Εξώφυλλο

Climate responses due to anthropogenic aerosols radiative forcing = Κλιματική απόκριση λόγω εξαναγκασμού του ισοζυγίου ακτινοβολίας από ανθρωπογενή αεροζόλ.

Alkiviadis Theologos Kalisoras

Περίληψη


In this study, the rapid climate responses caused by anthropogenic aerosol radiative forcing are examined. Using 30-year simulations with fixed sea surface temperatures (SSTs) and sea ice
cover from five climate models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6), the effective radiative forcing (ERF) and surface air temperature response to anthropogenic aerosols are estimated on an annual and seasonal basis The fixed-SST ERF, which allows for tropospheric, stratospheric and some land surface properties to adjust, is calculated for black carbon, organic carbon, and sulphate aerosols following the method of Ghan (2013). Aerosols mainly scatter incoming solar radiation and serve as cloud condensation nuclei, thus increasing the cloud albedo and lifetime, resulting in more solar radiation being reflected back to space. Therefore, they induce a negative radiative forcing at the top of the atmosphere (TOA) and cool the Earth’s surface. The negative TOA forcing and cooling is predominantly observed in the Northern hemisphere (NH), especially over the emission sources, such as the industrialized areas of East Asia, the continental South Asia, Europe and North America. Sulphate aerosols strongly scatter incoming shortwave solar radiation, causing a negative ERF and a near-surface cooling, in general, and over its emission sources, in particular. Organic carbon mainly scatters the incoming solar radiation, exerting a negative ERF and has a cooling effect on the climate system, with a spatial pattern similar to sulphates, but weaker in magnitude. On the other hand, black carbon aerosols strongly absorb solar radiation, directly and indirectly, causing a general near-surface warming. On a seasonal basis, both the magnitude and spatial patterns of both the ERF and surface air temperature responses vary from the mean annual state, mainly over the NH during the boreal winter and the boreal summer. There are also differences in the magnitude and the spatial patterns of ERF, and the fast response or rapid adjustments of temperature among models, deriving from differences in their aerosol chemistry, atmospheric chemistry and processes, and land surface properties parameterization schemes.

Στην παρούσα εργασία, μελετώνται οι ταχείες κλιματικές αποκρίσεις που προκαλούνται από τις μεταβολές του ισοζυγίου ακτινοβολίας εξαιτίας των ανθρωπογενών αιωρούμενων σωματιδίων (ΑΣ). Χρησιμοποιώντας σετ 30-ετών προσομοιώσεων, στις οποίες οι θερμοκρασίες της θαλάσσιας επιφάνειας (ΘΘΕ) και ο θαλάσσιος πάγος διατηρούνται σταθερά, από πέντε κλιματικά μοντέλα που συμμετέχουν στην έκτη φάση του Coupled Model Intercomparison Project (CMIP6), εκτιμάται, σε ετήσιο και εποχικό επίπεδο, ο θερμικός εξαναγκασμός (ΘΕ) και οι αποκρίσεις της θερμοκρασίας του επιφανειακού αέρα που οφείλονται στα ανθρωπογενή ΑΣ. Ο ΘΕ με σταθερές ΘΘΕ, ο οποίος επιτρέπει την προσαρμογή των τροποσφαιρικών, στρατοσφαιρικών και κάποιων εδαφικών μεταβλητών, υπολογίζεται για τα ΑΣ του μαύρου άνθρακα, του οργανικού άνθρακα και για τα θειϊκά ΑΣ ακολουθώντας τη μέθοδο του Ghan (2013). Τα ΑΣ, κατά βάση, σκεδάζουν την εισερχόμενη
ηλιακή ακτινοβολία και λειτουργούν ως πυρήνες συμπύκνωσης νεφών, αυξάνοντας, τοιουτοτρόπως, την ανακλαστικότητα και το χρόνο ζωής των νεφών, με αποτέλεσμα την ανάκλαση μεγαλύτερης ποσότητας ηλιακής ακτινοβολίας πίσω στο διάστημα. Ως εκ τούτου, προκαλούν έναν αρνητικό εξαναγκασμό στην κορυφή της ατμόσφαιρας (ΚτΑ) και ψύχουν τη γήινη επιφάνεια. Ο αρνητικός εξαναγκασμός στην ΚτΑ και η ψύξη παρατηρούνται, κατά κύριο λόγο, στο Βόρειο ημισφαίριο (ΒΗ) και ιδιαιτέρως άνωθεν των πηγών εκπομπών, όπως οι βιομηχανοποιημένες περιοχές της Α. Ασίας, της ηπειρωτικής Ν. Ασίας, της Ευρώπης και της Β. Αμερικής. Τα θειϊκά ΑΣ σκεδάζουν ισχυρά την εισερχόμενη μικρού μήκους κύματος ηλιακή ακτινοβολία, προκαλώντας έναν αρνητικό εξαναγκασμό και ψύξη του επιφανειακού αέρα, ιδιαίτερα στις πηγές εκπομπών του. Τα σωματίδια του οργανικού άνθρακα κυρίως σκεδάζουν την εισερχόμενη ηλιακή ακτινοβολία, ασκώντας έναν αρνητικό εξαναγκασμό προκαλώντας ψύξη του κλιματικού συστήματος, με χωρική κατανομή παρόμοια με αυτή των θειϊκών ΑΣ, αλλά μικρότερης ισχύος. Αντιθέτως, τα ΑΣ του μαύρου άνθρακα απορροφούν ισχυρά την ηλιακή ακτινοβολία, άμεσα και έμμεσα, προκαλώντας μια γενική θέρμανση του επιφανειακού αέρα στο ΒΗ. Σε εποχική βάση, το μέγεθος και η χωρική κατανομή αμφότερων των ΘΕ και των αποκρίσεων της θερμοκρασίας του επιφανειακού αέρα διαφοροποιούνται από τη μέση ετήσια κατάσταση, κυρίως στο ΒΗ κατά το χειμώνα και το θέρος. Υπάρχουν, επίσης, διαφορές στην ισχύ και τα χωρικά μοτίβα του ΘΕ και των ταχέων θερμοκρασιακών αποκρίσεων μεταξύ των μοντέλων, οι οποίες προέρχονται από τις διαφορές στα σχήματα παραμετροποιήσεών τους για τη χημεία των ΑΣ, την ατμοσφαιρική χημεία και τις διαδικασίες της ατμόσφαιρας, καθώς και τις ιδιότητες της επιφάνειας του εδάφους.

