[Εξώφυλλο]

Οξειδωτικές διεργασίες και υπεργενή κοιτάσματα Zn-Pb = Oxidative processes and supergene deposits Zn-Pb

Ηλέκτρα Ηλίας Σβώλη

Περίληψη


Αντικείμενο της εργασίας είναι η μελέτη των χαρακτηριστικών των υπεργενών μη-σουλφιδικών κοιτασμάτων ψευδαργύρου (SNSZ), των γενετικών διεργασιών και των παραμέτρων που ελέγχουν τη γένεση και τη διατήρησή τους. Τα κοιτάσματα SNSZ σχηματίζονται συνήθως από την επιφανειακή ή σχεδόν επιφανειακή οξείδωση υπογενών πλούσιων σε Zn σουλφιδικών κοιτασμάτων κάτω από ευνοϊκές για διάβρωση συνθήκες. Τα υπεργενή κοιτάσματα χωρίζονται σε τρείς υποομάδες. Τα πιο συνήθη είναι τα άμεσης αντικατάστασης και τα αντικατάστασης πετρώματος-ξενιστή και τα λιγότερο συνήθη είναι τα υπολειμματικά και καρστικά κοιτάσματα. Τα κοιτάσματα άμεσης αντικατάστασης είναι επίσης γνωστά ως "κόκκινα μεταλλεύματα" λόγω της υψηλής περιεκτικότητάς τους σε Fe- (υδρ)οξείδια και τα κοιτάσματα αντικατάστασης πετρώματος-ξενιστή είναι γνωστά ως "λευκά μεταλλεύματα" και αποτελούνται από σμιθσονίτη, υδροζινκίτη και δευτερεύον οξείδια-υδροξείδια του Fe. Οι δύο κύριοι τύποι πετρωμάτων που φιλοξενούν τα κοιτάσματα SNSZ είναι τα ανθρακικά και τα πυριτικά πετρώματα, τα οποία ελέγχουν την ορυκτολογία των κοιτασμάτων SNSZ, με τον σμιθσονίτη, τον υδροζινκίτη και τον ημιμορρφίτη να συνδέονται με τα ανθρακικά και με το σωσονίτη, τον ημιμορφίτη, τον σχολζίτη και τον ταρμπουτίτη να συνδέονται με τα πυριτικά. Ωστόσο ο πιο συνηθισμένος τύπος πετρώματος-ξενιστή είναι τα ανθρακικά στα οποία η γένεση υπεργενούς μεταλλεύματος μπορεί να υποδιαιρεθεί σε ένα στάδιο οξείδωσης του θειούχου μεταλλεύματος και σε ένα γεωχημικά και ορυκτολογικά μετα-οξειδωτικό στάδιο. Τα κοιτάσματα SNSZ σχηματίζονται μέσω οξείδωσης μετεωρικού νερού, διάλυσης πρωτογενών σουλφιδίων, κινητοποίησης και μεταφοράς του Ζn σε όξινο διάλυμα και επαναπόθεσης ως δευτερογενές, μη-θειούχο μετάλλευμα ψευδαργύρου. Η οξείδωση και η κλασμάτωση, η υπόγεια διάλυση και η διάβρωση είναι οι σημαντικότερες παράμετροι σχηματισμού και διατήρησης των SNSZ σε τοπική κλίμακα ενώ η τεκτονική, η άνοδος του φλοιού και το κλίμα είναι οι σημαντικότερες σε περιφερειακή κλίμακα. Η διατήρηση των υπεργενών μη-σουλφιδικών κοιτασμάτων Pb-Zn είναι καλύτερη υπό υπεράριδες κλιματικές συνθήκες και ακόμη καλύτερη όταν προστατεύονται από κάλυμμα, κατά προτίμηση από ξηρά ιζήματα. Τέλος, τα υπεργενή μη-σουλφιδικά κοιτάσματα διακρίνονται στις τυπικές "Calamines", στις ασυνήθιστες "Calamines", και στις "Others".

