[Εξώφυλλο]

Γένεση λοβόμορφων, Αλπικού τύπου κοιτασμάτων χρωμίτη σε οφιολιθικά συμπλέγματα = The genesis of podiform, Alpine type chromite deposits in ophiolite complexes.

Άρτεμη Γεώργιος Αντωνίου

Περίληψη


Η παρούσα διπλωματική πτυχιακή εργασία αναφέρεται στην γένεση λοβόμορφων, Αλπικού τύπου κοιτασμάτων χρωμίτη των οφιολιθικών συμπλεγμάτων. Τα λοβόμορφα κοιτάσματα εμφανίζονται σε περιδοτίτες Αλπικού τύπου, έχοντας μορφή θυλάκων περιορισμένης έκτασης, ενώ οι οφιόλιθοι αποτελούν τμήματα της ωκεάνιας λιθόσφαιρας που σχηματίζονται πάνω από ζώνες υποβύθισης (SSZ) σε θέση οπισθοτόξιας λεκάνης ή σε περιβάλλον διάνοιξης ωκεάνιας λεκάνης και τοποθετούνται πάνω στα ηπειρωτικά περιθώρια. Τα μανδυακά τμήματα οφιολίθων φιλοξενούν την πλειοψηφία των χρωμιτικών κοιτασμάτων, τα οποία εμφανίζονται περιτυλιγμένα από δουνιτικά σώματα μέσα σε τεκτονισμένο χαρτζβουργίτη και έχουν σχηματιστεί από δυναμική κρυστάλλωση διερχόμενου μάγματος μέσα σε περιδοτίτη - χαρτζβουργίτη ή από αλληλεπίδραση μεταξύ τήγματος και πετρώματος, όπου μέσω διάχυσης αντιδρούν το πέτρωμα ξενιστής με το ανερχόμενο βασαλτικό μάγμα. Μερικά από τα πιο σημαντικά κοιτάσματα χρωμίτη παγκοσμίως που συνδέονται με οφιολιθικά συμπλέγματα βρίσκονται στον Βούρινο που φιλοξενούσε το μεγαλύτερο ορυχείο εξόρυξης χρωμίτη στην Ευρώπη, στο Ομάν που απαρτίζεται από τον ρηχότερο στρωματογραφικά και πιο καλοδιατηρημένο οφιόλιθο περιέχοντας μεταλλεύματα χρωμίτη και τέλος στην Τρόοδο Κύπρου, όπου η μελέτη της γεωχημείας και κυρίως της περιεκτικότητας σε  PGE παρέχει σημαντικές πληροφορίες για την γένεση των κοιτασμάτων.

The present diploma thesis refers to the genesis of podiform, Alpine type chromite deposits in ophiolite complexes. The podiform deposits occur in Alpine type peridotites having a pod form with limited extend, while the ophiolites are part of the oceanic lithosphere that form above supra-subductions zones (SSZ) in barc-arc basin position or in ocean basin spreading environments, and are emplaced in continental margins. The manle sections host the majority of chromite deposits, which are surrounded by dunite bodies in tectonite harzburgite and have formed by dymanic crystallization of the incoming magma, inside harzburgite - dunite canals or by interaction of melt and rock, where the host rock reacts with the incoming basaltic magma through percolation. Some of the most important chromite deposits which are related to ophiolite complexes, worldwide, are located in Vourinos, where the largest chromite mine in Europe has operated, in Oman which consists of the most shallowest stratigraphy and well maintained ophiolite with chorimite ores. Finally in Cyprus, where the study of geochemistry and mostly of the PGE content gave important information about the genesis of chorimte deposits.

Πλήρες Κείμενο:

PDF

Αναφορές


Εμμανουηλίδης, Χ. (2019). Μεταλογέννεση μεταξύ Βέροιας και Ναούσης περιοχής (Doctoral dissertation, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Σχολή Θετικών Επιστημών. Τμήμα Γεωλογίας. Τομέας Ορυκτολογίας, Πετρολογίας, Κοιτασματολογίας).