 


Πλήρες Κείμενο:

PDF

Αναφορές


Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227.

Allen, R. J., Amiri-Farahani, A., Lamarque, J.-F. Smith, C., Shindell, D., Hassan, T., and Chung, C. E., 2019: Observationally constrained aerosol–cloud semi-direct effects, npj Clim. Atmos. Sci. 2, 16, https://doi.org/10.1038/s41612-019-0073-9.

Allen, R. J., and Sherwood, S. C., 2010: Aerosol-cloud semi-direct effect and land-sea temperature contrast in a GCM, Geophys. Res. Lett., 37, L07702, https://doi.org/10.1029/2010GL042759.

Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change, Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991.

Baker, L. H., Collins, W. J., Olivié, D. J. L., Cherian, R., Hodnebrog, Ø., Myhre, G., and Quaas, J., 2015: Climate responses to anthropogenic emissions of short-lived climate pollutants, Atmos. Chem. Phys., 15, 8201–8216, https://doi.org/10.5194/acp-15-8201-2015.

Bartlett, R.E., Bollasina, M.A., Booth, B.B.B., Dunstone, N. J., Marenco, F., Messori, G., and Bernie, D. J., 2018: Do differences in future sulfate emission pathways matter for near-term climate? A case study for the Asian monsoon, Clim Dyn 50, 1863–1880, https://doi.org/10.1007/s00382-017-3726-6.

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A.,

Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G., Mülmenstädt, J.,

Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O.,

Storelvmo, T., Toll, V., Winker, D., and Stevens, B., 2020: Bounding global aerosol radiative forcing of climate change, Reviews of Geophysics, 58, e2019RG000660, https://doi.org/10.1029/2019RG000660.

Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender, 2013: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171.

Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens and X.Y. Zhang, 2013: Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre, L. A., and Pierce, J. R., 2013: Large contribution of natural aerosols to uncertainty in indirect forcing, Nature 503, 67–71, https://doi.org/10.1038/nature12674.

Chand, D., Wood, R., Anderson, T. L., Satheesh, S. K., and Charlson, R. J., 2009: Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nature Geosci 2, 181–184, https://doi.org/10.1038/ngeo437.

Chen, W.‐T., Lee, Y. H., Adams, P. J., Nenes, A., and Seinfeld, J. H., 2010: Will black carbon mitigation dampen aerosol indirect forcing?, Geophys. Res. Lett., 37, L09801, https://doi.org/10.1029/2010GL042886.

Chung, E.-S. and Soden, B. J., 2015a: An assessment of direct radiative forcing, radiative adjustments, and radiative feedbacks in coupled ocean–atmosphere models, Journal of Climate, 28, 4152–4170, https://doi.org/10.1175/JCLI-D-14-00436.1.

Chung, E.-S. and Soden, B. J., 2015b: An assessment of methods for computing radiative forcing in climate models, Environ. Res. Lett. 10, 074004, https://doi.org/10.1088/1748-9326/10/7/074004.

