Εξώφυλλο

Ορυκτολογική – Πετρολογική – Γεωχημική μελέτη πετρωμάτων των λατομείων Πέτρας της περιοχής Πετρωτών, Ορεστιάδας, Έβρου = Mineralogical – Petrological – Geochemical rock study of the Petra quarries in Petrota region, Orestiada, Evros.

Ελένη Γεώργιος Μιχαηλίδου

Περίληψη


Σκοπός της παρούσας εργασίας είναι η μελέτη των ηφαιστειοϊζηματογενών σχηματισμών της ευρύτερης περιοχής των Πετρωτών του Νομού Έβρου, οι οποίοι αποτέθηκαν πάνω στα μεταμορφωμένα πετρώματα του υποβάθρου και σχετίζονται με την ηφαιστειακή δραστηριότητα της Παλαιογενούς καλδέρας του Sheinovets. Μελετήθηκαν δείγματα από επτά (7) διαφορετικές θέσεις, καλύπτοντας μια επιφάνεια περίπου 5 χλμ. σε μήκος και 2 χλμ. σε πλάτος. Μακροσκοπικά, τα δείγματα εμφανίζουν υπόλευκο έως πράσινο χρώμα κι είναι μερικώς ή πλήρως ζεολιθοποιημένα. Τα ρυολιθικά σώματα που εντοπίστηκαν στις θέσεις Παλαιοκκλήσι και Μαύρη Πέτρα φέρουν ρόδινο χρώμα και παραμένουν αναλλοίωτα. Σε όλη την έκταση των ζεολιθοφόρων αποθέσεων είναι εμφανής η παρουσία ξενόλιθων μεταμορφωμένων πετρωμάτων του υποβάθρου (μαρμαρυγιακοί σχιστόλιθοι, αμφιβολίτες, κ.ά.), γι’ αυτό μπορούν χαρακτηριστούν ως τοφφικά λατυποπαγή. Η ορυκτολογική σύσταση παρουσιάζει μεγάλη ποικιλία, καθώς οι ξενόλιθοι εμπλουτίζουν τη θεμελιώδη μάζα των τοφφικών λατυποπαγών με μεταμορφικά ορυκτά. Τα ορυκτά που επικρατούν είναι ο κλινοπτιλόλιθος, ο χαλαζίας, ο χριστοβαλίτης, οι άστριοι κι οι μαρμαρυγίες, ενώ τοπικά και σε μικρές περιεκτικότητες εντοπίστηκε και μορντενίτης. Οι ηφαιστειοϊζηματογενείς αποθέσεις των Πετρωτών χαρακτηρίζονται ως επικλαστικές, καθώς προέκυψαν από τη μεταφορά της ηφαιστειακής τέφρας, μέσω της δράσης του νερού, σε ανοιχτό υδρολογικό σύστημα, κατά το Ηώκαινο. Αρχικά, το αποθετικό περιβάλλον ήταν όξινο λόγω της πυριτικής τέφρας, γι’ αυτό τα ορυκτά που κρυσταλλώθηκαν πρώτα ήταν κυρίως αργιλικά (συσσωματώματα σελαδονίτη-φεγγίτη). Με τη σταδιακή αύξηση του pΗ, η αρχική θεμελιώδης μάζα που αποτελούνταν κυρίως από υαλώδη θραύσματα, υπέστη αφυάλωση και ζεολιθοποίηση, δημιουργώντας χαρακτηριστικές εικόνες ψευδομόρφωσης. Μετά τη ζεολιθοποίηση τα τοφφικά λατυποπαγή υπέστησαν συγκόλληση, θυμίζοντας στο πολωτικό μικροσκόπιο την εικόνα «ρευστικής υφής». Στα δείγματα των περιοχών Σκαφίδα και Μαύρη Πέτρα τα όρια των υαλωδών θραυσμάτων παραμένουν σαφή, οπότε στις συγκεκριμένες θέσεις τα τοφφικά λατυποπαγή θεωρούνται μερικώς συγκολλημένα ή μη-συγκολλημένα.

The aim of the present study is to investigate the volcaniclastic formations of the broader area of Petrota village, in Evros Prefecture, northeastern Greece. The volcaniclastic formations are products of the Paleogene volcanism of the Sheinovets caldera. Samples from seven (7) different locations were studied, covering a surface of about 5 km in length and 2 km in width. Macroscopically, the samples display a greyish white to green color, and they are partially or fully zeolitized. The rhyolitic bodies found at Palaeokklisi and Mavri Petra sites display a reddish color and remain unaltered. Xenoliths deriving from the metamorphic basement (mica schists, amphibolites, etc.), can be found scattered within the zeolitized formations, and therefore, they can be considered as tuff breccia. The minerals that prevail in the zeolitized deposits are clinoptilolite, quartz, cristobalite, feldspars and micas, while locally and in small amounts, mordenite was also detected. The volcaniclastic rocks of Petrota region are considered epiclastic since they have occurred from the transportation of volcanic ash via water activity, after the eruptive event in Sheinovets caldera, during the Eocene. The diagenetic process initiated under an open hydrological system. The high porosity of the tuffaceous deposits permitted the percolation of both meteoric water and groundwater. Initially, the highly acidic depositional environment prevented the formation of zeolites, and therefore, argillic minerals were crystallized (celadonite-phegite aggregations). As the environment became alkaline, the crystallization of zeolites was viable, and the matrix that initially consisted of glass shards underwent devitrification and zeolitization, forming characteristic pseudomorphic structures. After zeolitization, tuff breccia was subject to welding, showing a “trachytic texture”. The boundaries of the glass shards in the samples collected from Skafida and Mavri Petra sites remain distinct and thus, the formations in these areas are considered partly welded or unwelded.

Πλήρες Κείμενο:

PDF

Αναφορές


Aiello, R., Ming, D. W., & Mumpton, F. A. (1995). Zeolitic tuffs as building materials in Italy: A review. Natural Zeolites, 93, 589-602.

Alberti, A. (1975). The crystal structure of two clinoptilolites. Tschermaks mineralogische und petrographische Mitteilungen, 22(1), 25-37.

Aleksiev, B. & Djourova, E. G. (1975). On the origin of zeolite rocks. Compt. Rend Acad Bulgar Sci, 28, 517-520.

Alietti, A. (1967). Heulanditi e clinoptiloliti. Mineral. et Petrogr. Acta, 13, 119-138.

Alietti, A. (1972). Polymorphism and crystal-chemistry of heulandites and clinoptilolites. American Mineralogist: Journal of Earth and Planetary Materials, 57(9-10), 1448-1462.

Alietti, A., Gottardi, G., & Poppi, L. (1974). The heat behaviour of the cation exchanged zeolites with heulandite structure. Tschermaks mineralogische und petrographische Mitteilungen, 21(3-4), 291-298.