AndalES, AraiS, YumulGP (2005) Complete mantle section of as low-spreading ridge-derived ophiolite: an example from the Isabela Ophiolite in the Philippines. Island Arc 14: 272–294

Arai, S., Uesugi, J., & Ahmed, A. H. (2004). Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration. Contributions to Mineralogy and Petrology, 147(2), 145-154.

Barnes, S.J., Roeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 42 (12), 2279–2302.

Batanova, V.G., Sobolev, A.V., 2000. Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology 28, 55 – 58.

Borg, L.E., Brandon, A.D., Clynne, M.A., Walker, R.J., 2000. Re – Os isotopic systematics of primitive lavas from the Lassen region of the Cascade arc, California. Earth Planet. Sci. Lett. 177, 301 – 317.

Boudier F, Godard M, Armbruster C (2000) Significance of gabbronorite occurrence in the crustal section of the Semail ophiolite. Mar Geophys Res 21: 307–326

Brandon, A.D., Becker, H., Carlson, R.W., Shirey, S.B., 1999. Isotopic constraints on time scales and mechanisms of slab material transport in the mantle wedge: evidence from the Simcoe mantle xenoliths, Washington, USA. Chem. Geol. 160, 387 – 408.

Büchl, A., Brügmann, G., & Batanova, V. G. (2004). Formation of podiform chromitite deposits: implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chemical Geology, 208(1-4), 217-232.

Burgath, K.P., 1983. Untersuchungen griechischer Chromitvorkommen-Ein Beltrag zur Petrologie und Prospektion podi-former Vererzungen. Geol. Jahrb., D 60: 67-175.

Coleman, R.G., 2000, Prospecting for ophiolites along the California continental margin, inDilek, Y., Moores, E.M., Elthon, D., and Nicolas, A., eds., Ophiolites and oceanic crust: New insights from field studies and the Ocean Drilling Program: Boulder, Colorado, Geological Society of America

Special Paper 349, p. 351–364.

Crocket, J.H., 2002. The geology, geochemistry, mineralogy and mineral benefication of platinum-group elements. In: Cabri, L.J. (Ed.), Canadian Institute of Mining, Metallurgy and Petroleum, vol. 54, pp. 177 – 210.

Dilek, Y., Moores, E.M., Elthon, D., and Nicolas, A., editors, 2000, Ophiolites and oceanic crust: New insights from field studies and the Ocean Drilling Program: Boulder, Colorado, Geological Society of America Special Paper 349, 552 p.

Economou-Eliopoulos, M. (1996). Platinum-group element distribution in chromite ores from ophiolite complexes: implications for their exploration. Ore Geology Reviews, 11(6), 363-381.

González-Jiménez, J.M., Griffin, W.L., Proenza, J.A., Gervilla, F., O'Reilly, S.Y., Akbulut, M., Arai, S., 2014b. Chromitites in ophiolites: how, where, when, why? Part II. The crystallization of chromitites. Lithos 189, 140–158.

Grammatikopoulos, T.A., Kapsiotis, A., Tsikouras, B., Hatzipanagiotou, K., Zaccarini, F., Garuti, G., 2011. Spinel composition, PGE geochemistry and mineralogy of the chromitites from the Vourinos ophiolite complex, northwestern Greece. Canad. Min. 49 (6), 1571–1598

Grieco, G., Bussolesi, M., Tzamos, E., Rassios, A. E., & Kapsiotis, A. (2018). Processes of primary and re-equilibration mineralization affecting chromitite ore geochemistry within the Vourinos ultramafic sequence, Vourinos ophiolite (West Macedonia, Greece). Ore Geology Reviews, 95, 537-551.

Higoumenakis, A., Kyritopoulos, P. and Maltzaris, F., 1977. Exploration for chromite deposits in the ophiolite mass south of Trikala. IGME (Inst. Geol. Miner. Explor.), Athens, Intern. Rep., 30 pp.