Collins,W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J., 2017: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6, Geosci. Model Dev., 10, 585–607, https://doi.org/10.5194/gmd-10-585-2017.

Conley, A. J., Westervelt, D. M., Lamarque, J.-F., Fiore, A. M., Shindell, D., Correa, G., Faluvegi, G., and

Horowitz, L. W., 2018: Multimodel surface temperature responses to removal of U.S. sulfur dioxide emissions, Journal of Geophysical Research: Atmospheres, 123, 2773–2796, https://doi.org/10.1002/2017JD027411.

Cubasch, U., D. Wuebbles, D. Chen, M.C. Facchini, D. Frame, N. Mahowald, and J.-G. Winther, 2013: Introduction. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O., Pöschl, U., and Jaenicke, R., 2012: Primary biological aerosol particles in the atmosphere: a review, Tellus B: Chemical and Physical Meteorology, 64, https://doi.org/10.3402/tellusb.v64i0.15598.

Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A.,

Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonov, S., Paynter, D. J., Ploshay, J.,

Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, Y., and Zhao, M. , 2020: The GFDL Earth System Model version 4.1 (GFDL-ESM4.1): Overall coupled model description and simulation characteristics, Journal of Advances in Modeling Earth Systems, 12, e2019MS002015, https://doi.org/10.1029/2019ms002015.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E., 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.

Forster, P. M., Richardson, T., Maycock, A. C., Smith, C. J., Samset, B. H., Myhre, G., Andrews, T., Pincus, R., and Schulz, M., 2016: Recommendations for diagnosing effective radiative forcing from climate models for CMIP6, J. Geophys. Res.-Atmos.,121,12460–12475, https://doi.org/10.1002/2016JD025320.

Ghan, S. J., 2013: Technical Note: Estimating aerosol effects on cloud radiative forcing, Atmos. Chem. Phys., 13, 9971–9974, https://doi.org/10.5194/acp-13-9971-2013.

Ghan, S. J., Liu, X., Easter, R. C., Zaveri, R., Rasch, P. J., Yoon, J.-H., and Eaton, B., 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing, Journal of Climate, 25, 6461–6476, https://doi.org/10.1175/JCLI-D-11-00650.1.

Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D., 2004: A new method for diagnosing radiative forcing and climate sensitivity,

Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747.

Gu, Y., Liou, K.N., Jiang, J.H., Fu, R., Lu, S., Xue, Y., 2016: A GCM investigation of impact of aerosols on the precipitation in Amazon during the dry to wet transition, Clim Dyn 48, 2393–2404, https://doi.org/10.1007/s00382-016-3211-7.

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F.,

Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J., 2009: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos.

Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009.

Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, Ja., Perlwitz, Ju., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S., 2005: Efficacy of Climate Forcings, J. Geophys. Res., 110, D18104, https://doi.org/10.1029/2005JD005776.

Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y. Charabi, F.J. Dentener, E.J. Dlugokencky, D.R. Easterling, A. Kaplan, B.J. Soden, P.W. Thorne, M. Wild and P.M. Zhai, 2013: Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Haywood, J., and Boucher, O., 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Rev. Geophys., 38( 4), 513– 543, https://doi.org/10.1029/1999RG000078.

Held, I. M., and Soden, B. J., 2006: Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1.

Hodnebrog, Ø., Myhre, G., Forster, P. M., Sillmann, J., and Samset, B. H., 2016: Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa, Nature Communications 7, 11236, https://doi.org/10.1038/ncomms11236.

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q., 2018: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018.

Hoose, C., Kristjánsson, J. E., Iversen, T., Kirkevåg, A., Seland, Ø., and Gettelman, A., 2009: Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect, Geophys. Res. Lett., 36, L12807, https://doi.org/10.1029/2009GL038568.

Horowitz, L. W., Naik, V., Paulot, F., Ginoux, P. A., Dunne, J. P., Mao, J., Schnell, J., Chen, X., He, J., John, J. G., Lin, M., Lin, P., Malyshev, S., Paynter, D., Shevliakova, E., and Zhao, M., 2020: The GFDL Global Atmospheric Chemistry-Climate Model AM4.1: Model Description and Simulation Characteristics, Journal of Advances in Modeling Earth Systems, 12, e2019MS002032, https://doi.org/10.1029/2019MS002032.

Horowitz, L. W., Naik, V., Sentman, L., Paulot, F., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Zadeh, N. T., Wilson, C., Ginoux, P., He, J., John, J. G., Lin, M., Paynter, D. J, Ploshay, J., Zhang, A., Zeng, Y., 2018a: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 AerChemMIP piClim-control, Version 20180701, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8654.

