Εξώφυλλο

H Γεωπολιτική των Σπάνιων Γαιών = The policy of Rare Earth Elements.

Αλέξανδρος Αθανάσιος Φρειδερίκος

Περίληψη


Οι σπάνιες γαίες είναι μία ιδιαίτερη ομάδα 17 μεταλλικών στοιχείων εκ των οποίων τα 15 ανήκουν στις λανθανίδες (57La μέχρι 71Lu) του Περιοδικού Πίνακα συν το σκάνδιο (21Sc) και το ύτριο (39Υ). Τα εν λόγω στοιχεία εμφανίζουν μοναδικές μαγνητικές, φωσφορίζοντες και καταλυτικές ιδιότητες γι’ αυτό και έχουν γίνει αναντικατάστατα στη βιομηχανία υψηλής τεχνολογίας και στην «πράσινη» τεχνολογία. Στη φύση εμφανίζονται στην κρυσταλλική δομή διαφόρων ορυκτών όμως η συστηματική εκμετάλλευσή τους πραγματοποιείται κυρίως στα ορυκτά μοναζίτης, μπαστναζίτης και ξενότιμο. Κοιτάσματα σπάνιων γαιών απαντώνται σε διαφορετικά και ασυνήθιστα γεωλογικά περιβάλλοντα όπως σε καρμπονατίτες, σε υπεραλκαλικά και αλκαλικά πυριγενή πετρώματα, σε αργιλικές αποθέσεις προσρόφησης ιόντων, σε προσχωματικά κοιτάσματα («μαύρες άμμοι»), σε κοιτάσματα φωσφοριτών κ.ά. Τα μεγαλύτερα κοιτάσματα παγκοσμίως εντοπίζονται στην Κίνα, στο Bayan Obo και στο Maoniuping, στις Η.Π.Α με το κοίτασμα Mountain Pass και στην Αυστραλία με το κοίτασμα Mount Weld. Πολύ σημαντικές εμφανίσεις σπάνιων γαιών στην Ευρώπη για μελλοντική εκμετάλλευση αποτελούν το κοίτασμα Norra Kärr στη Σουηδία, το κοίτασμα Ilímaussaq στη Γροιλανδία και το κοίτασμα Lovozero στη δυτική πλευρά της Ρωσίας. Στην Ελλάδα σημαντικές περιεκτικότητες σπάνιων γαιών περιέχονται στις μαύρες άμμους της περιοχής της Καβάλας, στις μαύρες άμμους των νήσων Μύκονος και Νάξος και στους βωξίτες-λατερίτες της Κεντρικής Ελλάδας, όπου υπάρχει ήδη εκμετάλλευση για το αλουμίνιο και το σιδηρονικέλιο. Τα τελευταία χρόνια χώρες εκτός της Κίνας έχουν ξεκινήσει τη συστηματική αναζήτηση κοιτασμάτων σπάνιων γαιών και έχουν αυξήσει την παραγωγή τους ώστε να ανεξαρτητοποιηθούν από την κυριαρχία της Κίνας των προηγούμενων ετών. Την παραπάνω πολιτική αρχίζει να εφαρμόζει και η Ευρωπαϊκή Ένωση ενώ η Ελλάδα μπορεί να παίξει σημαντικό ρόλο, μαζί με τις υπόλοιπες χώρες, για την επίτευξη αυτού του στόχου.

Rare earth elements are a special group of 17 metals, 15 of which belong to the lanthanide group (57La to 71Lu) of the Periodic Table plus scandium (21Sc) and yttrium (39Y). These elements present unique magnetic, phosphorescent and catalytic properties, thus they have became irreplaceable in the high-tech industry and «green» technology. Naturally, they appear within the crystalline structure of various minerals but systematic exploitation is achieved only in monazite, bastnasite and xenotime. Rare earth element deposits are found in different and unusual geological environments such as in carbonatites, in peralkaline or alkaline igneous rocks, in ion-absorption type deposits, in placer-type deposits, in phosphorites etc. The largest deposits in the world are located in China, at Bayan Obo and at Maoniuping, in U.S.A at Mountain Pass and in Australia at Mount Weld. Important occurrences of rare earth elements in Europe for future exploitation are the Norra Kärr deposit in Sweden, the Ilímaussaq deposit in Greenland and the Lovozero deposit in the west side of Russia. In Greece significant contents of rare earth elements are found in the black sands of Kavala area, in the black sands of Mykonos and Naxos islands and in the bauxites-laterites of Central Greece where mining for Al and Fe-Ni already takes place. In recent years, countries other than China have begun exploration projects for rare earth deposits and have increased their production in order to become independent of China’s control. This policy is being implemented by European Union, and Greece could play an important role, along with other countries, in achieving this goal.