Ames Jr, L. L. (1960). The cation sieve properties of clinoptilolite. American Mineralogist: Journal of Earth and Planetary Materials, 45(5-6), 689-700.

Andronopoulos, B. (1978). Geological map of Greece 1:50,000, sheet Ormenion. IGME publications, Athens, Greece.

Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., ... & Pasero, M. (2006). Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18(5), 551-567.

Baerlocher, C., Olson, D. H., & Meier, W. M. (2001). Atlas of Zeolite Framework Types. Elsevier.

Baerlocher, C., McCusker, L. B., & Olson, D. H. (2007). Atlas of zeolite framework types. Elsevier.

Bailey, S. W. (1984). Review of cation ordering in micas. Clays and Clay Minerals, 32(2), 81-92.

Barbieri, M., Castorina, F., Masi, U., Garbarino, C., Nicoletti, M., Kassoli-Fournaraki, A., Filippidis, A., & Mignardi, S. (2001). Geochemical and isotopic evidence for the origin of rhyolites from Petrota (Northern Thrace, Greece) and geodynamic significance. Chemie DerErde-geochemistry, 61(1), 13-29.

Bargar, K. E., & Keith, T. E. (1995). Calcium zeolites in rhyolitic drill cores from Yellowstone National Park, Wyoming. Natural zeolites, 93, 69-86.

Barrer, R. M. (1938). The sorption of polar and non-polar gases by zeolites. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 167(930), 392-420.

Barrer, R. M. (1982). Hydrothermal chemistry of zeolites. London and New York. Academic press, 360p.

Barth-Wirsching, U., & Höller, H. (1989). Experimental studies on zeolite formation conditions. European Journal of Mineralogy, 489-506.

Bish, D. L., & Boak, J. M. (2001). Clinoptilolite-heulandite nomenclature. Reviews in mineralogy and geochemistry, 45(1), 207-216.

Boettinger, J. L., & Graham, R. C. (1993). Zeolite occurrence and stability in soils: an updated review. Ze, 93, 49-50.

Boettinger, J. L., & Graham, R. C. (1995). Zeolite occurrence in soil environments: an updated review. Natural zeolites, 93, 23-37.

Boles, J. R. (1972). Composition, optical properties, cell dimensions, and thermal stability of some heulandite group zeolites. American Mineralogist: Journal of Earth and Planetary Materials, 57(9-10), 1463-1493.

Boles, J. R. (1977). Zeolites in deep-sea sediments. In Mineralogy and Geology of Natural Zeolites. F. A. Mumpton, ed., Reviews in Mineralogy 4, Mineral. Soc. Amer., Washington, D.C., 137-163.

Boles, J. R. (1993). Zeolites in low-grade metamorphic rocks, in Mumpton, F.A., ed., Mineralogy and Geology of Natural Zeolites: revised reprint of Reviews in Mineralogy, v. 4, p. 85–114.

Bonev, N., Spikings, R., Moritz, R., Marchev, P., & Collings, D. (2013). 40Ar/39Ar age constraints on the timing of Tertiary crustal extension and its temporal relation to ore-forming and magmatic processes in the Eastern Rhodope Massif, Bulgaria. Lithos, 180, 264-278.

Boyanov, I., & Goranov, A. (2001). Late Alpine (Palaeogene) superimposed depressions in parts of South-east Bulgaria. Geologica Balcanica, 31(3/4), 3-36.

Bragg, W. H. (1912a). X-rays and crystals. Nature, 90(2243), 219.

Bragg, W. H. (1912b). Studies in radioactivity. Macmillan and Company, Ltd.

Bragg, W. L. (1912). The Specular Reflection of X-rays. Nature, 90(2250), 410.

Breck, D. W. (1974). Zeolite molecular sieves: structure, chemistry and use. London. Wiley & Sons.

Browne, P. R. L., & Ellis, A. J. (1970). The Ohaki-Broadlands hydrothermal area, New Zealand; mineralogy and related geochemistry. American Journal of Science, 269(2), 97-131.

Browne, P. R. L. (1978). Hydrothermal alteration in active geothermal fields. Annual review of earth and planetary sciences, 6(1), 229-248.

Cameron, M., & Papike, J. J. (1981). Structural and chemical variations in pyroxenes. American Mineralogist, 66(1-2), 1-50.

Carmichael, I. S. E. (1960). The pyroxenes and olivines from some Tertiary acid glasses. Journal of Petrology, 1(1), 309-336.

Carr, P. F., Perkins, M., & Moradian, A. (1996). Large pseudomorphous trapezohedra of analcime and pumpellyite after leucite, Aghda area, central Iran. Mineralogy and Petrology, 58(1-2), 23-32.

Casey, W. H., & Bunker, B. (1990). Leaching of mineral and glass surface geochemistry. Mineralogical Society of America, 23, 397-426.

Cejka, J., Corma, A., & Zones, S. (Eds.). (2010). Zeolites and catalysis: synthesis, reactions and applications. John Wiley & Sons.

Chipera, S. J., & Apps, J. A. (2001). Geochemical stability of natural zeolites. Reviews in mineralogy and geochemistry, 45(1), 117-161.

Christofides, G., Pecskay, Z., Soldatos, T., Eleftheriadis, G., & Koroneos, A. (2004). The Tertiary Evros volcanic rocks (Greece): Petrology, K/Ar geochronology and volcanism evolution. Geologica Carpathica, 55, 397-409.

Clavier, N., Podor, R., & Dacheux, N. (2011). Crystal chemistry of the monazite structure. Journal of the European Ceramic Society, 31(6), 941-976.

Claire-Deville, H. D. S. (1862). Reproduction de la levyne. Comptes Rendus, 54(1862), 324-327.

Colella, C. (1996). Ion exchange equilibria in zeolite minerals. Mineralium Deposita, 31(6), 554-562.

Colella, C., & Gualtieri, A. F. (2007). Cronstedt’s zeolite. Microporous and Mesoporous Materials, 105(3), 213-221.

Colella, C., & Wise, W. S. (2014). The IZA Handbook of Natural Zeolites: A tool of knowledge on the most important family of porous minerals. Microporous and mesoporous materials, 189, 4-10.

Coombs, D. S., Ellis, A. J., Fyfe, W. S., & Taylor, A. M. (1959). The zeolite facies, with comments on the interpretation of hydrothermal syntheses. Geochimica et cosmochimica acta, 17(1-2), 53-107.

Coombs, D. S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., ... & Nickel, E. H. (1997). Recommended nomenclature for zeolite minerals: report of the Subcommittee on Zeolites of the IMA, Commission on New Minerals and Mineral Names. Can. Mineral, 35, 1571-1606.

Cronstedt, A. F. (1756). Kongl. Svenska Vetenskaps Acad. Handlingar, 17, 120.

