Εξώφυλλο

Μεταλλογένεση ηφαιστειογενών κοιτασμάτων Cu τύπου Κύπρου = Volcanogenic massive deposits Cu Cyprus type.

Σούζη-Χριστίνα Ντιρκ-Πετερ Ζαρ

Περίληψη


Η παρούσα διπλωματική πτυχιακή εργασία αφορά την μελέτη των ηφαιστειογενών κοιτασματών Cu τύπου Κύπρου . Πρόκειται για μια κατηγορία των ηφαιστειογενών κοιτασμάτων συμπαγών σουλφιδίων (VMS)  τα οποία αποτελούν σημαντικότερη πηγή για μέταλλα στον κόσμο όπως είναι Zn,Cu,Pb,Ag κ.ά.. Χωρίζονται σε τρεις τύπους κοιτασμάτων : 1) Zn-Cu-σιδηροπυρίτης λεγόμενος και ως “Norada type” 2) Zn-Pb-Cu-σιδηροπυρίτης “Kuroko type” και 3) Cu-σιδηροπυρίτης “Cyprus type”  .   Έχουν πραγματοποιηθεί πολλές μελέτες για τις γεωδυναμικές διεργασίες γένεσης, τη θέση και του χρονοδιαγράμματος  των κοιτασμάτων αυτών αλλά οι πληροφορίες δεν είναι τόσο κατανοητές. Συγκρίνοντας όμως πολλές περιοχές με βάση τα ίδια κριτήρια των κοιτασμάτων αυτών όσον αφορά τα γεωλογικά γεγονότα επέφεραν τα συμπεράσματα ότι υπάρχει σύνδεση της υποθαλάσσιας ηφαιστειακής δράσης με  την ιζηματογένεση.

This diploma thesis focuses on the study of volcanogenic massive deposits Cu  Cyprus type. It concerns volcanogenic massive sulfide deposits (VMS) which are really important resource of mining Zn,Cu,Pb,Ag et. al.. There are three types of deposits: 1) Zn-Cu-pyrite “Norada type” , 2) Zn-Cu-Pb-pyrite “Kuroko type” and 3) Cu-pyrite “Cyprus type”. There have been many studies about geodynamic process of genesis,location and timing remain of deposits but the informations are not completely understood. Comparison many districts of the same criteria of deposits which are about geological events the conclusion is that exist connection between submarine volcanic action and sendimentary.

Πλήρες Κείμενο:

PDF

Αναφορές


• Ανδρεοπούλου – Μάγκου Ε., Μελέτη αρχαίων Χάλκινων αντικειμένων από τον Ελλαδικό χώρο, Διδακτορική Διατριβή, Πάτρα 1994.

• Μήτσιος, I., 2004. Γονιμότητα εδαφών. Θρεπτικά στοιχεία φυτών(μακροθρεπτικά, μικροθρεπτικά) και βαρέα μέταλλα. Μέθοδοι καιΕφαρμογές. Εκδόσεις Zymel, Αθήνα.

• Φωτογραφίες από τις ακόλουθες ιστοσελίδες: α). www.orykta.gr, β&στ) http://el.wikipedia.org/wiki, γ)http://195.134.76.37/quali/quali, ε) www.geo.auth.gr.

• Abelson, M., Baer, G., Agnon, A., 2001. Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge. Nature 409, 72. https://doi.org/10.1038/35051058

• Adamides, N. G. 1984. Cyprus volcanogenic sulphide deposits in relation to their environment of formation, PhD thesis, University of Leicester, UK.

• Adamides, N. G. (2010b). "Mafic-dominated volcanogenic sulphide deposits in the Troodos ophiolite, Cyprus Part 2- A review of genetic models and guides for exploration." Applied Earth Science (Transactions of the Institute of Mineralogy and Metallurgy Bulletin) 119(4): 193-204.

• Adamides, N.G., 2010b. Mafic-dominated volcanogenic sulphide deposits in the Troodos ophiolite, Cyprus Part 1- The deposits of the Solea graben. Appl. Earth Sci. 119, 65–77.

• Adamides, N.G., 2010a. Mafic-dominated volcanogenic sulphide deposits in the Troodos ophiolite, Cyprus Part 2- A review of genetic models and guides for exploration. Appl. Earth Sci. 119, 193–204.