Horowitz, L. W., Naik, V., Sentman, L., Paulot, F., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Zadeh, N. T.; Wilson, C., Ginoux, P., He, J., John, J. G.; Lin, M., Paynter, D. J, Ploshay, J., Zhang, A., Zeng, Y., 2018b: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 AerChemMIP piClim-aer, Version 20180701, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8651.

Horowitz, L. W., Naik, V., Sentman, L., Paulot, F., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Zadeh, N. T., Wilson, C., Ginoux, P., He, J., John, J. G., Lin, M., Paynter, D. J, Ploshay, J., Zhang, A., Zeng, Y., 2018c: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 AerChemMIP piClim-BC, Version 20180701, Earth System Grid Federation, https://doi.org/10.22033

/ESGF/CMIP6.8639.

Horowitz, L. W., Naik, V., Sentman, L., Paulot, F., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Zadeh, N. T., Wilson, C., Ginoux, P., He, J., John, J. G., Lin, M., Paynter, D. J, Ploshay, J., Zhang, A., Zeng, Y., 2018d: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 AerChemMIP piClim-OC, Version 20180701, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8647.

Horowitz, L. W., Naik, V., Sentman, L., Paulot, F., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Zadeh, N. T., Wilson, C., Ginoux, P., He, J., John, J. G., Lin, M., Paynter, D. J, Ploshay, J., Zhang, A., Zeng, Y., 2018e: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 AerChemMIP piClim-SO2, Version 20180701, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8648.

IPCC, 2013: Annex III: Glossary [Planton, S. (ed.)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R., 2012: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527–554, https://doi.org/10.5194/bg-9-527-2012.

Kasoar, M., Voulgarakis, A., Lamarque, J.-F., Shindell, D. T., Bellouin, N., Collins, W. J., Faluvegi, G., and Tsigaridis, K., 2016: Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models, Atmos. Chem. Phys., 16, 9785–9804, https://doi.org/10.5194/acp-16-9785-2016.

Kasoar, M., Shawki, D., and Voulgarakis, A., 2018: Similar spatial patterns of global climate response to aerosols from different regions, npj Clim Atmos Sci 1, 12 , https://doi.org/10.1038/s41612-018-0022-z.

Kawai, H., Yukimoto, S., Koshiro, T., Oshima, N., Tanaka, T., Yoshimura, H., and Nagasawa, R., 2019: Significant improvement of cloud representation in the global climate model MRI-ESM2, Geosci. Model Dev., 12, 2875–2897, https://doi.org/10.5194/gmd-12-2875-2019.

Kirkevåg, A., Grini, A., Olivié, D., Seland, Ø., Alterskjær, K., Hummel, M., Karset, I. H. H., Lewinschal, A., Liu, X., Makkonen, R., Bethke, I., Griesfeller, J., Schulz, M., and Iversen, T., 2018: A production-tagged aerosol module for Earth system models, OsloAero5.3 – extensions and updates for CAM5.3-Oslo, Geosci. Model Dev., 11, 3945–3982, https://doi.org/10.5194/gmd-11-3945-2018.

Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R.,

Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P., 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010.

Lewinschal, A., Ekman, A. M. L., Hansson, H.-C., Sand, M., Berntsen, T. K., and Langner, J., 2019: Local and remote temperature response of regional SO2 emissions, Atmos. Chem. Phys., 19, 2385–2403, https://doi.org/10.5194/acp-19-2385-2019.

Liu, L., Shawki, D., Voulgarakis, A., Kasoar, M., Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ø., Sillman, J., Aalbergsjø, S. G., Boucher, O., Faluvegi, G., Iversen, T., Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richadson, T., Shindell, D., and Takemura, T., 2018: A PDRMIP multimodel study on the impacts of regional aerosol forcings on global and regional precipitation, J. of Climate, 31, 4429–4447, https://doi.org/10.1175/JCLI-D-17-0439.1.

Lohmann, U. and Feichter, J., 2005: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005.

Lohmann, U. and Neubauer, D., 2018: The importance of mixed-phase and ice clouds for climate sensitivity in the global aerosol–climate model ECHAM6-HAM2, Atmos. Chem. Phys., 18, 8807–8828, https://doi.org/10.5194/acp-18-8807-2018.

Lohmann, U., Rotstayn, L., Storelvmo, T., Jones, A., Menon, S., Quaas, J., Ekman, A. M. L., Koch, D., and Ruedy, R., 2010: Total aerosol effect: radiative forcing or radiative flux perturbation?, Atmos. Chem. Phys., 10, 3235–3246, https://doi.org/10.5194/acp-10-3235-2010.