Ishikawa T, Nagaishi K, Umino S (2002) Boninitic volcanism in the Oman ophiolite: implications for thermal conditions during transition from spreading ridge to arc. Geology 30: 899–902

Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 42 (4), 655–671.

Kapsiotis, A., 2009. PGM and chromite mineralization associated with the petrogenesis of the Vourinos and Pindos Ophiolite Complexes, northwestern Greece. Unpublished Ph. D. thesis, University of Patras, Patras, Greece, 1-891.

Kapsiotis, A. N. (2013). Origin of mantle peridotites from the Vourinos Ophiolite Complex, Greece, as deduced from Cr-spinel morphological and chemical variations. Journal of Geosciences, 58(3), 217-231.

Keays, R.R., 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34, 1 – 18.

Kelemen, P.B., Hirth, G., Shimizu, N., Spiegelman, M., Dick, H.J.B., 1997. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos. Trans. R. Soc. Lond., A 355, 283 – 318.

Konstantopoulou, G., Economou-Eliopoulos, M., 1991. Distribution of platinum-group elements and gold within the Vourinos chromitite ores. Greece. Econ. Geol. 86 (8), 1672–1682.

Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Planet Sci Lett 203: 235–243

Merlini, A., Grieco, G., Ottolini, L., Diella, V., 2011. Probe and SIMS investigation of clinopyroxene inclusions in chromites from the Troodos chromitites (Cyprus): Implications for dunite–chromitite genesis. Ore. Geol. Rev. 41 (1), 22–34.

Miyashiro, A., 1973, The Troodos complex was probably formed in an island arc: Earth and Planetary Science Letters, v. 19, p. 218–224.

Moores, E.M., 1982, Origin and emplacement of ophiolites: Reviews of Geophysics and Space Physics, v. 20, p. 735–760.

Moores, E.M., Kellogg, L.H., and Dilek, Y., 2000, Tethyan ophiolites, mantle convection, and tectonic “historical contingency”: A resolution of the “ophiolite conundrum,” in Dilek, Y., Moores, E.M., Elthon, D., and Nicolas, A., eds., Ophiolites and oceanic crust: New insights from field studies and the Ocean Drilling Program: Boulder, Colorado, Geological Society of America Special Paper 349, p. 3–12.

Nicolas A, Al Azri H (1991) Chromite-rich and chromite-poor ophiolites: the Oman case. In: Peters T et al. (eds) Ophiolite genesis and evolution of the oceanic lithosphere, Oman. Kluwer, Dordrecht, pp 261–274.

O’Driscoll B, Day JMD, Walker RJ, Daly S, McDonough W, Piccoli PM (2012) Chemical heterogeneity in the upper mantle recorded by peridotites and chromitites from the Shetland Ophiolite Complex, Scotland. Earth Planet Sci Lett 333–334: 226–237.

Page, N.J., Talkington, R.W., 1984. Palladium, platinum, rhodium, ruthenium, and iridium in peridotites and chromitites from ophiolite complexes in Newfoundland. Can. Mineral. 22, 137 – 149.

Panayiotou, A., ed., 1980, Ophiolites: Proceedings International Ophiolite Symposium Cyprus 1979: Nicosia, Cyprus, Geological Survey Department, 781 p.

Rampone, E., and Piccardo, G.B., 2000, The ophiolite-oceanic lithosphere analogue: New insights from the Northern Apennines (Italy), in Dilek, Y.,

Moores, E.M., Elthon, D., and Nicolas, A., eds., Ophiolites and oceanic crust: New insights from field studies and the Ocean Drilling Program: Boulder,

Colorado, Geological Society of America Special Paper 349, p. 21–34.

Rassios, A., 2014. Cooperative development for Greek chromite reserves: Initial Review. Inst. Geol. Min. Expl, Athens Greece, pp. 27.

Rassios, A. E., & Dilek, Y. (2009). Rotational deformation in the Jurassic Mesohellenic ophiolites, Greece, and its tectonic significance. Lithos, 108(1-4), 207-223.