• Agency for Toxic Substances and Disease Registry, US Public Health Service. ATSDR’s Toxicological Profiles: Copper. Boca Raton, Florida: Lewis Publishers, CRC Press Inc, 1997

• Aggarwal, P.K. and Nessbit, B.E., Geology and geochemistry of the Chu Chua massive sulfide deposit, British Columbia, Econ. Geol., 1984, vol. 79, pp. 815–825.

• Allerton, S., Vine, F.J., 1987. Spreading structure of the Troodos ophiolite, Cyprus: Some paleomagnetic constraints. Geology 15, 593–597. https://doi.org/10.1130/0091-7613(1987)15<593:SSOTTO>2.0.CO;2

• Aubert & M. Pinta 1977. Trace Elements in Soils. Developments in Soil Science, no. 7. x+396 pp.

• Baker, E.T., Chen, Y.J., and Phipps Morgan, J., 1996, The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges: Earth and Planetary Science Letters, v. 142, p. 137–145.

• Baker, E.T., 2009, Relationships between hydrothermal activity and axial magma chamber distribution, depth, and melt content: Geochemistry Geophysics Geosystems, v. 10, Q06009, 15 p., doi.10.1029/2009GC002424.

• Banks, G.J., 2004. Accretion of the lower oceanic crust in the Troodos ophiolite: textural and geochemical constraints from drill core CY-4, Cyprus (Doctoral dissertation, The University of Wales College of Cardiff (United Kingdom)).

• Baragar, W.R.., Lambert, N., Baglow, N., Gibson, I.., 1990. The sheeted dyke zone in the Troodos ophiolite, in: OPHIOLITES Oceanic Crustal Analogues, Proceedings of the Symposium “Troodos 1987.” The Geological Survey Department, Ministry of Agriculture and Natural Resources, Nicosia, Cyprus, pp. 37–51.

• Barrie, C.T., D Hannington, M., 1999. Classification of Volcanic-Associated Massive Sulfide Deposits Based on Host-Rock Composition, in: Rev. Econ. Geo. pp. 1–11.

• Bogdanov, Y.A., Bortnikov, N.S., Vikent’ev, I.V., Gurvich, E.G., and Sagalevich, A.M., 1997, A new type of modern mineral-forming systems—Black smokers of the hydrothermal field at 14°45’N latitude, Mid-Atlantic Ridge: Geology of Ore Deposits, v. 39, p. 68–90.

• Calvez, J.Y., and Lescuyer, J.L., 1991, Lead isotope geochemistry of various sulphide deposits from the Oman Mountains: Ophiolite Genesis and Evolution of the Oceanic Lithosphere, v. 5, p. 385–397.

• Cann, J. R., Strens, M. R. and Rice, A. (1985). "A simple magma-driven thermal balance model for the formation of volcanogenic massive sulphides." Earth and Planetary Science Letters 76: 123-134.

• Carr, J.M. and Bear, L.M., 1960. The geology and mineral resources of the Peristerona-Lagoudhera area (Vol. 2). authority of the Government of Cyprus.

• Constantinou, G. and Govett, G. J. S. 1973. Geology, geochemistry and genesis of Cyprus sulfide deposits, Econ. Geol., 68, 843–858.

• Cooke, A.J., Masson, L.P., Robertson, A.H.F., 2014. Construction of a sheeted dyke complex: evidence from the northern margin of the troodos ophiolite and its southern margin adjacent to the arakapas fault zone. Ofioliti 39, 1–30. https://doi.org/10.4454/ofioliti.v39i1.426

• Coumou, D., Dreisner, T. and Heinrich, C. A. (2008). "The structure and dynamics of mid-ocean ridge hydrothermal systems." Science 321: 1825 - 1828.

• Crowe D.E., Nelson S.W., Brown P.E., et al., Geology and Geochemistry of Volcanogenic Massive Sulfide Deposits and Related Igneous Rocks, Prince William Sound, SouthCentral Alaska, Econ. Geol., 1992, vol. 87, pp. 1722–1746.

• Delaney, J.R., Robigou, V., McDuff, R.E., and Tivey, M.K., 1992, Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge: Journal of Geophysical Research, v. 97, p. 19,663–19,682.

• Dewey, J. F., Pittman, W. C., Ryan, W. B. F. and Bonnin, J. (1973). "Plate tectonics and the evolution of the Alpine system." Geological Society of America Bulletin 84: 3137-3180.