This study focused on the characteristics of the supergene Zn-Pb non-sulphide deposits (SNSZ), the genetic processes and the factors that control their genesis and conservation. SNSZ deposits are usually formed by surface or near-surface oxidation of hypogene Zn-rich sulphide deposits under erosion-friendly conditions. The supergene deposits are divided into three subgroups. The most common are the direct-replacement and the wall rock-replacement and the least common are residual and karst-fill. Direct replacement deposits are also known as "red ores" due to their high content of Fe-(hydr)oxides and wall rock-replacement deposits are known as "white ores" and consist of hydrozincite, smithsonite, and minor Fe-(hydr)oxides. The two main host rock types of SNSZ deposits are carbonate and silicate rocks, which in fact control the mineralogy of the ores, with smithsonite, hydrozincite and hemimorphite associated with the carbonate rocks and with sauconite, hemimorphite, scholzite and tarbuttite associated with silicate rocks. However, the most common host rock type is carbonates in which the formation of supergene can be subdivided into a sulphide oxidation stage and in a geochemically and mineralogically post-oxidation stage. The SNSZ deposits are formed via oxidation by meteoric water, dissolution of primary sulphides, the mobilization and transport of Zn in acid solution and reprecipitation as secondary, non-sulphide zinc ore. Oxidation and fractionation, subsurface dissolution and mechanical erosion are the most important parameters for the formation and conservation of SNSZ in local-scale, while tectonic setting, crustal uplift and (paleo-)climate are the most important in regional-scale. Preservation of supergene Zn-Pb non-sulfide deposits is better under hyperarid conditions and even better when protected by cover, preferably of dry, non-reactive sediments. Finally, the supergene non-sulfide deposits are distinguished in the typical / characteristic "Calamines" which includes the Lavrio deposits, in the peculiar "Calamines" an illustrative example of which is Angouran, Iran and in the "Others" to which the Skorpion deposit (Namibia) belongs.

Πλήρες Κείμενο:

PDF

Αναφορές


Aide, M.T., and Aide, C. (2012) Rare earth elements: their importance in understanding soil genesis. ISRN Soil Science 2012.

Aoudjit, H., Robert, M., Elsass, F., Curmi, P. (1995) Detailed study of smectite genesis in granitic saprolites by analytical electron microscopy. Clay Minerals, 30, 135-148.

Appelo, C.A.J., Postma, D. (2005) Geochemistry, Groundwater and Pollution. Balkema, Amsterdam. 536 pp.

Arfè, G. (2018) Genesis of supergene nonsulfide zinc minerallizations in the Bongará (Peru) and Skorpion-Rosh Pinah (Namibia) areas, 266 p. Ph.D. thesis, Università Federico II, Napoli Italy.

Arfè, G., Mondillo, N., Boni, M., Balassone, G., Joachimski, M., Mormone, A., Di Palma, T. (2017b) The karst-hosted Mina Grande nonsulfide zinc deposit, Bongará district (Amazonas region, Peru). Economic Geology, 112, 1089-1110.

Arfè, G., Mondillo, N., Boni, M., Joachimski, M., Balassone, G., Mormone, A., Santoro L., Castro Medrano E. The Cristal Zn prospect (Amazonas region, Northern Peru). Part II: An example of supergene zinc enrichments in tropical areas. Ore Geology Reviews, (In press).

Bennetts, D.A., Webb, J.A., Stone, D.J.M., Hill, D.M. (2006) Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. Journal of Hydrology, 323, 178-192.

Boni, M. and Large, D. (2003) Nonsulfide zinc mineralization in Europe: An overview. Econ. Geol., 98, 715– 729.

Boni, M., Terracciano, R., Evans, N., Laukamp, C., Schneider, J. and Bechstädt, T. (2007) Genesis of vanadium ores in the Otavi Mountainland (Namibia). Economic Geology, 102, 441-469.