Cronstedt, A. F. (1758). Försök til Mineralogie, eller Mineral-Rikets Upställning.Wildiska, Stockholm, 99.

Cross, W., & Eakins, L. G. (1886). ART. XI.--Communications from the US Geological Survey, Division of the Rocky Mountains. VIII. On Plilolite, a new Mineral. American Journal of Science (1880-1910), 32(188), 117.

Cundari, A., & Graziani, G. (1964). Prodotti di alterazione della leucite nelle vulcaniti vicane. Periodico Mineral.(Rome), 33, 35-43.

Damour, A. A. (1855). Recherches sur les propriétés hygroscopiques des minéraux de la famille des zéolithes. imprimerie de Mallet-Bachelier.

Davis, M. E., & Lobo, R. F. (1992). Zeolite and molecular sieve synthesis. Chemistry of Materials, 4(4), 756-768.

Deer, W. A., Howie, R. A., & Zussman, J. (1963). Rock-forming Minerals: Vol. 4: Framework Silicates. Longman.

Deer, W. A., Howie, R. A., & Zussman, J. (1978). Single chain silicates. Rock forming minerals. Vol. 2A. The Geological Society, Essex, England.

Deffeyes, K. S. (1959). Zeolites in sedimentary rocks. Journal of Sedimentary Research, 29(4), 602-609.

De’Gennaro, M., Adabbo, M., Langella, A., Ming, D. W., & Mumpton, F. A. (1995). Hypothesis on the genesis of zeolites in some European volcaniclastic deposits. Natural zeolites, 93, 51-67.

Dinter, D. A. (1998). Late Cenozoic extension of the Alpine collisional orogen, northeastern Greece: Origin of the north Aegean basin. Geological society of America bulletin, 110(9), 1208-1230.

Donahoe, R. J., & Liou, J. G. (1985). An experimental study on the process of zeolite formation. Geochimica et Cosmochimica Acta, 49(11), 2349-2360.

Eckert, M. (2012). Max von Laue and the discovery of X‐ray diffraction in 1912. Ann. Phys. (Berlin), 524(5), A83-A85.

Eichhorn, H. (1858). Ueber die Einwirkung verdünnter Salzlösungen auf Silicate. Annalen der Physik, 181(9), 126-133.

Ellis, A. J., & Wilson, S. H. (1960). The geochemistry of alkali metal ions in the Wairakei hydrothermal system. New Zealand Journal of Geology and Geophysics, 3(4), 593-617.

Ernst, W. G. (1968). Minerals, rocks and inorganic materials. Amphiboles. Vol. 1. Berlin: Springer.

Eugster, H. P., & Hardie, L. A. (1978). Saline lakes. In Lakes (pp. 237-293). Springer, New York, NY.

Ferraris, G., & Ivaldi, G. (2002). Structural features of micas. Reviews in mineralogy and geochemistry, 46(1), 117-153.

Filippidis, A., Kassoli-Fournaraki, A., & Tsirambides, A. (1995). The zeolites of Petrota and Metaxades (Thrace) and the kaolins of Leucogia (Macedonia), Greece. In Sofia Zeolite Meeting, 95, 49-62.

Filippidis, A., Godelitsas, A., Charistos, D., Misaelides, P., & Kassoli-Fournaraki, A. (1996). The chemical behavior of natural zeolites in aqueous environments: Interactions between low-silica zeolites and 1 M NaCl solutions of different initial pH-values. Applied Clay Science, 11(2-4), 199-209.

Filippidis, A., & Kassoli-Fournaraki, A. (2000). Fifth International Conference on Environmental Pollution, Thessaloniki, Greece, 28/08-1/09/2000, Proceedings, 149-155.

Filippidis, A., & Kantiranis, N. (2007). Experimental neutralization of lake and stream waters from N. Greece using domestic HEU-type rich natural zeolitic material. Desalination, 213(1-3), 47-55.

Filippidis, A., Kantiranis, N., Stamatakis, M., Drakoulis, A., & Tzamos, E. (2007). The cation exchange capacity of the Greek zeolitic rocks. Bulletin of the Geological Society of Greece, 40(2), 723-735.

Filippidis, A., Apostolidis, N., Paragios, I., & Filippidis, S. (2008). Purification of dye-work and urban wastewaters, production of odorless and cohesive zeo-sewage sludge, using Hellenic Natural Zeolite. In Proc. of the 1st Int. Conf. Hazardous Waste Manag., Chania, 1-3 October, 8 pp.

Filippidis, A., Papastergios, G., Apostolidis, N., Paragios, I., Filippidis, S., & Sikalidis, C. (2009). Odorless and cohesive zeo-sewage sludge produced by Hellenic Natural Zeolite

treatment. In Proc. of 3rd AMIREG Intern. Conf. Resource Utilization and Hazardous Waste Management , 96-100.

Filippidis, A. (2010). Environmental, industrial and agricultural applications of Hellenic Natural Zeolite. Hellenic Journal of Geosciences, 45(20109), 91.

Filippidis, A., Papastergios, G., Apostolidis, N., Filippidis, S., Paragios, I., & Sikalidis, C. (2010). Purification of urban wastewaters by Hellenic Natural Zeolite. Bulletin of the Geological Society of Greece, 43(5), 2597-2605.

Filippidis, A., Tsirambides, A., Kantiranis, N., Tzamos, E., Vogiatzis, D., Papastergios, G., Papadopoulos, A. and Filippidis, S. (2011). Purification of wastewater from Sindos industrial area of Thessaloniki (N. Greece) using Hellenic Natural Zeolite. Environ, Earth Sci., Springer, Berlin, Advances in the Research of Aquatic Environment, 2, 435-442.

Filippidis, A., Kantiranis, N., Tzamos, E., Vogiatzis, D., & Papastergios, G. (2012). Odourless-cohesive zeosewage sludge production and urban wastewater purification by natural zeolite. In Proc. of the XI Int. Conf. Prot. Restor. Enviv, Thessaloniki, 3-6 July, 582-588.

Filippidis, A., Godelitsas, A., Kantiranis, N., Gamaletsos, P., Tzamos, E., & Filippidis, S. (2013). Neutralization of sludge and purification of wastewater from Sindos industrial area of Thessaloniki (Greece) using natural zeolite. Bulletin of the Geological Society of Greece, 47(2), 920-926.

Filippidis, A., Kantiranis, N., Tziritis, E., Filippidis, S., Vogiatzis, D., & Tzamos, E. (2014). The use of Hellenic Natural Zeolite (HENAZE) in the purification of Thessaloniki industrial area wastewaters. In Proc. of the 10th Intern. Hydrogeol. Congr., Thessaloniki, 8-10 Oct., 187-193.

Filippidis, A., Kantiranis, N., Papastergios, G., & Filippidis, S. (2015). Safe management of municipal wastewater and sludge by fixation of pollutants in very high quality HEU-type zeolitic tuff. J. Basic. Appl. Res. Intern, 7, 1-8.