Πλήρες Κείμενο:

PDF

Αναφορές


Διαδίκτυο

• http://www.rareelementresources.com/rare-earth-elements#.YGGPybBxdPa

• https://aperopia.fr/09-2017/

• http://avalonraremetals.com/rare_metals/erbium

• https://www.rsc.org/periodic-table?e=1

• https://www.rsc.org/periodic-table/element/21/scandium

• https://www.rsc.org/periodic-table/element/39/yttrium

• https://www.oryktosploutos.net/2014/09/blog-post_95-3/

• https://periodic.lanl.gov/index.shtml

• https://repository.kallipos.gr/bitstream/11419/812/1/9.%20%CE%A3%CF%84%CE%BF%CE%B9%CF%87%CE%B5%CE%AF%CE%B1%20%CE%BC%CE%B5%CF%84%CE%B1%CF%80%CF%84%CF%8E%CF%83%CE%B5%CF%89%CF%82.pdf

• http://www.orykta.gr/oryktes-protes-yles-tis-ellados/metalleytika-orykta/131-boxitis)

• https://www.usgs.gov/centers/nmic/rare-earths-statistics-and-information

• https://photojournal.jpl.nasa.gov/catalog/PIA13969

• https://sciforum.net/manuscripts/5455/manuscript.pdf

• https://www.oryktosploutos.net/2021/04/rare-earth-metals-production-is-no-longer-monopolized-by-china/

• https://www.oryktosploutos.net/2017/07/blog-post-41/

• https://www.oryktosploutos.net/2017/02/blog-post_16-13/

• http://webmineral.com/data/Monazite-(Ce).shtml#.YVsPYZpBxPY

• http://webmineral.com/data/Bastnasite-(Ce).shtml#.YVsQdJpBxPY

• https://www.mindat.org/min-4333.html

• https://aperopia.fr/09-2017/i-spanies-gaies-aitia-polemon-tou-21ou-aiona/

• https://www.rsc.org/periodic-table/element/68/erbium

• https://www.rsc.org/periodic-table/element/66/dysprosium

Ελληνόγλωσση

• Βασίλης Μέλφος, (2020). Οι σπάνιες γαίες και η γεωπολιτική θέση της Ελλάδας, Ελληνικό πανόραμα, ΕΠ 124

• Καλαθά, Σ. (2017). Μεταλλογενετικές διεργασίες που συνδέονται με τον σχηματισμό βωξιτικών λατεριτών και Ni–λατεριτών: εμπλουτισμός σπανίων γαιών (Doctoral dissertation, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Σχολή Θετικών Επιστημών. Τμήμα Γεωλογίας και Γεωπεριβάλλοντος. Τομέας Οικονομικής Γεωλογίας και Γεωχημείας).

Ξενόγλωσση

• Abaka-Wood, G. B., Addai-Mensah, J., & Skinner, W. (2016). Review of flotation and physical separation of rare earth element minerals. In 4th UMaT Biennial International Mining and Mineral Conference, MR (pp. 55-62).

• Anderson, C. D. (2014). Fundamentals of rare earth flotation surface chemistry: Electrokinetic phenomena. Mining, Metallurgy & Exploration, 31(3), 176-176.

• Bednorz, J. G., & Müller, K. A. (1986). Possible high T c superconductivity in the Ba− La− Cu− O system. Zeitschrift für Physik B Condensed Matter, 64(2), 189-193.