• Dietrich, D., Spencer, S., 1993. Spreading-induced faulting and fracturing of oceanic crust: examples from the Sheeted Dyke Complex of the Troodos ophiolite, Cyprus. Geol. Soc. Lond. Spec. Publ. 76, 121–139. https://doi.org/10.1144/GSL.SP.1993.076.01.06

• Dilek, Y., Thy, P., Moores, E. M. and Ramsden, T. W. (1990). "Tectonic evolution of the Troodos ophiolite within the Tethyan frame- work." Tectonics 9: 811-823.

• Edwards, S., Hudson-Edwards, K., Cann, J., Malpas, J. and Xenophontos, C. (2010). "Classic Geology in Europe 7: Cyprus." Terra Publishing: 271.

• Eremin, N.I., Dergachev, A.L., Sergeeva Nat.E., and Pozdniakova, K.V., Types of Sulphide Deposits of Volcanic Association, Geol. Rudn. Mestorozhndenii,2000, no. 2, pp. 177–190.

• Eremin, N.I., Differentsiatsia Vulkanogennogo Sulfidnogo Orudenenia (na Primere Kolchedannykh Mestorozhdenii Fanerozoia) (Differentiation of Volcanogenic Sulphide Ore Grade Mineralization (in Terms of Sulphide Deposits of Phanerozoic), Moscow, Izd. Msk. Univ., 1983, p. 256.

• Escartin, J., Smith, D.K., Cann, J., Schouten, H., Langmuir, C.H., and Escrig, S., 2008, Central role of detachment faults in accretion of slow-spreading oceanic lithosphere: Nature, v. 455, p. 790–795.

• Franklin, J.M., Gibson, H.L., Jonasson, I.R., and Galley, A.G., 2005, Volcanogenic Massive Sulfide Deposits, in Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., Economic Geology 100th Anniversary Volume: The Economic Geology Publishing Company, p. 523-560.

• Freund, S., Haase, K.M., Keith, M., Beier, C., Garbe-Schönberg, D., 2014. Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus. Contrib. Mineral. Petrol. 167, 978. https://doi.org/10.1007/s00410-014-0978-6

• Galley, A. G. and Koski, R. A. 1999. Setting and characteristics of ophiolite-hosted volcanogenic massive sulfide deposits, in Volcanic-associated massive sulphide deposits: processes and examples in modern and ancient settings, (ed. C. T. Barrie and M. D. Hannington), Rev. Econ. Geol., 8, 221–246.

• Galley, A.G., Hannington, M.D., and Jonasson, I.R., 2007, Volcanogenic Massive Sulphide Deposits, in Goodfellow, W.D., ed., Mineral deposits of Canada—A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 141–161

• Garper M. Possible toxic metal exposure of prehistoric bronze workers. Br J Ind Med 1987;44:652–656.

• Garuti, G., Bartoli, O., Scaccheti, M., and Zaccarini, F.,Geological Setting and Structural Styles of Volcanic Massive Sulfide Deposits in the Northern Apennines (Italy): Evidence for SeaFloor and Sub Seafloor Hydrothermal Activity in Unconventional Ophiolites of the Mesozoic Tethys, Boletin de la Soc. Geol. Mexicana, 2008, vol. 60, no. 1, pp 121–145.

• Gass, I. G., 1960. The geology and mineral resources of the Dhali area. Cyprus Geol. Survey Dept. Mere. 4, 116 pp.

• Gass, I. G. and Masson-Smith, D. 1963. The geology and gravity anomalies of the Troodos Massif, Philos. Trans. R. Soc. Lond., A255, 417–467.)

• Gass, I.G., 1980. The Troodos massif: Its role in the unravelling of the ophiolite problem and its significance in the understanding of constructive plate margin processes, in: Ophiolites, Proceedings: International Ophiolite Symposium, Cyprus 1979. The Geological Survey Department, Ministry of Agriculture and Natural Resources, Nicosia, Cyprus, pp. 23–35.