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz‐de‐la‐Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J.,

Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.‐S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., Storch, J.‐S., Tian, F., Voigt, A., Vrese, P., Wieners, K.‐H., Wilkenskjeld, S., Winkler, A., and Roeckner, E., 2019: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2, Journal of Advances in Modeling Earth Systems, 11, 998–1038, https://doi.org/10.1029/2018MS001400.

Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R., 2017: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017.

Michou, M., Nabat, P., Saint-Martin D., Bock, J., Decharme, B., Mallet M., Roehrig, R., Séférian, R., Sénési, S., and Voldoire, A., 2020: Present-day and historical aerosol and ozone characteristics in CNRM CMIP6 simulations, Journal of Advances in Modeling Earth Systems, 12, e2019MS001816, https://doi.org/10.1029/2019MS001816.

Ming, Y., and Ramaswamy, V., 2009: Nonlinear climate and hydrological responses to aerosol effects, Journal of Climate, 22, 1329–1339, https://doi.org/10.1175/2008JCLI2362.1.

Myhre, G., Aas, W., Cherian, R., Collins, W., Faluvegi, G., Flanner, M., Forster, P., Hodnebrog, Ø., Klimont, Z., Lund, M. T., Mülmenstädt, J., Lund Myhre, C., Olivié, D., Prather, M., Quaas, J., Samset, B. H., Schnell, J. L., Schulz, M., Shindell, D., Skeie, R. B., Takemura, T., and Tsyro, S., 2017: Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015, Atmos. Chem. Phys., 17, 2709–2720, https://doi.org/10.5194/acp-17-2709-2017.

Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stier, P., Partridge, D. G., Tegen, I., Bey, I., Stanelle, T., Kokkola, H., and Lohmann, U., 2019a: The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity, Geosci. Model Dev., 12, 3609–3639, https://doi.org/10.5194/gmd-12-3609-2019.

Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini, D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel, S., Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S., Schmidt, H., Schutgens, N., Stanelle, T., Stier, P., Watson-Parris, D., Lohmann, U., 2019b: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 RFMIP piClim-control, Version 20190627, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.14730.

Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini, D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel, S., Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S., Schmidt, H., Schutgens, N., Stanelle, T., Stier, P., Watson-Parris, D., Lohmann, U., 2019c: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 RFMIP piClim-aer, Version 20190627, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.14728.

Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini, D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel, S., Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S., Schmidt, H., Schutgens, N., Stanelle, T., Stier, P., Watson-Parris, D., Lohmann, U., 2020a: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 AerChemMIP piClim-BC, Version 20200120, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5024.

Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini, D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel, S., Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S., Schmidt, H., Schutgens, N., Stanelle, T., Stier, P., Watson-Parris, D., Lohmann, U., 2020b: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 AerChemMIP piClim-OC, Version 20200120, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5032.

Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini, D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel, S., Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S., Schmidt, H., Schutgens, N., Stanelle, T., Stier, P., Watson-Parris, D., Lohmann, U., 2020c: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 AerChemMIP piClim-SO2, Version 20200120, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5033.

Oliviè, D. J. L., Bentsen, M., Seland, Ø., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., Schulz, M., 2019a: NCC NorESM2-LM model output prepared for CMIP6 RFMIP piClim-control, Version 20190815 & Version 20200218, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8179.

Oliviè, D. J. L., Bentsen, M., Seland, Ø., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., Schulz, M., 2019b: NCC NorESM2-LM model output prepared for CMIP6 RFMIP piClim-aer, Version 20190815 & Version 20200218, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8169.

Oliviè, D. J. L., Bentsen, M., Seland, Ø., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., Schulz, M., 2019c: NCC NorESM2-LM model output prepared for CMIP6 AerChemMIP piClim-BC, Version 20191108 & Version 20200218, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8125.

Oliviè, D. J. L., Bentsen, M., Seland, Ø., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., Schulz, M., 2019d: NCC NorESM2-LM model output prepared for CMIP6 AerChemMIP piClim-OC, Version 20191108 & Version 20200218, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8157.

Oliviè, D. J. L., Bentsen, M., Seland, Ø., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., Schulz, M., 2019e: NCC NorESM2-LM model output prepared for CMIP6 AerChemMIP piClim-SO2, Version 20191108 & Version 20200218, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8161.

Oshima, N., Yukimoto, S., Deushi, M., Koshiro, T., Kawai, H., Tanaka, T. Y., and Yoshida, K., 2020: Global and Arctic effective radiative forcing of anthropogenic gases and aerosols in MRI-ESM2.0, Progress in Earth and Planetary Science, 7, 38, https://doi.org/10.1186/s40645-020-00348-w.

Pierce D., 2019. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. R package version 1.17. https://CRAN.R-project.org/package=ncdf4

Pincus, R., and Baker, M., 1994: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature 372, 250–252. https://doi.org/10.1038/372250a0.