Boni, M., Gilg, H.A., Balassone, G., Schneider, J., Allen, C.R., Moore, F. (2007a) Hypogene Zn carbonate ores in the Angouran deposit, NW Iran. Miner. Depos. 42, 799–820.

Boni, M., and Mondillo, N. (2015) The "Calamines" and the "Others": the great family of supergene nonsulfide zinc ores. Ore Geology Reviews, 67, 208-233.

Borchardt, G. (1989) Smectites: Madison, USA, Soil Science Society of America Special Publication, 1, 675-727.

Borg, G., Kärner, K., Buxton, M., Armstrong, R., Merwe, S.W. (2003) Geology of the Skorpion supergene Zn deposit, southern Namibia. Economic Geology, 98, 749-771.

Borg G. (2005) Geological and economical significance of supergene nonsulphide zinc deposits in Iran and their exploration potential. In: Geological Survey of Iran (ed) Mining and Sustainable Development. 20th World Mining Congress, Tehran, Iran, 385-390.

Borg, G. (2009) The influence of fault structures on the genesis of supergene zinc deposits. Society of Economic Geologists, Special Publication 14, 121-132.

Borg, G. (2015) A Review of Supergene Nonnon- Zinc (SNSZ) Deposits - the 2014 Update, in Archibald S.M. and Piercey S.J. (Eds.). Current Perspectives of Zinc Deposits. Irish Association for Economic Geology, Dublin, 123-147.

Châvez, W. X. Jr. (2000) Supergene oxidation of copper deposits: Zoning and distribution of copper oxide minerals. Soc. Econ. Geol. Newsl., 41, 1, 10– 21.

Choulet, F., Charles, N., Barbanson, L., Branquet, Y., Sizaret, S., Ennaciri, A., Badra, L., Chen,Y., (2013) Non-sulfide zinc deposits of the Moroccan High Atlas: multi-scale characterization and origin. Ore Geol. Rev. 56, 115–140.

Coppola, V., Boni, M., Gilg, H.A., Balassone, G., Dejonghe, L. (2008) The “calamine” nonsulfide Zn-Pb deposits of Belgium: Petrographical, mineralogical and geochemical characterization. Ore Geology Reviews, 33, 187-210.

Daliran F, Borg G. (2003) A preliminary appraisal of the non-sulphide zinc deposit of Angouran, North- West Iran. In: Eliopoulos, D.G. et al. (eds.) Mineral Exploration and Sustainable Development, Vol. 1, 65-68, Millpress, Rotterdam.

Daliran F, Borg G, Armstrong R, Walther J, Vennemann T, Friese K, Sadeghi M, Woodhead J. D. (2009) Nonsulphide Zinc Deposits, Iran – The Hypogene Emplacement and Supergene Modification History of the Angouran Zinc Deposit, NW-Iran. Berichte zur Lagerstätten- und Rohstoffforschung, 57, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, 75 p.

Domènech, C., De Pablo, J., Ayora, C. (2002) Oxidative dissolution of pyritic sludge from the Aznalcóllar mine (SW Spain). Chemical Geology 190, 339–353.

Dzombak D A, Morel F M M (1990) Surface Complexation Modeling, Hydrous Ferric Oxide. 393 p., Wiley & Sons, New York.

Emmons, S.F. (1901) The secondary enrichment of ore-deposits. Transactions of the American Institute of Mining and Metallurgical Engineers, 30, 177-216.

Galán, E. (2006) Genesis of clay minerals, in Bergaya, F., Theng, B.K.G., Lagaly, G., (Eds.). Developments in clay science: handbook of clay science. Elsevier, Oxford, 1, 1129-1162.

Gerrard, A.J. (1994) Weathering of granitic rocks: Environment and clay mineral formation, in Robinson, D.A. and Williams, R.B.G., (Eds.). Rock weathering and landform evolution. John Wiley & Sons, 3-20.