• George Jr, R.P., 1978. Structural petrology of the Olympus ultramafic complex in the Troodos ophiolite, Cyprus. Geological Society of America Bulletin, 89(6), pp.845-865

• Gillis, K.M., Roberts, M.D., 1999. Cracking at the magma–hydrothermal transition: evidence from the Troodos Ophiolite, Cyprus. Earth Planet. Sci. Lett. 169, 227–244. https://doi.org/10.1016/S0012-821X(99)00087-4

• Gordon, R., Bertram, M. and Graedel, T. E. (2006). "Metal stocks and sustainability." Proceedings of the National Academy of Sciences 103: 1209-1214.

• Gray, N. F. (1997). "Environmental impact and remediation of acid mine drainage: a management problem." Environmental Geology 30(1-2): 62-71.

• Greenbaum, D., 1977. The chromitiferous rocks of the Troodos ophiolite complex, Cyprus. Economic Geology, 72(7), pp.1175-1194.

• Grimes, C.B., Ushikubo, T., Kozdon, R., Valley, J.W., 2013. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos 179, 48–66.

• Habashi, F. (2003). Metals from ores - An Introduction to Extractive Metallurgy - Métallurgie Extractive Québec. Quebec, Sainte-Foy.

• Hannington, M.D., Jonasson, I.R., Herzig, P.M., and Petersen, S., 1995, Physical and chemical processes of seafloor mineralization at midocean ridges, in Humphris, S., ed., Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions: American Geophysical Union, Geophysical Monograph v. 91, p. 115-157.

• Hannington, M.D., Galley, A., Gerzig, P., Petersen, S., 1998. Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits. Proc. Ocean Drill. Program Sci. Results 158, 389–415. https://doi.org/10.2973/odp.proc.sr.158.217.1998

• Hannington, M.D., Barrie, C.T., and Bleeker, W., 1999a, The giant Kidd Creek volcanogenic massive sulfide deposit, western Abitibi Subprovince, Canada, in Hannington, M.D., and Barrie, C.T., eds., The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada: Economic Geology Monograph 10, p. 1-30.

• Hannington, M.D., Poulsen, K.H., Thompson, J.F.H., and Sillitoe, R.H., 1999c, Volcanogenic gold in the massive sulfide environment, in Barrie, C.T., and Hannington, M.D., eds., Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings: Reviews in Economic Geology 8, p. 325-356.

• Hannington, M. D., de Ronde, C. D. J. and Petersen, S. (2005). "Sea-floor tectonics and submarine hydrothermal systems." Economic Geology 100th Anniversary Volume( Society of Economic Geologists): 111-141.

• Haymon, R.M., Koski, R.A., and Abrams, M.J., Hydrothermal Discharge Zones beneath Massive Sulfide Deposits Mapped in the Oman Ophiolites, Geol.,1989, vol. 17, pp. 531–535.

• Haymon, R.M., Fornari, D.J., Edwards, M.H., Carbotte, S., Wright, D., and MacDonald, K.C., 1991, Hydrothermal vent distribution along the East Pacific Rise crest (9°09’ - 54’N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges: Earth and Planetary Sciences, v. 104, p. 513–534.

• Herzig, P.M., Hannington, M.D., Scott, S.D., Maliotis, G., Rona, P.A., Thompson, G., 1991. Gold-rich sea-floor gossans in the Troodos Ophiolite and on the Mid-Atlantic Ridge. Econ. Geol. 86, 1747–1755. https://doi.org/10.2113/gsecongeo.86.8.1747

• Huston, D. L., Pehrsson, S., Eglington, B. M. and Zaw, K. (2010). "The Geology and Metallogeny of Volcanic-Hosted Massive Sulfide Deposits: Variations through Geologic Time and with Tectonic Setting." Economic Geology 105(3): 571-591.

• Hutchinson, R. W. and Searle, D. L. 1971. Stratabound pyrite deposits in Cyprus and relations to other sulphide ores, Soc. Min. Geol. Jpn, Special Issue 3, 198–205.

• Josso, P., Roberts, S., Teagle, D.A.H., Pourret, O., Herrington, R., Ponce de Leon Albarran, C., 2018. Extraction and separation of rare earth elements from hydrothermal metalliferous sediments. Miner. Eng. 118, 106–121. https://doi.org/10.1016/j.mineng.2017.12.014

• Jowitt, S.M., Osborn, R.G.M., Thomas, R.D.H., Naden, J., Gunn, A.G., Herrington, R.J., Nicolaides, S., 2005. ′T′-type mineralisation — a pseudo-epithermal style of VHMS associated gold mineralisation, Cyprus, in: Mineral Deposit Research: Meeting the Global Challenge. Springer, Berlin, Heidelberg, pp. 635–637.