Pincus, R., Forster, P. M., and Stevens, B., 2016: The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6, Geosci. Model Dev., 9, 3447–3460, https://doi.org/10.5194/gmd-9-3447-2016.

R Core Team, 2021: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ramanathan, V., and Carmichael, G., 2008: Global and regional climate changes due to black carbon, Nature Geosci 1, 221–227, https://doi.org/10.1038/ngeo156.

Ramanathan, V., and Feng, Y., 2009: Air pollution, greenhouse gases and climatechange: Global and regional perspectives, Atmos. Environ., 43, 37–50, https://doi.org/10.1016/j.atmosenv.2008.09.063.

Ramaswamy, V., Collins, W., Haywood, J., Lean, J., Mahowald, N., Myhre, G., Naik, V., Shine, K. P., Soden, B., Stenchikov, G., and Storelvmo, T., 2019: Radiative forcing of climate: The historical evolution of the radiative forcing concept, the forcing agents and their quantification, and applications. Meteorological Monographs, 59, 14.1–14.101. https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0001.1.

Richardson, T. B., Forster, P. M., Smith, C. J., Maycock, A. C., Wood, T., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kirkevåg, A., Lamarque, J.‐F., Mülmenstädt, J., Myhre, G., Olivié, D., Portmann, R. W., Samset, B. H., Shawki, D., Shindell, D., Stier, P., Takemura, T.,

Voulgarakis, A., and Watson‐Parris, D., 2019: Efficacy of climate forcings in PDRMIP models, Journal of Geophysical Research: Atmospheres, 124, 12,824–12,844, https://doi.org/10.1029/2019JD030581.

Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D. P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K. S., Suni, T., Wagner, T., Wild, M., and Quaas, J., 2014a: Global observations of aerosol-cloud-precipitation-climate interactions, Rev. Geophys., 52, 750–808, https://doi.org/10.1002/2013RG000441.

Rosenfeld, D., Sherwood, S., Wood, R., and Donner, L., 2014b: Climate effects of aerosol-cloud interactions, Science, 343(6169), 379–380, https://doi.org/10.1126/science.1247490.

Rotstayn, L. D., and Liu, Y., 2005: A smaller global estimate of the second indirect aerosol effect, Geophys. Res. Lett., 32, L05708, https://doi.org/10.1029/2004GL021922.

Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ø., Andrews, T., Faluvegi, G., Fläschner, D., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T., Shindell, D., Shine, K. P.,

Takemura, T., and Voulgarakis, A., 2016: Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study, Geophys. Res. Lett., 43, 2782–2791, https://doi.org/10.1002/2016GL068064.

Samset, B. H., Sand, M., Smith, C. J., Bauer, S. E., Forster, P. M., Fuglestvedt, J. S., Osprey, S., and

Schleussner, C.-F., 2018: Climate impacts from a removal of anthropogenic aerosol emissions, Geophysical Research Letters, 45, 1020–1029, https://doi.org/10.1002/2017GL076079.

Sand, M., Berntsen, T. K., Kay, J. E., Lamarque, J. F., Seland, Ø., and Kirkevåg, A., 2013: The Arctic response to remote and local forcing of black carbon, Atmos. Chem. Phys., 13, 211–224, https://doi.org/10.5194/acp-13-211-2013.

Seferian, R., 2019a: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 RFMIP piClim-control, Version 20190219, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.9646.

Seferian, R., 2019b: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 RFMIP piClim-aer, Version 20190219, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.9644.

Seferian, R., 2019c: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 AerChemMIP piClim-BC, Version 20190219, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4137.

Seferian, R., 2019d: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 AerChemMIP piClim-OC, Version 20190219, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4145.

Seferian, R., 2019e: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 AerChemMIP piClim-SO2, Version 20190219, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4146.

Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., Decharme, B., Delire, C., Berthet, S., Chevallier, M., Sénési, S., Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O., Guérémy, J.-F., Moine, M.-P., Msadek, R., Ribes, A., Rocher, M., Roehrig, R., Salas-y-Mélia, D., Sanchez, E., Terray, L., Valcke, S., Waldman, R., Aumont, O., Bopp, L., Deshayes, J., Éthé, C., and Madec, G., 2019: Evaluation of CNRM Earth-System model, CNRM-ESM2-1: role of Earth system processes in present-day and future climate, Journal of Advances in Modeling Earth Systems., 11, 4182–4227, https://doi.org/10.1029/2019MS001791.

Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M., 2020: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020.

Sherwood, S. C., Bony, S., Boucher, O., Bretherton, C., Forster, P. M., Gregory, J. M., and Stevens, B., 2015: Adjustments in the Forcing-Feedback Framework for Understanding Climate Change, B. Am. Meteorol. Soc., 96, 217–228, https://doi.org/10.1175/BAMS-D-13-00167.1.