Ghazban, F., McNutt, R.H., Schwarcz, H.P. (1994) Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west central Iran. Economic Geology, 89, 1262-1278.

Gilg HA, Krüger Y, Stoller P, Frenz M, Boni M (2007) Geothermometry of oxidized Zn-Pb ores: oxygen isotope systematics and a new femto-second laser technique on monophase fluid inclusions. Geochim. Cosmochim. Acta 71, Suppl.1, A324 (abstract).

Gilg H A, Boni M, Hochleitner R, Struck U (2008) Stable isotope geochemistry of carbonate minerals in supergene oxidation zones of Pb-Zn deposits. Ore Geol. Rev., 33, 117-133.

Gnoinski, J. (2007) Skorpion Zinc: optimization and innovation. J. S. Afr. Inst. Min. Metall. 107, 657–662.

Goyne, K.W., Brantley, S.L., Chorover, J. (2010) Rare earth element release from phosphate minerals in the presence of organic acids. Chemical Geology, 278 (1), 1-14.

Grodner M (2010) The Hakkari zinc oxide project, Turkey. Abstract Volume Zinc 2010. Irish Association for Economic Geology, 23-26.

Harder, H. (1977) Clay mineral formation under lateritic weathering conditions. Clay Minerals, 12, 169-180.

Herbert, R.B. (1999) Sulphide oxidation in mine waste deposits, a review with emphasis on dysoxic weathering.Mitigation of the environmental impact from mining waste (MiMi). MiMi Print, Luleå, Sweden.

Heyl A.V, and Bozion, C.N. (1962) Oxidized zinc deposits of the United States, Part 1. General Geology: US Geological Survey Bulletin, 1135A, 52 p.

Higashi, S., Miki, K., Komarneni, S. (2002) Hydrothermal synthesis of Zn-smectite. Clays and Clay Minerals, 50, 299-305.

Hitzman, M.W., Reynolds, N.A., Sangster, D.F., Allen, C.R., Carman, C.E. (2003) Classification, genesis, and exploration guides for nonsulfide Zinc deposits. Economic Geology, 98, 685-714.

Houtum-Schindler A (1881) Neue Angaben über die Mineralreichthümer Persiens und über die Gegend westlich von Zendjan. Jb Kaiserl. Kgl. Geol. Reichsanstalt, 31,169–190.

Imasuen, O.I., Tazaki, K., Fyfe, W.S., Kohyama, N. (1989) Experimental transformations of kaolinite to smectite: Applied Clay Sciences, 4. 27-41.

Kärner, K. (2006) The metallogenesis of the Skorpion Non-sulphide Zinc Deposit, Namibia. Unpublished Ph.D. Thesis, Martin-Luther-Universität Halle-Wittenberg, Germany, 133 p.

Katerinopoulos A, Zissimopoulou E (1994) Minerals of the Lavrion mines. The Greek Association of Mineral and Fossil Collectors. Athens: 304

Katerinopoulos A., Solomos C., Voudouris P. (2005) Lavrion smithsonites: A mineralogical and mineral chemical study of their coloration. In: Mineral Deposit Research: Meeting the Global Challenge. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27946-6_251

Keller, W.D. (1970) Environmental aspects of clay minerals. Journal of Sedimentary Petrology, 40, 798-813.

Kelly, W.C. (1958) Topical study of lead-zinc gossans: State Bureau of Mines and Mineral Resources. New Mexico Institute of Mining and Metallurgy Bulletin 46, 80 p.

Kloprogge, T., Komarneni, S., Amonette, J. (1999) Synthesis of smectite clay minerals: A critical review. Clays and Clay Minerals, 47, 529-554.

Large, D. (2001) The geology of non-sulphide zinc deposits - An overview. Erzmetall, 54, 264-274.

Lindgren, W. (1913) Ore deposits. 1st edition. McGraw-Hill, 883 p.