• Keith, M., Haase, K.M., Klemd, R., Smith, D.J., Schwarz-Schampera, U., Bach, W., 2018a. Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc. Contrib. Mineral. Petrol. 173, 40. https://doi.org/10.1007/s00410-018-1470-5

• Kelley, D.S., Delaney, J.R., and Yoerger, D.A., 2001, Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge: Geology, v. 29, p. 385–491.

• Kesler, S. E. (1994). Mineral resources, economics and the environment. New York Macmillan.

• Khadistavrinou, Y. and Konstantinou 1984, G., Kipr. Mineralnye Mestorozhdenia Evropy (Cyprus. Mineral Deposits of Europe), Moscow, Mir, vol. 2, pp. 345–374.

• Kidd, R.G.W., Cann, J.R., 1974. Chilling statistics indicate an ocean-floor spreading origin for the Troodos complex, Cyprus. Earth Planet. Sci. Lett. 24, 151–155. https://doi.org/10.1016/0012-821X(74)90020-X

• Koroteev, V.A. and Sazonov, V.M., Geodinamika, Rudogenez, Prognoz (na Primere Urala) (Geodynamics, Ore Genesis, Forecast (in terms of the Urals)), Yekaterinburg, UrO RAS, 2005, p. 259.

• Krasnov, S.G., Proroshina, I.M., and Cherkashev, G.A., 1995, Geological setting of high-temperature hydrothermal activity and massive sulfide formation on fast and slow-spreading ridges, in Parson, L.M., Walker, C.L., and Dixon, D.R., eds., Hydrothermal Vents and Processes: Geological Society of London, Special Publication 87, p. 17–32.

• LaGroix, F. and Borradaile, G. J. (2000). "Tectonics of the circum-Troodos sedimentary cover of Cyprus, from rock magnetic and structural observations." Journal of Structural Geology 22: 453-469.

• Large, R.R., 1992, Australian volcanic-hosted massive sulphide deposits: features, styles and genetic models: Economic Geology, v. 87, p. 471-510.

• McCaig, A. M., Cliff, R. A., Escartin, J., Fallick, A. E. and MacLeod, C. J. (2007). "Oceanic detachment faults focus very large volumes of black smoker fluids." Geology 35(10): 935-938.

• McElduff, B., Stumpfl, E.F., 1991. The chromite deposits of the Troodos complex, cyprus — Evidence for the role of a fluid phase accompanying chromite formation. Miner. Deposita 26, 307–318. https://doi.org/10.1007/BF00191079

• Moores, E. M. and Vine, F. J. 1971. The Troodos massif, Cyprus, and other ophiolites as oceanic crust: evaluation and implications, Philos. Trans. R. Soc. Lond., 268, 443–466.

• Moores, E.M., Varga, R.J., Verosub, K.L., Ramsden, T.W., 1990. Regional structure of the Troodos dyke complex. In: Malpas, J., Moores, E.M., Panayiotou, A., Xenophontos, C. (Eds.), Troodos 1987: Ophiolites, Oceanic Crustal Analogues. Geol. Surv. Dept. Cyprus, Nicosia, pp. 27–35.

• Moores, E.M., Kellogg, L.H. and Dilek, Y., 2000. Tethyan ophiolites, mantle convection, and tectonic" historical contingency": A resolution of the" ophiolite conundrum". SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, pp.3-12.

• Mudd, G. M., Weng, Z. and Jowitt, S. M. (2013). "A detailed assessment of global Cu resource trends and endowments." Economic Geology 108: 1163-1183.

• Mukasa, S. B. and Ludden, J. N. 1987. Uranium-lead isotopic ages of plagiogranites from the Troodos ophiolite, Cyprus, and their tectonic significance, Geology, 15, 825–828.

• Northey, S., Haque, N. and Mudd, G. (2013a). "Using sustainability reporting to assess the environmental footprint of copper mining." Journal of Cleaner Production 40(0): 118-128.