Filippidis, A. (2016). Applications of the Hellenic Natural Zeolite (HENAZE) and specifications of zeolitic tuffs. Bulletin of the Geological Society of Greece, 50(4), 1809-1819.

Filippidis, A., Kantiranis, N., & Tsirambides, A. (2016a). The mineralogical composition of Thrace zeolitic rocks and their potential use as feed additives and nutrition supplements. Bulletin of the Geological Society of Greece, 50(4), 1820-1828.

Filippidis, A., Tziritis, E., Kantiranis, N., Tzamos, E., Gamaletsos, P., Papastergios, G., & Filippidis, S. (2016b). Application of Hellenic Natural Zeolite in Thessaloniki industrial area wastewater treatment. Desalination and Water Treatment, 57(42), 19702-19712.

Frost, B. R., Chamberlain, K. R., & Schumacher, J. C. (2001). Sphene (titanite): phase relations and role as a geochronometer. Chemical geology, 172(1-2), 131-148.

Galli, E. (1975). Le zeoliti. Rendiconti Soc. It. Min. Petr, 31, 549-564.

Ghiara, M. R., Biasco, A., Franco, E., Petti, C., & Stanzione, D. (1991). A geochemical and mineralogical study on the reaction of natural phonolitic–tephritic glass with deionized water in a closed system. Atti 1o Convegno Nazionale di Scienza e Tecnologia delle Zeoliti. L’Aquila, 26-27.

Giampaolo, C., Godano, R. F., Sabatino, B. D., & Barrese, E. (1997). The alteration of leucite-bearing rocks: a possible mechanism. European Journal of Mineralogy, 1277-1292.

Goble, R. J., Treves, S. B., & Ghazi, A. M. (1993). Comparison of the Rainy Ridge analcime phonolite sill and the Crowsnest Volcanics, Alberta, Canada. Canadian Journal of Earth Sciences, 30(8), 1644-1649.

Godelitsas, A., Misaelides, P., Filippidis, A., Charistos, D., & Anousis, I. (1996). Uranium sorption from aqueous solutions on sodium-form of HEU-type zeolite crystals. Journal of Radioanalytical and Nuclear Chemistry, 208(2), 393-402.

Goguel, R. (1983). The rare alkalies in hydrothermal alteration at Wairakei and Broadlands, geothermal fields, NZ. Geochimica et cosmochimica acta, 47(3), 429-437.

Graham, R. C., Tice, K. R., & Guertal, W. R. (1994). The pedologic nature of weathered rock. Whole regolith pedology, 21-40.

Gupta, A. K., & Fyfe, W. S. (1975). Leucite survival; the alteration to analcime. The Canadian Mineralogist, 13(4), 361-363.

Hall, A. (1998). Zeolitization of volcaniclastic sediments; the role of temperature and pH. Journal of Sedimentary Research, 68(5), 739-745.

Harker, A. (1954). Petrology for students. Cambridge University Press, Cambridge, England. 283.

Harkovska, A., Yanev, Y., & Marchev, P. (1989). General features of the Paleogene orogenic magmatism in Bulgaria. Geologica Balcanica, 19(1), 37-72.

Harkovska, A., Marchev, P., Machev, P., & Peckay, Z. (1998). Paleogene magmaism in the Central Rhodope area, Bulgaria. A review and new data.–acta Vulcanol, 10(2), 199-216.

Hawthorne, F. C. (1981). Some systematics of the garnet structure. Journal of Solid State Chemistry, 37(2), 157-164.

Hawthorne, F. C. (1983). The crystal chemistry of the amphiboles; Appendices. The Canadian Mineralogist, 21(2), 353-480.

Hawthorne, F. C., Ventura, G. D., Robert, J. L., Welch, M. D., Raudsepp, M., & Jenkins, D. M. (1997). A Rietveld and infrared study of synthetic amphiboles along the potassium-richterite–tremolite join. American Mineralogist, 82(7-8), 708-716.

Hawthorne, F. C., & Oberti, R. (2006). On the classification of amphiboles. The Canadian Mineralogist, 44(1), 1-21.

Hawthorne, F. C., & Oberti, R. (2007a). Amphiboles: crystal chemistry. Reviews in Mineralogy and Geochemistry, 67(1), 1-54.

Hawthorne, F. C., & Oberti, R. (2007b). Classification of the amphiboles. Reviews in Mineralogy and Geochemistry, 67(1), 55-88.

Hay, R. L. (1963a). Stratigraphy and zeolitic diagenesis of the John Day Formation of Oregon. Berkeley: University of California Press.

Hay, R. L. (1963b). Zeolitic weathering in Olduvai Gorge, Tanganyika. Geological Society of America Bulletin, 74(10), 1281-1286.

Hay, R. L. (1966). Zeolites and zeolitic reactions in sedimentary rocks (Vol. 85). Geological Society of America.

Hay, R. L. (1978). Geologic occurrence of zeolites. In Natural Zeolites: Occurrence, Properties, Use. L.B. Sand, F.A. Mumpton, (eds) Pergamon Press, Elmsford, New York, 135-143.

Hay, R. L., & Sheppard, R. A. (2001). Occurrence of zeolites in sedimentary rocks: An overview. Reviews in mineralogy and geochemistry, 45(1), 217-234.

Hayden, L. A., Watson, E. B., & Wark, D. A. (2008). A thermobarometer for sphene (titanite). Contributions to Mineralogy and Petrology, 155(4), 529-540.

How, P. (1864). XI. On mordenite, a new mineral from the trap of Nova Scotia.

Iijima, A. (1972). Argillaceous and zeolitic alteration zones surrounding Kuroko (Black ore) deposits in Odate district of Akita Prefecture. Mining Geology, 22(111), 1-20.

Iijima, A. (1974). Clay and zeolitic alteration zones surrounding Kuroko deposits in the Hokuroku district, northern Akita, as submarine hydrothermal-diagenetic alteration products. Mining Geol. Special Issue6, 6, 267-289.

Iijima, A. (1978). Geological occurrences of zeolites in marine environments. In Natural Zeolites: Occurrence, Properties, Use. L.B. Sand, F.A. Mumpton, (eds) Pergamon Press, Elmsford, New York, 175-198.

Iijima, A. (1980). Geology of natural zeolites and zeolitic rocks. Pure and Applied Chemistry, 52(9), 2115-2130.

Iijima, A. (1995). Zeolites in petroleum and natural gas reservoirs in Japan: a review. In Natural Zeolites: Occurrence, Properties, Use. L.B. Sand, F.A. Mumpton, (eds) Pergamon Press, Elmsford, New York, 99-114.

Inglezakis, V. J., & Zorpas, A. A. (Eds.). (2012). Handbook of natural zeolites. Bentham Science Publishers.