• Brown, D., Ma, B. M., & Chen, Z. (2002). Developments in the processing and properties of NdFeb-type permanent magnets. Journal of magnetism and magnetic materials, 248(3), 432-440.

• Caro, P. (1998). Rare earths in luminescence. Rare earths, 323-325.

• Castor, S. B. (2008a). Rare earth deposits of North America. Resource Geology, 58(4), 337-347.

• Castor, S. B. (2008b). The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. The Canadian Mineralogist, 46(4), 779-806.

• Cathcart, J. B. (1980). World phosphate reserves and resources. The role of phosphorus in agriculture, 1-18.

• Chakhmouradian, A. R., & Wall, F. (2012). Rare earth elements: minerals, mines, magnets (and more). Elements, 8(5), 333-340.

• Chakhmouradian, A. R., & Zaitsev, A. N. (2012). Rare earth mineralization in igneous rocks: sources and processes. Elements, 8(5), 347-353.

• DeWitt, E. (1987). U-Th-Pb and^< 40> Ar/^< 39> Ar dating of the Mountain Pass carbonatite and alkalic igneous rocks, SE Cal. In Geological Society of America, Abstracts with Programs (Vol. 19, p. 642).

• Dostal, J. (2016). Rare metal deposits associated with alkaline/peralkaline igneous rocks. Rev. Econ. Geol, 18, 33-54.

• Drew, L. J., Qingrun, M., & Weijun, S. (1990). The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China. Lithos, 26(1-2), 43-65.

• ENTR, D. (2014). Report on critical raw materials for the EU. European Commission.

• Eliopoulos, D., Economou, G., Tzifas, I., & Papatrechas, C. (2014, September). The potential of rare earth elements in Greece. In Proceedings of the ERES2014: First European Rare Earth Resources Conference, Milos, Greece (pp. 4-7).

• Emsbo, P., McLaughlin, P. I., du Bray, E. A., Anderson, E. D., Vandenbroucke, T., & Zielinski, R. A. (2016). Rare earth elements in sedimentary phosphorite deposits: a global assessment. In Rare earth and critical elements in ore deposits (Vol. 18, pp. 101-113). Society of Economic Geologists.

• Emsley J. (2001). Nature’s building blocks: an A-Z guide to the elements. Oxford University Press, Oxford, 538 pp

• Fan, H. R., Xie, Y. H., Wang, K. Y., Tao, K. J., & Wilde, S. A. (2004). REE daughter minerals trapped in fluid inclusions in the giant Bayan Obo REE-Nb-Fe deposit, Inner Mongolia, China. International Geology Review, 46(7), 638-645.

• Gamaletsos, P. N., Godelitsas, A., Filippidis, A., & Pontikes, Y. (2019). The rare earth elements potential of Greek bauxite active mines in the light of a sustainable REE demand. Journal of Sustainable Metallurgy, 5(1), 20-47.

• Girard, P., Namy, J. L., & Kagan, H. B. (1980). Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents. Journal of the American Chemical Society, 102(8), 2693-2698.

• Goodenough, K. M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J.... & Keulen, N. (2016). Europe's rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews, 72, 838-856.

• Haxel, G. (2002). Rare earth elements: critical resources for high technology (Vol. 87, No. 2). US Department of the Interior, US Geological Survey.

• Henderson, P. A. U. L. (1984). General geochemical properties and abundances of the rare earth elements. In Developments in geochemistry (Vol. 2, pp. 1-32). Elsevier.

• Herbst, J. F., & Croat, J. J. (1991). Neodymium-iron-boron permanent magnets. Journal of magnetism and magnetic materials, 100(1-3), 57-78.

• Holtstam, D., & Andersson, U. B. (2007). The REE minerals of the Bastnas-type deposits, south-central Sweden. The Canadian Mineralogist, 45(5), 1073-1114.

• Hou, Z., Tian, S., Xie, Y., Yang, Z., Yuan, Z., Yin, S., ... & Li, X. (2009). The Himalayan Mianning–Dechang REE belt associated with carbonatite–alkaline complexes, eastern Indo-Asian collision zone, SW China. Ore Geology Reviews, 36(1-3), 65-89.