• Nuriel, P., Katzir, Y., Abelson, M., Valley, J.W., Matthews, A., Spicuzza, M.J., Ayalon, A., 2009. Fault-related oceanic serpentinization in the Troodos ophiolite, Cyprus: Implications for a fossil oceanic core complex. Earth and Planetary Science Letters 282, 34–46. https://doi.org/10.1016/j.epsl.2009.02.029

• Parmentier, E. M. and Spooner, E. T. C. (1978). "A theoretical study of hydrothermal convection and the origin of the ophiolitic sulphide ore deposits of Cyprus." Earth and Planetary Science Letters 40: 33-44.

• Parvaz, D.B., 2014. Oxidation Zones of Volcanogenic Massive Sulphide Deposits in the Troodos Ophiolite, Cyprus: Targeting Secondary Copper Deposits.

• Poole, A. J. and Robertson, A. H. F. (1991). "Quaternary uplift and sea-level change at an active plate boundary, Cyprus." Journal of the Geological Society 148(5): 909-921.

• Poulsen, H., and Hannington, M., 1995, Auriferous Volcanogenic Sulfide Deposits, in Eckstrand, O.R., Sinclair, W.D., and Thorpe, R.I., eds. Geology of Canadian Mineral Deposit Types, Geology of Canada, no. 8, Decade of North American Geology (DNAG): Geological Society of America, Part 1. p. 183-196.

• Prokin, K.A., Seravkin, I.B., Buslaev, F.P., et al.,Medonokolchedannye Mestorozhdenia Urala: Uslovia Formirovania (Copper Sulphide Deposists of Urals:Formation Terms), Yekaterinburg, UrO RAS, 1992,p. 307.

• RioTinto (2011). "Annual Report." www. riotinto.com(8/10/2013): Accessed 1/10/2013.

• Robertson, A. H. F. (1990). Tectonic evolution of Cyprus. Ophiolites; oceanic crustal analogues; proceedings of the symposium “Troodos 1987”. Malpas, J., Moores, E. M., Panayiotou, A. and Xenophontos, C. (eds). Nicosia, Cyprus, Ministry of Agriculture, Natural Resources and Environment, Geological Survey Department: 235-250.

• Robertson, A.H.F., 1975. Cyprus umbers: basalt-sediment relationships on a Mesozoic ocean ridge. J. Geol. Soc. 131, 511–531. https://doi.org/10.1144/gsjgs.131.5.0511

• Robertson, A.H.F., 1977. Tertiary uplift history of the Troodos massif, Cyprus. GSA Bull.88,17631772.https://doi.org/10.1130/00167606(1977)88<1763:TUHOTT>2.0.CO;2

• Robertson, A. H. F. and Xenophontos, C. (1993). "Development of concepts concerning the Troodos ophiolite and adjacent units in Cyprus." Geological Society, London, Special Publications 76(1): 85-119.

• Robertson, A. H. F. (2002). "Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region." Lithos 65(1-2): 1-67.

• Schmincke, H.-U., Rautenschlein, M., Robinson, P.T., Mehegan, J.M., 1983. Troodos extrusive series of Cyprus: A comparison with oceanic crust. Geology 11, 405–409. https://doi.org/10.1130/0091-7613(1983)11<405:TESOCA>2.0.CO;2

• Schmincke, H.-U., 2004, Volcanism: Berlin, Springer, 324 p.

• Schouten, H., Kelemen, P.B., 2002. Melt viscosity, temperature and transport processes, Troodos ophiolite, Cyprus. Earth Planet. Sci. Lett. 201, 337–352.

• Seravkin, I.B., Vulkanogennye Kolchedannye Mestorozhdenia Yuzhnogo Urala. Geodinamika, Metamorfizm i Rudoobrazovanie (Volcanogenic Sulphide Deposits of Southern Urals. Geodynamics, Metamorphism and Ore Formation), Yekaterinburg, IGGI UrO RAS,2007, pp. 638–669.

• Sinha, M.C., and Evans, R.L., 2004, Geophysical constraints upon the thermal regime of ocean crust, in German, C.R., and others, eds., Mid-ocean ridges—Hydrothermal interactions between the lithosphere and oceans: American Geophysical Union Geophysical Monograph 148, p. 19–62.

• Smith, D.K., Escartin, J., Schouten, H., and Cann, J.R., 2008, Fault rotation and core complex formation—Significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°-15°N): Geology Geophysics Geosystems, v. 9, Q03003, 23 p.,

doi:10.1029/2007GC001699.