Shindell, D. T., Faluvegi, G., Rotstayn, L., and Milly, G., 2015: Spatial patterns of radiative forcing and surface temperature response, J. Geophys. Res. Atmos., 120, 5385–5403, https://doi.org/10.1002/2014JD022752.

Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J., Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W. J., Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G., Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T., Voulgarakis, A., Yoon, J.-H., and Lo, F., 2013: Radiative forcing in the ACCMIP historical and future climate simulations, Atmos. Chem. Phys., 13, 2939–2974, https://doi.org/10.5194/acp-13-2939-2013.

Shine, K. P., Cook, J., Highwood, E. J., and Joshi, M. M., 2003: An alternative to radiative forcing for estimating the relative importance of climate change mechanisms, Geophysical Research Letters, 30 (20), 2047, https://doi.org/10.1029/2003GL018141.

Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., Boucher, O., Dufresne, J.-L., Nabat, P., Michou, M., Yukimoto, S., Cole, J., Paynter, D., Shiogama, H., O'Connor, F. M., Robertson, E., Wiltshire, A., Andrews, T., Hannay, C., Miller, R., Nazarenko, L., Kirkevåg, A., Olivié, D., Fiedler, S.,

Lewinschal, A., Mackallah, C., Dix, M., Pincus, R., and Forster, P. M., 2020: Effective radiative forcing and adjustments in CMIP6 models, Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020.

Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden, B. J., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Olivié, D., Richardson, T., Samset, B. H., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., and Watson-Parris, D., 2018: Understanding rapid adjustments to diverse forcing agents, Geophysical Research Letters, 45, 12,023–12,031, https://doi.org/10.1029/2018GL079826.

Stjern, C. W., Lund, M. T., Samset, B. H., Myhre, G., Forster, P. M., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Iversen, T., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T.,

Sand, M., Shawki, D., Shindell, D., Smith, C. J., Takemura, T., and Voulgarakis, A., 2019: Arctic amplification response to individual climate drivers, Journal of Geophysical Research: Atmospheres, 124, 6698–6717, https://doi.org/10.1029/2018JD029726.

Stjern, C. W., Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ø. Andrews, T., Boucher, O., Faluvegi, G., Iversen, T., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Olivié, O., Richardson, T., Shawki, D., Shindell, D., Smith, C. J., Takemura, T., and Voulgarakis, A., 2017: Rapid adjustments cause weak surface temperature response to increased black carbon concentrations, Journal of Geophysical Research: Atmospheres, 122, 11,462–11,481, https://doi.org/10.1002/2017JD027326.

Tang, T., Shindell, D., Samset, B. H., Boucher, O., Forster, P. M., Hodnebrog, Ø., Myhre, G., Sillmann, J., Voulgarakis, A., Andrews, T., Faluvegi, G., Fläschner, D., Iversen, T., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T., Stjern, C. W., and Takemura, T., 2018: Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols, Atmos. Chem. Phys., 18, 8439–8452, https://doi.org/10.5194/acp-18-8439-2018.

Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., and Lohmann, U., 2019: The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation, Geosci. Model Dev., 12, 1643–1677, https://doi.org/10.5194/gmd-12-1643-2019.

Thornhill, G. D., Collins, W. J., Kramer, R. J., Olivié, D., Skeie, R. B., O'Connor, F. M., Abraham, N. L., Checa-Garcia, R., Bauer, S. E., Deushi, M., Emmons, L. K., Forster, P. M., Horowitz, L. W., Johnson, B., Keeble, J., Lamarque, J.-F., Michou, M., Mills, M. J., Mulcahy, J. P., Myhre, G., Nabat, P., Naik, V., Oshima, N., Schulz, M., Smith, C. J., Takemura, T., Tilmes, S., Wu, T., Zeng, G., and Zhang, J., 2021a: Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison, Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021.

Thornhill, G., Collins, W., Olivié, D., Skeie, R. B., Archibald, A., Bauer, S., Checa-Garcia, R., Fiedler, S., Folberth, G., Gjermundsen, A., Horowitz, L., Lamarque, J.-F., Michou, M., Mulcahy, J., Nabat, P., Naik, V., O'Connor, F. M., Paulot, F., Schulz, M., Scott, C. E., Séférian, R., Smith, C., Takemura, T., Tilmes, S., Tsigaridis, K., and Weber, J., 2021b: Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models, Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021.

Thornhill, G. D., Ryder, C. L., Highwood, E. J., Shaffrey, L. C., and Johnson, B. T., 2018: The effect of South American biomass burning aerosol emissions on the regional climate, Atmos. Chem. Phys., 18, 5321–5342, https://doi.org/10.5194/acp-18-5321-2018.

