελέται, Τομ. 6, Νο 9, σελ. 179-205.

Βραχάτης Γ., Γρίβας Η. και Σταμούλης, Κ., 1986. Γεωλογική χαρτογράφηση της περιοχής του Βούρινου (Κοζάνη) 1:10.000. Αδημοσίευτη έκθ., Ι.Γ.Μ.Ε.

Βραχάτης Γ. και Γρίβας Η., 1980. Επί της γεωλογικής-κοιτασματολογικής χαρτογραφήσεως 1:10.000 περιοχής Βουρίνου Φλάμπουρου Κοζάνης. Αδημοσίευτη έκθ., Ι.Γ.Μ.Ε., 80 σ.

ΙΓΜΕ, 1993. Φύλλο χάρτη Κνίδη, κλίμακα 1:50.000.

ΙΓΜΕ, 2003. Έργο: καινοτόμες τεχνολογίες-τεχνικές καταγραφής και αξιοποίησης απορριμμάτων μεταλλευτικής και μεταλλουργικής βιομηχανίας και εγκαταλειμμένων δημόσιων μεταλλείων. Πιλοτικές εφαρμογές υποέργο 1: Καταγραφή απορριμμάτων μεταλλευτικής και μεταλλουργικής δραστηριότητας. Μελέτες και έρευνες επιπτώσεων, τεχνικών αδρανοποίησης και αξιοποίησης. Πιλοτικές εφαρμογές. Γ΄ Κοινοτικό Πλαίσιο Στήριξης (2000-2006) Επιχειρησιακό Πρόγραμμα «Ανταγωνιστικότητα» (Ε.Π.Α.Ν.)

Μεταλλευτικό κέντρο Βούρινου.

Καντηράνης, Ν., Στεργίου, Α., Φιλιππίδης, Α., και Δρακούλης, Α., 2004. Υπολογισμός του ποσοστού του άμορφου υλικού με τη χρήση περιθλασιογραμμάτων ακτίνων-Χ. Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, 36(1), 446-453.

Καψιώτης Α., 2008. Κοιτασματογένεση πλατινοειδών ορυκτών και χρωμιτών συνδεόμενων με την πετρογενετική εξέλιξη των οφιολιθικών συμπλεγμάτων Βούρινου και Πίνδου. Διδακτορική Διατριβή, Πανεπιστήμιο Πατρών, 718 σ.

Κωνσταντοπούλου Π.Γ., 1990. Κατανομή των στοιχείων της ομάδας του λευκόχρυσου (PGE) και του χρυσού σε χρωμιτικά μεταλλεύματα και πετρώματα του οφιολιθικού συμπλέγματος του Βούρινου. Διδακτορική Διατριβή, Πανεπιστήμιο Αθηνών, 262 σ.

Μπόσκος Ε. και Περδικάτσης Β., 1986. Η αποσάθρωση του βρουσίτη και ο σχηματισμός του πυροαουρίτη στο δουνιτικό σερπεντινίτη της περιοχής Ξερολείβαδου στο νότιο Βούρινο. Ειδικό τεύχος ΙΓΜΕ, 279-287.

Παπαδόπουλος Τ., 2008. Εισαγωγή στη γεωφυσική (σημειώσεις). Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών.

Παππά, Α., 1996. Διερεύνηση της επίπλευσης του χρωμίτη της περιοχής Βούρινου (Νομού Κοζάνης). Δυνατότητες εφαρμογής στη πράξη. Διδακτορική διατριβή, ΕΜΠ, 261 σ.

Σταμπολτζής Γ.Α., 1991. Μηχανική Προπαρασκευή Μεταλλευμάτων Βιομηχανικών Ορυκτών και Πετρωμάτων. Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα.

Σταμπολτζής Γ.Α., 1994. Μηχανική Προπαρασκευή Μεταλλευμάτων Βιομηχανικών Ορυκτών και Πετρωμάτων, Υδροαυτοκαθαρισμός–Κατάτμηση–Ταξινόμηση. Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα. http://mycourses.ntua.gr/course_description/index.php

Σταμούλης, K. (1990): Παρατηρήσεις επί της ανάπτυξης των χρωμιτικών σωμάτων του Μεταλλείου Ξερολιβάδου. Αδημοσίευτη έκθ., ΕΛ.ΣΙ., 184σ.

Τσακαλάκης Κ., 2008α. Κατάτμηση αρχές – θραυστήρες – εφαρμογές νομοί κατάτμησης. Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα. http://mycourses.ntua.gr/course_description/ index.php

Τσακαλάκης Κ., 2008β. Συναρτήσεις κατανομής μεγέθους τεμαχίων. Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα. http://mycourses.ntua.gr/course_description/index.php

Τσακαλάκης Κ., 2008γ. Εφαρμογή του νομού Βond - προσδιορισμός ισχύος μυλών λειοτρίβησης. ΕΜΠ.

Τσακαλάκης Κ., 2018α. Αποδέσμευση χρήσιμου συστατικού από το στείρο - διεργασίες κατάτμησης (ελάττωση μεγέθους τεμαχίων). Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα. http://mycourses.ntua.gr/course_description/index.php

Τσακαλάκης Κ., 2018β. Εισαγωγή στον εμπλουτισμό των μεταλλευμάτων. Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα. http://mycourses.ntua.gr/course_description/index.php)

Τσακαλάκης Κ., Ορφανουδάκη Α., Περράκη Θ., 2000. Η επίδραση της ορυκτολογικής σύστασης του βωξίτη στην κατάτμηση. Conference: 3rd International Congress of Mineral Wealth, Greece, November 2000, v. II, 271-280.

Φραγκίσκος Α.Ζ. 2000. Σχεδιασμός και κατασκευή εργοστασίων εμπλουτισμού. Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα.

Φραγκίσκος Α.Ζ. και Κατράκης Σ.Δ., 1979. Εισαγωγή εις τον Εμπλουτισμόν των Μεταλλευμάτων και Βιομηχανικών Ορυκτών. Έκδοση ΤΕΕ, Αθήνα.

Φραγκίσκος Α.Ζ., 1990. Η Μελέτη του Εμπλουτισμού των Μεταλλευμάτων και Βιομηχανικών Ορυκτών. Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα.

Φραγκίσκος Α.Ζ., 1995. Εμπλουτισμός μεταλλευμάτων και βιομηχανικών ορυκτών (ορυκτουργία). Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα.

Διαδικτυακές Πηγές

http://met-solvelabs.com

https://labs.seprosystems.com/

www.metso.com

http://www.espimetals.com

www.ig.pwr.wroc.pl/minproc

https://www.usgs.gov/centers/nmic/chromium-statistics-and-information

http://images.library.wisc.edu/EcoNatRes/EFacs2/MineralsYearBk/MinYB193132/reference/econatres.minyb193132.lsmith.pdf


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.