Rassios, A., Kostopoulos, D., 1990. The geochemistry of dunite and its relation to the position of chromitites in the Vourinos ophiolite complex, Greece. e. In: Malpas, J., Moores, E., Panayiotou, A., Xenophontas, C. (Eds.), Ophiolites: Oceanic Crustal Analogues; Proceedings of the Symposium “Troodos ‘87”, Nicosia, Cyprus. Geological Survey Department, pp. 593–604.

Rassios, A.H., Moores, E.M., 2006. Heterogeneous mantle complex, crustal processes, and obduction kinematics in a unified Pindos-Vourinos ophiolitic slab (northern Greece). Geological Soc., London, Spec. Publ. 260 (1), 237–266.

Roeder, P.L., 1994. Chromite; from the fiery rain of chondrules to the Kilauea Iki lava lake. Can. Min. 32 (4), 729–746.

Rollinson, H., 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contrib. Min. Petrol. 156 (3), 273–288.

Suhr, G., 1999. Melt migration under oceanic ridges: interferences A. Bu¨chl et al. / Chemical Geology 208 (2004) 217–232 231 from reactive transport modeling of upper mantle hosted dunites. J. Petrol. 40, 575 – 599.

Tzamos, E., Kapsiotis, A., Filippidis, A., Koroneos, A., Grieco, G., Rassios, A.E., Godelitsas, A., 2017. Metallogeny of the Chrome Ores of the Xerolivado-Skoumtsa Mine, Vourinos Ophiolite, Greece: implications on the genesis of IPGE-bearing high-Cr chromitites within a heterogeneously depleted mantle section. Ore Geol. Rev. 90, 226–242.

Uysal, I., Tarkian, M., Sadiklar, M.B., Zaccarini, F., Meisel, T., Garuti, G., Heidrich, S., 2009. Petrology of Al-and Cr-rich ophiolitic chromitites from the Muğla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contrib. Min. Petrol. 158 (5), 659–674.

Varne, R., Brown, A.V., and Falloon, T., 2000, Macquarie Island: Its geology, structural history, and the timing and tectonic setting of its N-MORB to E-MORB magmatism, inDilek, Y., Moores, E.M., Elthon, D., and Nicolas, A., eds., Ophiolites and oceanic crust: New insights from field studies and the Ocean Drilling Program, Geological Society of America Special Paper 349, p. 301–320.

Walker, R.J., Horan, M.F., Morgan, J.W., Becker, H., Grossman, J.N., Rubin, A.E., 2002b. Comparative 187Re – 187Os systematics of chondrites: implications regarding early solar system processes. Geochim. Cosmochim. Acta 66, 4187 – 4201.

Wakabayashi, J., and Dilek, Y., 2000, Spatial and temporal relationships between ophiolites and their metamorphic soles: A test of models of forearc ophiolite genesis inDilek, Y., Moores, E.M., Elthon, D., and Nicolas, A., eds., Ophiolites and oceanic crust: New insights from fi eld studies and the

Ocean Drilling Program: Boulder, Colorado, Geological Society of America Special Paper 349, p. 53–64.

Woodland, S.J., Pearson, D.G., Thirlwall, M.F., 2002. A platinum group element and Re –Os isotope investigation of siderophile element recycling in subduction zones: comparison of Grenada, Lesser Antilles arc, and the Izu –Bonin arc. J. Petrol. 43 (1), 171 – 198.

Zaccarini, F., Garuti, G., Fernández, J.A.P., Campos, L., Thalhammer, O.A., Aiglsperger, T., Lewis, J.F., 2011. Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (Costa Rica): geodynamic implications. Geologica Acta 9 (3).

Zhou M.-F., Robinson P. T. and Bai W.-J. (1994) Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineral. Depusita 29, 98-10 1

Zhou, M.-F., Sun, M., Keays, R.R., Kerrich, R.W., 1998. Controls of platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochim. Cosmochim. Acta 62, 677 – 688.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.