Maghfouri, S., Hosseinzadeh, M. R., Rajabi, A., & Choulet, F. (2018). A review of major non-sulfide zinc deposits in Iran. Geoscience Frontiers, 9(1), 249-272.

Mann, A. W. and Deutscher, R. L. (1980) Solution geochemistry of lead and zinc in water containing carbonate, sulphate and chloride ions. Chem. Geol., 29, 293– 311.

Mondillo, N., Boni, M., Balassone, G., Joachimski, M., Mormone, A. (2014a) The Jabali Nonsulfide Zn-Pb-Ag Deposit, Western Yemen. Ore Geology Reviews, 61, 248-267.

Mondillo, N., Boni, M., Balassone, G., Villa I.M. (2014b) The Yanque Prospect (Peru): From Polymetallic Zn-Pb Mineralization to a Nonsulfide Deposit. Economic Geology, 109, 1735-1762.

Montario, M. J. (2006) Thermochronological evidence for Neogene incision of the Rio Pativilca Canyon, northern Peru. M.Sc. thesis, University of Albany, State University of New York, 155 p.

Nagao, S., Rao, R., Killey, R., Young, J. (1998) Migration behavior of eu (III) in sandy soil in the presence of dissolved organic materials. Radiochimica Acta, 82 (Supplement), 205-212.

Palmer, A.N., Palmer, M.V. (1995) Geochemistry of Capillary Seepage in Mammoth Cave. Proceedings of the 4th Mammoth Cave Science Conference, Mammoth Cave, KY, pp. 119–133.

Pascua, C.S., Ohnuma, M., Matsushita, Y., Tamura, K., Yamada, H., Cuadros, J., Ye, J. (2010) Synthesis of monodisperse Zn-smectite. Applied Clay Science, 48, 55-59.

Paradis, S., and Simandl. G.J. (2010) Carbonate-hosted, Nonsulphide Zn-Pb (supergene) Mineral Deposit Profile B09, in Geological Fieldwork 2010, British Columbia Geological Survey, Paper 2011-1, 189-194.

Penrose, R.A.F. (1894) The superficial alteration of ore deposits. The Journal of Geology, 30, 288-317.

Petit, S., Righi, D., Decarreau, A. (2008) Transformation of synthetic Zn-stevensite to Zn-talc induced by the Hofmann-Klemen effect. Clays and Clay Minerals, 56, 645-654.

Pourret, O., Davranche, M., Gruau, G., Dia, A. (2007) Competition between humic acid and carbonates for rare earth elements complexation. Journal of colloid and interface science, 305 (1), 25-31.

Reichert J (2007) A metallogenetic model for carbonate-hosted non-sulphide zinc deposits based on observations of Mehdi Abad and Irankuh, Central and Southwestern Iran. PhD-thesis Martin- Luther-Universität Halle-Wittenberg 152 p. - online access: http://sundoc. bibliothek.uni- halle.de/diss-online/07/07H099/index.htm.

Reichert J (2009) A Geochemical Model of Supergene Carbonate-Hosted Nonsulfide Zinc Deposits. Society of Economic Geologists Spec. Publ. No 14, 69-76.

Reichert J, Borg G (2008) Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. Ore Geol. Rev., 33, 134-151.

Reynolds N A, Chisnall T W, Kaewsang K, Keesaneyabutr C, Taksavasu, T (2003) The Padaeng Supergene Nonsulfide Zinc Deposit, Mae Sod, Thailand. Econ. Geol., 98, 773 - 785.

Saaltink, M.W., Domènech, C., Ayora, C., Carrera, J. (2002) Modelling the oxidation of sulphides in an unsaturated soil. In: Younger, P., Robins, N.S. (Eds.), Mine Water Hydrogeology and Geochemistry. Special Publication, vol. 198. Geological Society, London, pp. 187–204.

Sangameshwar S R, Barnes H L (1983) Supergene processes in zinc-lead-silver sulfide ores in carbonate rocks. Econ. Geol. 78, 1379-1397.