Twomey, S., 1974: Pollution and the planetary albedo, Atmospheric Environment, 8, 1251-1256, https://doi.org/10.1016/0004-6981(74)90004-3.

Twomey, S., 1977: The Influence of Pollution on Shortwave Albedo of Clouds, Journal of the Atmospheric Sciences, 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

Undorf, S., Polson, D., Bollasina, M. A., Ming, Y., Schurer, A., and Hegerl, G. C., 2018: Detectable impact of local and remote anthropogenic aerosols on the 20th century changes of West African and South Asian monsoon precipitation, Journal of Geophysical Research: Atmospheres, 123, 4871–4889, https://doi.org/10.1029/2017JD027711.

Urbanek S., 2013: png: Read and write PNG images. R package version 0.1-7. https://CRAN.R-project.org/package=png.

van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and

van der Werf, G. R., 2017: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017.

Voigt, A., Pincus, R., Stevens, B., Bony, S., Boucher, O., Bellouin, N., Lewinschal, A., Medeiros, B., Wang, Z., and Zhang, H., 2017: Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol, J. Adv. Model. Earth Syst., 9, 870–892, https://doi.org/10.1002/2016MS000902.

Wan, J. S., Hamilton, D. S., and Mahowald, N. M., 2021: Importance of uncertainties in the spatial distribution of preindustrial wildfires for estimating aerosol radiative forcing, Geophysical Research Letters, 48, e2020GL089758, https://doi.org/10.1029/2020GL089758.

Westervelt, D. M., Conley, A. J., Fiore, A. M., Lamarque, J.-F., Shindell, D. T., Previdi, M., Mascioli, N. R., Faluvegi, G., Correa, G., and Horowitz, L. W., 2018: Connecting regional aerosol emissions reductions to local and remote precipitation responses, Atmos. Chem. Phys., 18, 12461–12475, https://doi.org/10.5194/acp-18-12461-2018.

Wilcox, L. J., Highwood, E. J., Booth, B. B. B., and Carslaw, K. S., 2015: Quantifying sources of inter-model diversity in the cloud albedo effect, Geophys. Res. Lett., 42, 1568–1575, https://doi.org/10.1002/2015GL063301.

Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H., Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M., 2019a: The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component, J. Meteor. Soc. Japan., 97, 931–965, https://doi.org/10.2151/jmsj.2019-051.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., Adachi, Y., 2019b: MRI MRI-ESM2.0 model output prepared for CMIP6 RFMIP piClim-control, Version 20200114, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6888.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., Adachi, Y., 2019c: MRI MRI-ESM2.0 model output prepared for CMIP6 RFMIP piClim-aer, Version 20200114, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6885.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., Adachi, Y., 2019d: MRI MRI-ESM2.0 model output prepared for CMIP6 AerChemMIP piClim-BC, Version 20200218, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6874.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., Adachi, Y., 2019e: MRI MRI-ESM2.0 model output prepared for CMIP6 AerChemMIP piClim-OC, Version 20200218, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6882.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., Adachi, Y., 2019f: MRI MRI-ESM2.0 model output prepared for CMIP6 AerChemMIP piClim-SO2, Version 20200218, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6883.

Zanis, P., Akritidis, D., Georgoulias, A. K., Allen, R. J., Bauer, S. E., Boucher, O., Cole, J., Johnson, B., Deushi, M., Michou, M., Mulcahy, J., Nabat, P., Olivié, D., Oshima, N., Sima, A., Schulz, M., Takemura, T., and Tsigaridis, K., 2020: Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study, Atmos. Chem. Phys., 20, 8381–8404, https://doi.org/10.5194/acp-20-8381-2020.

Zanis, P., Ntogras, C., Zakey, A., Pytharoulis, I., and Karacostas, T., 2012: Regional climate feedback of anthropogenic aerosols over Europe using RegCM3, Clim Res, 52, 267-278, https://doi.org/10.3354/cr01070.

Zelinka, M. D., Andrews, T., Forster, P. M., and Taylor, K. E., 2014: Quantifying components of aerosol-cloud-radiation interactions in climate models, J. Geophys. Res. Atmos., 119, 7599–7615, https://doi.org/10.1002/2014JD021710.

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A., and Taylor, K. E., 2020: Causes of higher climate sensitivity in CMIP6 models, Geophysical Research Letters, 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

Zhang, S., Stier, P., and Watson-Parris, D., 2021: On the contribution of fast and slow responses to precipitation changes caused by aerosol perturbations, Atmos. Chem. Phys., 21, 10179–10197, https://doi.org/10.5194/acp-21-10179-2021.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.