• John, D. A., & Taylor, R. D. (2016). By-products of porphyry copper and molybdenum deposits: Chapter 7.

• Kelley, K. D., & Spry, P. G. (2016). Critical elements in alkaline igneous rock-related epithermal gold deposits: Chapter 9.

• Koechner, W., & Bass, M. (2006). Solid-state lasers: a graduate text. Springer Science & Business Media.

• Kogarko, L. N., Williams, C. T., & Woolley, A. R. (2002). Chemical evolution and petrogenetic implications of loparite in the layered, agpaitic Lovozero complex, Kola Peninsula, Russia. Mineralogy and Petrology, 74(1), 1-24.

• Kogarko, L. N., Lahaye, Y., & Brey, G. P. (2010). Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics. Mineralogy and Petrology, 98(1-4), 197-208.

• Kresten, P. (1976). A magnetometric survey of the Alnö Complex. Geologiska Föreningen i Stockholm Förhandlingar, 98(4), 361-362.

• Krishnamurthy, N., & Gupta, C. K. (2015). Extractive metallurgy of rare earths. CRC press.

• Lai, X., Yang, X., & Sun, W. (2012). Geochemical constraints on genesis of dolomite marble in the Bayan Obo REE–Nb–Fe deposit, Inner Mongolia: implications for REE mineralization. Journal of Asian Earth Sciences, 57, 90-102.

• Lazaridis, S., Kipourou-Panagiotou, A., Papadopoulos, A., Kantiranis, N., Koroneos, A., & Albanakis, K. (2019). Rare Earth Elements In The Black Sands From Coastal Cliffs Sedimentary Deposits, of Aggelochori Area (No. 861). EasyChair.

• Le Maitre, R.W. (2002). Igneous rocks: A classification and glossary of terms, 2nd ed.: Cambridge, UK, Cambridge University Press, 236

• Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85), p. 4-17 CRC press.

• London, D. (2016). Rare-element granitic pegmatites. Rev. Econ. Geol, 18, 165-94.

• Lottermoser, B. G. (1990). Rare-earth element mineralisation within the Mt. Weld carbonatite laterite, Western Australia. Lithos, 24(2), 151-167.

• Lynas Corporation (2013). Quaterly report for the period ending 31 Dec 2012, p.10

• Mao, J., Yu, J., Yuan, S., Chen, Y., Xie, G., Hou, K., ... & Yang, Z. (2008). Iron oxide-copper-gold deposits: Characteristics, present research situation and ore prospecting. Mineral Deposits, 27(3), 267-278.

• Mariano, A. (1989). Economic geology of rare earth minerals. Reviews in Mineralogy, 21(1), 309-337.

• Mariano, A. N., & Mariano Jr, A. (2012). Rare earth mining and exploration in North America. Elements, 8(5), 369-376.

• Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36-43.

• McLennan, S. M., & Ross Taylor, S. (2011). Geology, Geochemistry and Natural Abundances. Encyclopedia of Inorganic and Bioinorganic Chemistry.

• Melcher, C. L., & Schweitzer, J. S. (1992). Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Transactions on Nuclear Science, 39(4), 502-505.

• Melfos, V., & Voudouris, P. C. (2012). Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals, 2(4), 300-317.

• Molycorp, Inc. (2012). Molycorp’s rare earth reserves at Mountain Pass increase by 36%: Molycorp Press Release, April 9, 2012.

• Nazarov, M. V., Jeon, D. Y., Kang, J. H., Popovici, E. J., Muresan, L. E., Zamoryanskaya, M. V., & Tsukerblat, B. S. (2004). Luminescence properties of europium–terbium double activated calcium tungstate phosphor. Solid state communications, 131(5), 307-311.

• Papadopoulos, A., Tzifas, I. T., & Tsikos, H. (2019). The potential for REE and associated critical metals in coastal sand (placer) deposits of Greece: A review. Minerals, 9(8), 469.