Ito, T., Morimoto, N., & Sadanaga, R. (1954). On the structure of epidote. Acta Crystallographica, 7(1), 53-59.

Ivanova, R., Stoykova, K., & Yanev, Y. (2000). Acid pyroclastic rocks from the Sheinovets caldera, Eastern Rhodopes: Lithostratigraphy, characteristics and age. Geochem. Mineral. Petrol, 37, 47-56.

Ivanova, R., Pecskay, Z., & Yanev, Y. (2001). K-Ar ages of the volcanic rocks from the Paleogene Sheinovets caldera, Eastern Rhodopes (Bulgaria). Comptes Rendus de l'Academie Bulgare des Sciences, 54(3), 3-59.

Ivanova, R. (2005). Volcanology and petrology of acid volcanic rocks from the Paleogene Sheinovets caldera, Eastern Rhodopes. Geochemistry, Mineralogy and Petrology, 42, 23-45.

Jones, C. E., Tarney, J., Baker, J. H., & Gerouki, F. (1992). Tertiary granitoids of Rhodope, northern Greece: magmatism related to extensional collapse of the Hellenic Orogen?. Tectonophysics, 210(3-4), 295-314.

Kalaitzis, A., Stoulos, S., Melfos, V., Kantiranis, N., & Filippidis, A. (2019). Application of zeolitic rocks in the environment: assessment of radiation due to natural radioactivity. Journal of Radioanalytical and Nuclear Chemistry, 319(3), 975-985.

Kantiranis, N., Stamatakis, M., Filippidis, A., & Squires, C. (2004). The uptake ability of the clinoptilolitic tuffs of Samos Island, Greece. Bulletin of the Geological Society of Greece, 36(1), 89-96.

Kantiranis, N., Chrissafis, C., Filippidis, A., & Paraskevopoulos, K. M. (2006). Thermal distinction of HEU-type mineral phases contained in Greek zeolite-rich volcaniclastic tuffs. European Journal of Mineralogy, 18(4), 509-516.

Karaborni, S., Smit, B., Heidug, W., Urai, J., & van Oort, E. (1996). The swelling of clays: molecular simulations of the hydration of montmorillonite. Science, 271(5252), 1102-1104.

Karlsson, H. R., & Clayton, R. N. (1991). Analcime phenocrysts in igneous rocks: Primary or secondary?. American Mineralogist, 76(1-2), 189-199.

Karlsson, H. R., & Clayton, R. N. (1993). Analcime phenocrysts in igneous rocks: primary or secondary?—Reply. American Mineralogist, 78(1-2), 230-232.

Kastner, M., & Stonecipher, S. A. (1978). Zeolites in pelagic sediments of the Atlantic, Pacific, and Indian Oceans. In Natural Zeolites: Occurrence, Properties, Use. L.B. Sand, F.A.

Mumpton, (eds) Pergamon Press, Elmsford, New York, 199-220.

Kassoli-Fournaraki, A., Stamatakis, M., Hall, A., Filippidis, A., Michailidis, K., Tsirambides, A., & Koutles, T. (2000). The Ca-rich clinoptilolite deposit of Pentalofos, Thrace, Greece. Natural Zeolites for the Third Millennium, Napoli, De Frede Editore, 193-202.

Kirov, G. N., Filippidis, A., Tsirambidis, A., Tzvetanov, R. G., & Kassoli-Fournaraki, A. (1990). Zeolite-bearing rocks in Petrota area (Eastern Rhodope massif, Greece). Geologica Rhodopica, 2, 500-511.

Kohn, M. J. (2017). Titanite petrochronology. Reviews in Mineralogy and Geochemistry, 83(1), 419-441.

Koutles, T., Kassoli-Fournaraki, A., Filippidis, A., & Tsirambides, A. (1995). Geology and geochemistry of the Eocene zeolite bearing volcaniclastic sediments of Metaxades, Thrace, Greece. Estudios Geologicos, 51(1-2), 19-27.

Krìstmannsdóttir, H., & Tómasson, J. (1978). Zeolite zones in geothermal areas in Iceland. In Natural Zeolites: Occurrence, Properties, Use. L.B. Sand, F.A. Mumpton, (eds) Pergamon Press, Elmsford, New York, 277-284.

Kristmannsdóttir, H. (1979). Alteration of Basaltic Rocks by Hydrothermal-Activity at 100-300 C. In Developments in sedimentology (Vol. 27, pp. 359-367). Elsevier.

Langella, A., Cappelletti, P., & Gennaro, R. D. (2001). Zeolites in closed hydrologic systems. Reviews in mineralogy and geochemistry, 45(1), 235-260.

Leake, B. E. (1978). Nomenclature of amphiboles. American Mineralogist, 63(11-12), 1023-1052.

Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., ... & Linthout, K. Whittaker EJW & Guo Youzhi (1997): Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral, 35, 219-246.

Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A., Ferraris, G., Grice, J. D., ... & Stephenson, N. C. (2003). Nomenclature of amphiboles: additions and revisions to the International

Mineralogical Association’s 1997 recommendations. The Canadian Mineralogist, 41(6), 1355-1362.

Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A., Ferraris, G., Grice, J. D., ... & Stephenson, N. C. (2004). Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Mineralogical Magazine, 68(1), 209-215.

Lee, E. F., & Rees, L. V. (1987). Effect of calcination on location and valency of lanthanum ions in zeolite Y. Zeolites, 7(2), 143-147.

Leggo, P. J., Cochemé, J. J., Demant, A., & Lee, W. T. (2001). The role of argillic alteration in the zeolitization of volcanic glass. Mineralogical Magazine, 65(5), 653-663.

Lenzi, G., & Passaglia, E. (1974). Fenomeni di zeolitizzazione nelle formazioni vulcaniche della regione sabatina. Boll Soc Geol Ital, 93, 623-645.

Li, X., Prins, R., & van Bokhoven, J. A. (2009). Synthesis and characterization of mesoporous mordenite. Journal of catalysis, 262(2), 257-265.

Liati, A., Gebauer, D., & Fanning, C. M. (2011). Geochronology of the Alpine UHP Rhodope Zone: a review of isotopic ages and constraints on the geodynamic evolution. Ultrahigh-pressure metamorphism, 295-324.

Liou, J. G., Seki, Y., Guillemette, R. N., & Sakai, H. (1985). Compositions and parageneses of secondary minerals in the Onikobe geothermal system, Japan. Chemical geology, 49(1-3), 1-20.

Lips, A. L., White, S. H., & Wijbrans, J. R. (2000). Middle-late Alpine thermotectonic evolution of the southern Rhodope Massif, Greece. Geodinamica Acta, 13(5), 281-292.

Luhr, J. F., & Giannetti, B. (1987). The brown leucitic tuff of Roccamonfina Volcano (Roman region, Italy). Contributions to Mineralogy and Petrology, 95(4), 420-436.