Santana, I.V., Wall, F., Botelho, N.F. (2015) Occurrence and behaviour of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada granite, Goiás/Tocantins State, Brazil: potential for REE deposits. Journal of Geochemical Exploration, 155, 1-13.

Scheffer, F., Schachtschabel, P. (2002) Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag, Heidelberg. 494 pp.

Sherman, D.M. (2001) Weathering reactions and soil-groundwater chemistry. Environmental Geochemistry. University of Bristol, Unpubl. Lecture Notes 2001/2002, 11 p.

Schippers, A. (2003) Long-term anaerobic microbial processes in remediated mine tailings. Mitigation of the environmental impact from mining waste (MiMi). MiMi Print, Luleå, Sweden.

Sillitoe, R. H. (2005) Supergene oxidized and enriched porphyry copper and related deposits. In J. W Hedenquist., J. F. H. Thompson, R. J. GoldFarb and J. P. Richards (eds.), Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Littleton, 723– 768.

Singer, A. (1979) Palygorskite in sediments: Detrital, diagenetic and neoformed. A critical review. Geologische Rundschau, 68, 996-1008.

Skarpelis, N. (2002) Geodynamics and evolution of the Miocene mineralization in the Cycladic–Pelagonian Belt, Hellenides. Bull. Geol. Soc. Greece, 34, 6, 2191– 2206.

Skarpelis, N., & Argyraki, A. (2009). Geology and origin of supergene ore at the Lavrion Pb‐Ag‐Zn deposit, Attica, Greece. Resource geology, 59(1), 1-14.

Taylor, G.R., Day, M., Meredith, K. (2012) Soil degradation due to the destruction of crystalline kaolinite and the formation of X-ray amorphous clays accompanying ephemeral saline groundwater discharge. Australian Journal of Earth Sciences, 59, 135-152.

Thornber, M.R. (1975a) Supergene alteration of sulphides. I. A chemical model based on massive nickel deposits at Kambalda, Western Australia. Chemical Geology, 15, 1-14.

Thornber, M.R. (1975b) Supergene alteration of sulphides. II. A chemical study of the Kambalda nickel deposits. Chemical Geology, 15, 116-144.

Tiller, K.G., and Pickering, J.G. (1974) The synthesis of zinc silicates at 20°C and atmospheric pressure. Clays and Clay Minerals, 22, 409-416.

Valsami-Jones, E., Ragnarsdottir, K.V., Putnis, A., Bosbach, D., Kemp, A.J., Cressey, G. (1998) The dissolution of apatite in the presence of aqueous metal

cations at pH 2-7. Chemical Geology, 151, 215-233.

Vella, H. (2013) Turning dust into a commodity: ZincOx's Andrew Woollett talks zinc recycling. Mining-technology.com.

Vicente-Hernández, J., Vicente, M.A., Robert, M., Goodman, B.A. (1983) Evolution des biotites en function des conditions d’oxydo-reduction du milieu. Clay Minerals, 18, 267-275.

Williamson, M.A., Rimstidt, J.D. (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica et Cosmochimica Acta 58, 5443–5454.

Wilson, M.J. (1987) Soil smectites and related interstratified minerals: Recent developments, in Schultz, L.G., Van Olphen, H., Mumpton, F.A., (Eds.). Proceedings of the International Clay Conference, Denver, 1985. Bloomington, Indiana. The Clay Minerals Society, 167-173.

Woodward, J.C., Macklin, M.G., Lewin, J. (1994) Pedogenic weathering and relative-age dating of Quaternary alluvial sediments in the Pindus Mountains of northwest Greece, in Robinson, D.A. and Williams, R.B.G., (Eds.). Rock weathering and landform evolution. John Wiley & Sons, 259-283.

Yigit O (2009) Mineral deposits of Turkey in Relation to Tethyan Metallogeny: Implications for future mineral exploration. Econ. Geol., 104, 19-51.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.