• Staudigel, H., Tauxe, L., Gee, J.S., Bogaard, P., Haspels, J., Kale, G., Leenders, A., Meijer, P., Swaak, B., Tuin, M., Van Soest, M.C., Verdurmen, E.A.T., Zevenhuizen, A., 2000. Geochemistry and intrusive directions in sheeted dikes in the Troodos ophiolite: Implications for mid-ocean ridge spreading centers. Geochem. Geophys. Geosystems 1, n/a-n/a. https://doi.org/10.1029/1999GC000001

• Strong, D.R. and Saunders, S.M., Geological Setting of Sulfide Mineralization at Tilt Cove, Berts Cove Ophiolite, Newfoundland, Volcanogenic Sulfide Districts of Central Newfoundland, 1988, pp. 54–61

• Swarbrick, R. E. (1980). The Mamonia Complex of S.W. Cyprus; a Mesozoic continental margin and its relationship to the Troodos Complex. Ophiolites; Proceedings, International ophiolite symposium. Panayiotou, A. (eds), Cyprus, Ministry of Agriculture, Natural Resources and Environment, Geological Survey Department, Nicosia, Cyprus: 86-92.

• Swinden, H.S., Kean B.F., and Dunning, G.R. 1998, Geological and Paleotectonic Settings of Volcanogenic Sulfide Mineralization in Central Newfoundland, Ibid., pp. 5–27.

• Thompson F.C., ''The early Metallurgy of copper and bronze'', Man 58 1958

• Thy, P., 1987. Petrogenetic implications of mineral crystallization trends of Troodos cumulates, Cyprus. Geological Magazine 124, 1–11. https://doi.org/10.1017/S0016756800015739

• Trottier, J., Gauthier, M., and Brown, A., Geology and Lithogeochemistry of the Huntingdon Deposit, Cyprus type Mineralization in the Ophiolite Belt of the Southeastern Quebec Appalachians, Econ. Geol., 1987,vol. 82, pp. 1483–1504.

• Tylecote RF. A History of Metallurgy. London: The Metals Society, 1976:1–39.

• Udachin, V., Williamson, B. J., Purvis, O. W., Spiro, B., Dubbin, W., Brooks, S., Coste, B., Herrington, R. J. and Mikhailova, I. (2003). "Assessment of environmental impacts of active smelter operations and abandoned mines in Karabash, Ural Mountains of Russia." Sustainable Development 11(3): 133-142.

• United Nations, D. o. E. a. S. A., Population Division (2013). Word population prospects: The 2012 revision, highlights and advance tables. Working paper No. ESA/P/WP.228.

• Varga, R.J. and Moores, E.M., 1985. Spreading structure of the Troodos ophiolite, Cyprus. Geology, 13(12), pp.846-850.

• Varga, R.J., 1991. Modes of extension at oceanic spreading centers: evidence from the Solea graben, Troodos ophiolite, Cyprus. J. Struct. Geol. 13, 517–537. https://doi.org/10.1016/0191-8141(91)90041-G

• Varga, R.J., Moores, E.M., 1990. Intermittent magmatic spreading and tectonic extension in the Troodos Ophiolite: implications for exploration for black smoker-type ore deposits, in: OPHIOLITES Oceanic Crustal Analogues, Proceedings of the Symposium “Troodos 1987.” The Geological Survey Department, Ministry of Agriculture and Natural Resources, Nicosia, Cyprus, pp. 53–64.

• Vine, F.J. and Smith, G.C., 1990. Structure and physical properties of the Troodos crustal section at ICRDG drill holes CY1, 1a and 4. Ophiolites–oceanic crustal analogues.

• Wilson, R. A. M. (1959). "The geology of the Xeros-Troodos area." Geological Survey Department, Nicosia, Cyprus: 184.

• Zaikov, V.V., Mednokolchedannye Mestorozhdenia sredi Ofiolitov Yuzhnogo Urala – Analogi Sul’fidnykh Zalezheiv Okeanicheskikh Riftakh. Voprosy Petrologii, Mineralogii, Geokhimii i Geologii Ofiolitov (Copper Sulphide Deposits among Ophiolites of South Urals–Analogs of Sulphide Deposits in Oceanic Rifts. Matters of Petrology, Mineralogy, Geochemistry and Geology of Ophiolites). Novosibirsk: JA RAS, 1999, p. 180.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.