Luhr, J. F., & Kyser, T. K. (1989). Primary igneous analcime: The Colima minettes. American Mineralogist, 74(1-2), 216-223.

Marantos, I., Christidis, G. E., & Ulmanu, M. (2012). Zeolite formation and deposits. Handbook of natural zeolites, 28-51.

Mariner, R. H., & Surdam, R. C. (1970). Alkalinity and formation of zeolites in saline alkaline lakes. Science, 170(3961), 977-980.

Mason, B., & Sand, L. B. (1960). Clinoptilolite from Patagonia The relationship between clinoptilolite and heulandite. American Mineralogist: Journal of Earth and Planetary Materials, 45(3-4), 341-350.

Meier, W. Μ. (1961). The crystal structure of mordenite (ptilolite). Zeitschrift für Kristallographie-Crystalline Materials, 115(1-6), 439-450.

McBain, J. M. (1932). Sorption by Chabasite. Other Zeolites and Permeable Crystals, The Sorption of Gases and Vapours by Solids, Rutledge & Sons, Ltd., London, 167-176.

Michailidou, E., Vavelidis, M., Papadopoulou, L., & Kantiranis, N. (2020). Mineralogical and Geochemical Study of the Zeolitized Volcaniclastic Rocks of Petrota region, Evros Prefecture,

Northeastern Greece. Bulletin of the Geological Society of Greece, 56(1), 17-38.

Mills, S. J., Hatert, F., Nickel, E. H., & Ferraris, G. (2009). The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21(5), 1073-1080.

Ming, D. W., & Mumpton, F. A. (1989). Zeolites in soils. Minerals in soil environments, 873-911.

Ming, D. W., & Boettinger, J. L. (2001). Zeolites in soil environments. Reviews in mineralogy and geochemistry, 45(1), 323-345.

Misaelides, P., Godelitsas, A., Haristos, D., Noli, F., Filippidis, A., & Sikalidis, C. (1993). Determination of heavy metal uptake by the sodium form of heulandite using radiochemical techniques. Geologica Carpathica-Series Clays, 44(2), 115-119.

Misaelides, P., & Godelitsas, A. (1995). Removal of heavy metals from aqueous solutions using pretreated natural zeolitic materials: the case of mercury (II). Toxicological & Environmental Chemistry, 51(1-4), 21-29.

Misaelides, P., Godelitsas, A., Filippidis, A., Charistos, D., & Anousis, I. (1995). Thorium and uranium uptake by natural zeolitic materials. Science of the total environment, 173, 237-246.

Morimoto, N. (1988). Nomenclature of pyroxenes. Mineralogy and Petrology, 39(1), 55-76.

Morimoto, N. (1989). Nomenclature of pyroxenes. Mineralogical Journal, 14(5), 198-221.

Mumpton, F. A. (1960). Clinoptilolite redefined. American Mineralogist: Journal of Earth and Planetary Materials, 45(3-4), 351-369.

Murray, J., & Renard, A. F. (1891). Report on deep-sea deposits, based on the specimens collected during the voyage of HMS" Challenger" in the years 1872-76. Chailenger Rep, 3, 1-525.

Ni, Y., Hughes, J. M., & Mariano, A. N. (1995). Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80(1-2), 21-26.

Novak, G. A., & Gibbs, G. V. (1971). The crystal chemistry of the silicate garnets. American Mineralogist: Journal of Earth and Planetary Materials, 56(5-6), 791-825.

Oliveira, L. C., Petkowicz, D. I., Smaniotto, A., & Pergher, S. B. (2004). Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water research, 38(17), 3699-3704.

Ogihara, S. (1996). Diagenetic transformation of clinoptilolite to analcime in silicic tuffs of Hokkaido, Japan. Mineralium Deposita, 31(6), 548-553.

Pasero, M., Kampf, A. R., Ferraris, C., Pekov, I. V., Rakovan, J., & White, T. J. (2010). Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22(2), 163-179.

Passaglia, E., & Vezzalini, G. (1985). Crystal chemistry of diagenetic zeolites in volcanoclastic deposits of Italy. Contributions to Mineralogy and Petrology, 90(2-3), 190-198.

Pearce, T. H. (1970). The analcite-bearing volcanic rocks of the Crowsnest Formation, Alberta. Canadian Journal of Earth Sciences, 7(1), 46-66.

Pearce, T. H. (1993). Analcime phenocrysts in igneous rocks: Primary or secondary?—Discussion. American Mineralogist, 78(1-2), 225-229.

Perraki, T., & Orfanoudaki, A. (2004). Mineralogical study of zeolites from Pentalofos area, Thrace, Greece. Applied Clay Science, 25(1-2), 9-16.

Petrova, N., & Kirov, G. N. (1995). Zeolitization of glasses: a calorimetric study. Thermochimica acta, 269, 443-452.

Peytcheva, I., Kostitsin, Y., Salnikova, E., von Quadt, A., Kamenov, B., & Klain, L. (1999). Alpine evolution of the magmatism in the West-Rhodopes: Rb–Sr and U–Pb isotope data. In Journal of Conference Abstracts, 4, 470.

Pirsson, L. V. (1890). ART. XXX.--On Mordenite. American Journal of Science (1880-1910), 40(237), 232.

Prelević, D., Foley, S. F., Cvetković, V., & Romer, R. L. (2004). The analcime problem and its impact on the geochemistry of ultrapotassic rocks from Serbia.

Putnis, C. V., Geisler, T., Schmid-Beurmann, P., Stephan, T., & Giampaolo, C. (2007). An experimental study of the replacement of leucite by analcime. American Mineralogist, 92(1), 19-26.

Rabo, J. A., & Schoonover, M. W. (2001). Early discoveries in zeolite chemistry and catalysis at Union Carbide, and follow-up in industrial catalysis. Applied Catalysis A: General, 222(1-2), 261-275.

Rapp, R. P., & Watson, E. B. (1986). Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contributions to Mineralogy and Petrology, 94(3), 304-316.

Rapprich, V. (2003). Analcimizovane leucity a Ti-flogopit Doupovskych hor. Zpravy o geologickych vyzkumech, 2002, 180-181.

Ray, N., Putnis, A., & Gillet, P. (1986). Polytypic relationship between clinozoisite and zoisite. Bulletin de minéralogie, 109(6), 667-685.

Redkin, A. F., & Hemley, J. J. (2000). Experimental Cs and Sr sorption on analcime in rock-buffered systems at 250–300 C and Psat and the thermodynamic evaluation of mineral solubilities and phase relations. European Journal of Mineralogy, 12(5), 999-1014.

Renaut, R. W. (1993). Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoria Basin, Kenya Rift Valley. Sedimentology, 40(2), 271-301.