• Papangelakis, V. G., & Moldoveanu, G. (2014, September). Recovery of rare earth elements from clay minerals. In Proceedings of the 1st Rare Earth Resources Conference, Milos (pp. 191-202).

• Rokhlin, L. L. (2003). Magnesium alloys containing rare earth metals: structure and properties. Crc Press.

• Sadeghi, M., Arvanitidis, N., & Ladenberger, A. (2020). Geochemistry of Rare Earth Elements in Bedrock and Till, Applied in the Context of Mineral Potential in Sweden. Minerals, 10(4), 365.

• Sanematsu, K., & Watanabe, Y. (2016). Characteristics and genesis of ion adsorption-type rare earth element deposits. Rev. Econ. Geol, 18, 55-79.

• Sengupta, D., & Van Gosen, B. S. (2016). Placer-type rare earth element deposits. Rev. Econ. Geol, 18, 81-100.

• Sherry, A. D., Caravan, P., & Lenkinski, R. E. (2009). Primer on gadolinium chemistry. Journal of magnetic resonance imaging: an official journal of the international society for magnetic resonance in medicine, 30(6), 1240-1248.

• Smith, M. P., Moore, K., Kavecsánszki, D., Finch, A. A., Kynicky, J., & Wall, F. (2016). From mantle to critical zone: A review of large and giant-sized deposits of the rare earth elements. Geoscience Frontiers, 7(3), 315-334.

• Summaries, M. C. (2021). Mineral Commodity Summaries; USGS Unnumbered Series. US Geological Survey: Reston, VA, 200.

• Tse, P. K. (2011). China's rare-earth industry. Reston: US Department of the Interior, US Geological Survey.

• Tzifas, I. T., Papadopoulos, A., Misaelides, P., Godelitsas, A., Göttlicher, J., Tsikos, H.... & Hatzidimitriou, A. (2019). New insights into mineralogy and geochemistry of allanite-bearing Mediterranean coastal sands from Northern Greece. Geochemistry, 79(2), 247-267.

• Tzifas, I. T., Gamaletsos, P. N., Papadopoulos, A., Godelitsas, A., Kantiranis, N., Misaelides, P., & Filippidis, A. Actinides and Rare Earth Elements (REE) in Sedimentary Formations of Greece: A Review.

• Upton, B., Macdonald, R., Odling, N., Rämö, O., & Bagiński, B. (2013). Kûngnât, revisited. A review of five decades of research into an alkaline complex in South Greenland, with new trace-element and Nd isotopic data. Mineralogical Magazine, 77(4), 523-550

• Van Gosen, B. S., Verplanck, P. L., Seal II, R. R., Long, K. R., & Gambogi, J. (2017). Rare-earth elements (No. 1802-O). US Geological Survey.

• Verplanck, P. L., & Hitzman, M. W. (Eds.). (2016). Rare earth and critical elements in ore deposits.

• Voncken, J. H. L. (2016). The rare earth elements: an introduction. Springer International Publishing.

• Wall, F. (2014). Rare earth elements. Critical metals handbook, 312-339.

• Wu, M. K., Ashburn, J. R., Torng, C., Hor, P. H., Meng, R. L., Gao, L., ... & Chu, A. (1987). Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient

pressure. Physical review letters, 58(9), 908.

• Xie, Y. L., Hou, Z. Q., Goldfarb, R. J., Guo, X., & Wang, L. (2016). Rare earth element deposits in China.

• Xu, C. (2002). REE and isotopic geochemistry of fluorite in the Maoniuping REE deposit, Sichuan Province, China. Geochimica, 31, 180-190.

• Yunxiang, N., Hughes, J. M., & Mariano, A. N. (1993). The atomic arrangement of bastnäesite-(Ce), Ce (CO3) F, and structural elements of synchysite-(Ce), röntgenite-(Ce), and parisite-(Ce). American Mineralogist, 78(3-4), 415-418.

• Zaitsev, V., & Kogarko, L. N. (2012). Sources and perspectives of REE in the Lovozero massif (Kola Peninsula, Russia). In Eur. Mineral. Conf (Vol. 1, p. 33).


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.