Ricou, L. E., Burg, J. P., Godfriaux, I., & Ivanov, Z. (1998). Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodinamica Acta, 11(6), 285-309.

Rieder, M., Cavazzini, G., D’yakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., ... & Robert, J. L. (1998). Nomenclature of the micas. Clays and clay minerals, 46(5), 586-595.

Rieder, M., Cavazzini, G., D'yakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., ... & Sassi, F. P. (1999). Nomenclature of the micas. Mineralogical Magazine, 63(2), 267-296.

Roux, J., & Hamilton, D. L. (1976). Primary igneous analcite—an experimental study. Journal of Petrology, 17(2), 244-257.

Saha, P. (1959). Geochemical and X-ray investigation of natural and synthetic analcites. American Mineralogist: Journal of Earth and Planetary Materials, 44(3-4), 300-313.

Seki, Y., Oki, Y., Matsuda, T., Mikami, K., & Okumura, K. (1969). Metamorphism in the Tanzawa mountains, Central Japan II. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 61(2), 50-75.

Seki, Y., & Oki, Y. (1969). Wairakite-analcime solid solutions from low-grade metamorphic rocks of the Tanzawa Mountains, Central Japan. Mineralogical Journal, 6(1-2), 36-45.

Seki, Y., Oki, Y., Onuki, H., & Odaka, S. (1971). Metamorphism and vein minerals of north Tanzawa mountains, central Japan. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 66(1), 1-21.

Schaller, W. T. (1923). Ptilolite and related zeolites. In proc. Society (ET Wherry, ed). Am. Mineral, 8, 93-94.

Schaller, W. T. (1932). The mordenite-ptilolite group; clinoptilolite, a new species. American Mineralogist: Journal of Earth and Planetary Materials, 17(4), 128-134.

Schmidt, M. W., & Poli, S. (2004). Magmatic epidote. Reviews in Mineralogy and Geochemistry, 56(1), 399-430.

Stamatakis, M. G., Hall, A., & Hein, J. R. (1996). The zeolite deposits of Greece. Mineralium Deposita, 31(6), 473-481.

Stamatakis, M. G., Hall, A., Lutat, U., & Walsh, J. N. (1998). Mineralogy, origin and commercial value of the zeolite-rich tuffs in the Petrota-Pentalofos area, Evros county, Greece. Estudios Geologicos, 54, 3-16.

Steiner, A. (1953). Hydrothermal rock alteration at Wairakei, New Zealand. Economic geology, 48(1), 1-13.

Stonecipher, S. A. (1978). Chemistry of deep-sea phillipsite, clinoptilolite, and host sediments. In Natural Zeolites: Occurrence, Properties, Use. L.B. Sand, F.A. Mumpton, (eds) Pergamon Press, Elmsford, New York, 221-234.

Studt, F. E. (1958). The Wairakei hydrothermal field under exploitation. New Zealand journal of geology and geophysics, 1(4), 703-723.

Surdam, R. C., & Eugster, H. P. (1976). Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geological Society of America Bulletin, 87(12), 1739-1752.

Surdam, R. C. (1977). Zeolites in closed hydrologic systems. Mineral. Soc. Amer. Short Course Notes, 4, 65-91.

Szostak, R. (1989). Molecular sieves. New York: Van Nostrand Reihold.

Tappert, M. C., Rivard, B., Giles, D., Tappert, R., & Mauger, A. (2013). The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53, 26-38.

Tischendorf, G., Forster, H. J., Gottesmann, B., & Rieder, M. (2007). True and brittle micas: composition and solid-solution series. Mineralogical Magazine, 71(3), 285-320.

Tómasson, J., & Kristmannsdóttir, H. (1972). High temperature alteration minerals and thermal brines, Reykjanes, Iceland. Contributions to Mineralogy and Petrology, 36(2), 123-134.

Tserveni-Gousi, A. S., Yannakopoulos, A. L., Katsaounis, N. K., Filippidis, A., & Kassoli-Fournaraki, A. (1997). Some interior egg characteristics as influenced by addition of Greek clinoptilolitic rock material in the hen diet. Archiv fur Geflugelkunde, 61, 291-296.

Tsirambides, A., Kassoli-Fournaraki, A., Filippidis, A., & Soldatos, K. (1989). Preliminary results on clinoptilolite-containing volcaniclastic sediments from Metaxades, NE Greece. Bull. Geol. Soc. Greece, 23(2), 451-460.

Tsirambides, A., Filippidis, A., & Kassoli-Fournaraki, A. (1993). Zeolitic alteration of Eocene volcaniclastic sediments at Metaxades, Thrace, Greece. Applied Clay Science, 7(6), 509-526.

Tsolis-Katagas, P., & Katagas, C. (1990). Zeolitic diagenesis of Oligocene pyroclastic rocks of the Metaxades area, Thrace, Greece. Mineralogical Magazine, 54(374), 95-103.

Tzamos, E., Kantiranis, N., Papastergios, G., Vogiatzis, D., Filippidis, A., & Sikalidis, C. (2011). Ammonium exchange capacity of the Xerovouni zeolitic tuffs, Avdella area, Evros Prefecture, Greece. Clay Minerals, 46(2), 179-187.

Ulmanu, M. (2012). Mineralogy of natural zeolites. Handbook of natural zeolites, 52-69.

Utada, M. (1988). Occurrence and genesis of hydrothermal zeolites and related minerals from the Kuroko-type mineralization areas in Japan. Occurrence, Properties and utilization of natural zeolites.

Utada, M. (2001). Zeolites in hydrothermally altered rocks. Reviews in mineralogy and geochemistry, 45(1), 305-322.

Vavelidis, M., Zaimis, S., & Melfos, V. (2012). The "Stone Museum" in Petrota of Evros (NE Greece): An exhibition of rock specimens related to the local geology and the ancient quarrying activity. International Multidisciplinary Scientific GeoConference: SGEM, 1, 341.

Wilkinson, J. F. G. (1965). Some feldspars, nephelines and analcimes from the Square Top Intrusion, Nundle, NSW. Journal of Petrology, 6(3), 420-444.

Wilkinson, J. F. G. (1968). Analcimes from some potassic igneous rocks and aspects of analcime-rich igneous assemblages. Contributions to Mineralogy and Petrology, 18(3), 252-269.

Wilkinson, J. F. G. (1977). Analcime phenocrysts in a vitrophyric analcimite—primary or secondary?. Contributions to Mineralogy and Petrology, 64(1), 1-9.

Xu, R., Pang, W., Yu, J., Huo, Q., & Chen, J. (2009). Chemistry of zeolites and related porous materials: synthesis and structure. John Wiley & Sons.

Yannakopoulos, A., Tserveni-Gousi, A., Kassoli-Fournaraki, A., Tsirambides, A., Michailidis, K., Filippidis, A., & Lutat, U. (2000). Effects of dietary clinoptilolite-rich tuff on the performance of growing-finishing pigs. Natural Zeolites for the Third Millennium, Napoli, De Frede, 471-481.

Yanev, Y., & Ivanova, R. (2010). Mineral chemistry of the collision-related acid Paleogene volcanic rocks of the Eastern Rhodopes, Bulgaria. Geochemistry, Mineralogy and Petrology, 48, 39-65.

Young, D. A. (2018). Mind over magma: the story of igneous petrology. Princeton University Press.

Zagorchev, I. S. (1998). Pre-Priabonian Palaeogene formations in southwestern Bulgaria and northern Greece: stratigraphy and tectonic implications. Geological Magazine, 135(1), 101-119.

Zhao, D., Cleare, K., Oliver, C., Ingram, C., Cook, D., Szostak, R., & Kevan, L. (1998). Characteristics of the synthetic heulandite-clinoptilolite family of zeolites. Microporous and Mesoporous Materials, 21(4-6), 371-379.

Zhu, X. K., & O'Nions, R. K. (1999). Monazite chemical composition: some implications for monazite geochronology. Contributions to Mineralogy and Petrology, 137(4), 351-363.

Zotov, N., Dimitrov, V., & Yanev, Y. (1989). X-ray radial distribution function analysis of acid volcanic glasses from the Eastern Rhodopes, Bulgaria. Physics and Chemistry of Minerals, 16(8), 774-782.

Ελληνική Βιβλιογραφία

Βαβελίδης, Μ., Μέλφος, Β., Κιουρτζόγλου, E., & Τσατσοπούλου, Π. (2003). Λατομική δραστηριότητα στην περιοχή Μεσημβρίας-Ζώνης Έβρου κατά την αρχαιότητα. Το Αρχαιολογικό Έργο στη Μακεδονία και Θράκη (ΑΕΜΘ), 15, 33-45.

Βαβελίδης Μ., Χοτζίδης Α., και Μέλφος Β. (2007). Τα Λατομεία και τα Μνημεία του Βόρειου Έβρου: Παράγοντες οικονομικής ανάπτυξης από την αρχαιότητα έως τη σύγχρονη εποχή, Ημερίδα: Δυνατότητες Ανάπτυξης στο Βόρειο Έβρο, Πετρωτά, Πρακτ, 38-53.

Μέλφος, Β., Στρατούλη, Γ., Βαβελίδης, Μ., & Ευστρατίου, Ν. (2001). Προέλευση και η διακίνηση των πρώτων υλών για την κατασκευή των λειασμένων λίθινων εργαλείων από το νεολιθικό οικισμό Μάκρης Εβρου. Αρχαιομετρικές μελέτες για την Ελληνική Προϊστορία και Αρχαιότητα. Επιστ. Επιμέλ.: Μπασιάκος Ι., Αλούπη Ε., Φακορέλλης Γ. ΕΑΕ & ΚΜΑΜ, Αθήνα, 763-778.

Μέλφος, Β., & Βαβελίδης, Μ. (2000). Η κατεργασία του λίθου και η λατομική δραστηριότητα κατά την αρχαιότητα: ίχνη λατόμευσης στη Μαρώνεια του Νομού Ροδόπης, Θεσσαλονικέων Πόλις, 2, 63-76.

Τσιραμπίδης, Α., & Φιλιππίδης, Α. (2013). Ορυκτοί Πόροι Ελλάδος: Αποθέματα και Αξία. Τομέας Ορυκτολογίας-Πετρολογίας-Κοιτασματολογίας, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 46.

Φιλιππίδης, Α., Κασώλη-Φουρναράκη, Α., Χαριστός, Δ., & Τσιραμπίδης, Α. (1997). Οι Ελληνικοί ζεόλιθοι ως μέσο απομάκρυνσης από το νερό ιχνοστοιχείων και ρύθμισης του pH. 4ο Υδρογεωλογικό Συνέδριο. Πρακτ. 4ου Υδρογεωλ. Συν., Θεσσαλονίκη, 539-546.

Φιλιππίδης, Α. Α., & Καντηράνης, Ν. (2005). Βιομηχανικές, αγροτικές, κτηνοτροφικές και περιβαλλοντικές χρήσεις των φυσικών ζεόλιθων της Θράκης. Δελτίον της Ελληνικής Γεωλογικής

Εταιρίας, 37, 90-101.

Φιλιππίδης, Α. (2007). Ζεόλιθοι Δήμου Τριγώνου του Νομού Έβρου στη βιομηχανική, αγροτική, κτηνοτροφική και περιβαλλοντική τεχνολογία. Ημερίδα: Δυνατότητες Ανάπτυξης στο Βόρειο Έβρο, Πετρωτά, Πρακτ, 89-107.

Φιλιππίδης, Α. (2009). Διαχείριση αστικών λυμάτων και βιομηχανικών υγρών αποβλήτων με Ελληνικό φυσικό ζεόλιθο. Άρθρο ανασκόπησης. Συν. Ολοκληρωμένη διαχείριση υδατικών πόρων, Βόλος, 2, 829-836.

Φιλιππίδης, Α. (2010). Περιβαλλοντικές, γεωργικές, κτηνοτροφικές και βιομηχανικές εφαρμογές του Ελληνικού Φυσικού Ζεόλιθου. Ηιών, 7, 14-16.

Φιλιππίδης, Α. Α., & Τσιραμπίδης, Α. (2012). Ποιοτικά χαρακτηριστικά των ελληνικών ζεόλιθων, περιβαλλοντικές, βιομηχανικές, αγροτικές και υδατκές χρήσεις του Ελληνικού φυσικού ζεόλιθου: ανασκόπηση. Επιστημονική Επετηρίδα του Τμήματος Γεωλογίας (ΑΠΘ), 101, 125.

Φιλιππίδης, Α. Α. (2015α). Ποιοτικά χαρακτηριστικά και πολυάριθμες εφαρμογές των πολύ υψηλής ποιότητας ζεολιθικών τόφφων τύπου-HEU. Επιστημονική Επετηρίδα του Τμήματος Γεωλογίας (ΑΠΘ), 103, 73-76.

Φιλιππίδης, Α. Α. (2015β). Η χρήση ζεολιθικών τόφφων Μεταξάδων-Αβδέλλας ως δομικοί λίθοι στη βιομηχανία κατασκευών. Επιστημονική Επετηρίδα του Τμήματος Γεωλογίας (ΑΠΘ), 103, 77-80.

Φιλιππίδης, Α. Α. (2016). Δέσμευση και καθήλωση νιτρικών (ΝΟ3-) με τη χρήση του Ελληνικού Φυσικού Ζεόλιθου (ΕΛΦΥΖΕ). Επιστημονική Επετηρίδα του Τμήματος Γεωλογίας (ΑΠΘ), 105, 81-87.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.