Εξώφυλλο

Contribution to the study of the parameters that control the seismic motion on surface geological formations: Experimental and theoretical approach based on ARGONET, Greek and French earthquake records = Συμβολή στη μελέτη παραμέτρων που διαμορφώνουν τη σεισμική κίνηση σε Επιφανειακούς γεωλογικούς σχηματισμούς: Πειραματική και θεωρητική προσέγγιση με έμφαση στο πεδίο δοκιμών ARGONET στην Κεφαλονιά καθώς και με τη χρήση άλλων δεδομένων του Ελληνικού και Γαλλικού δικτύου επιταχυνσιογράφων

Ioannis Athansios Grendas

Περίληψη


Ground motion simulation are based on the knowledge of the following three factors: seismic source, wave attenuation and Site Amplification Factor (SAF) due to the local surface geological conditions. In this study a parametric GIT algorithm, was developed, by introducing distance and regional dependent attenuation parameters, regarding the geometrical spreading and anelastic attenuation terms, respectively. This step aims at a more detailed investigation of the attenuation path, anticipating to improve estimation of all three fundamental factors controlling seismic ground motion. The algorithm is based on a Gauss-Newton iterative inversion method, using initial realistic model parameters. A synthetic dataset, approximating a simplified real dataset, was inverted by the proposed GIT algorithm verifying its computational validity. The effectiveness of the algorithm is also supported by the ~9% misfit reduction achieved by a GIT application of the new algorithm on a real dataset, with respect to the application by a previously developed GIT algorithm investigating a uniform attenuation model. The GIT algorithm developed in this study was also applied to a real dataset of S-wave records corresponding to western Greece earthquakes. Regional variation of Qs was found around a mean value of 45, while a distance dependent geometrical spreading attenuation factor gamma, γ, was found to be smoothly decreased from 12 km to 200 km (from 0.98 to 0.77). The SAF for both horizontal and vertical components in 24 sites located in the study area were also determined. Moment Magnitudes, Mw and corner frequencies, fc, were computed for the 180 earthquakes, indicating an increasing trend of stress drop, Δσ from 6 to 55 bars for the Mw range between 2.5 to 5.2, respectively. Moreover, in this study a SAF estimation technique at a target site in relation to a distant reference site is also presented and evaluated, through a new developed algorithm. This algorithm is based on the retrieval of the minimum phase Source Time Function (mpSTF) at a pair of examined sites (target-reference), based on the Spectral Factorization analysis of Coda waves (SFC) proposed by Sèbe et al., (2005, 2018). The so-derived mpSTF is considered as a convolution of the actual source function with the SAF of the site, so that the FAS ratio between the mpSTF, derived at one site (target) and at a distant reference site, should be an estimate of the target SAF. Under the conditions of a common STF at the examined sites and of similar coda waves excitation factor, the ratio of the FAS of the mpSTFs (target over reference site) can safely approach the actual SAF, at least when target-reference distance is up to ~60 km and provides satisfactory results at longer distances. This technique was applied to the 24 sites in western Greece, and to 18 in southeastern France, in relation to 4 and 3 reference sites, respectively, located at varying distances from the target ones (from 0.4 km to 110 km).

Η προσομοίωση της εδαφικής κίνησης βασίζεται στη γνώση των ακόλουθων παραμέτρων: σεισμική πηγή, απόσβεση των κυμάτων και παράγοντας τοπικής εδαφικής ενίσχυσης (SAF) της θέσης μελέτης εξαιτίας των τοπικών επιφανειακών γεωλογικών συνθηκών. Στη μελέτη αυτή αναπτύχθηκε ένας παραμετρικός αντιστροφής GIT, εισάγοντας παραμέτρους απόσβεσης εξαρτώμενες από την απόσταση και την εξεταζόμενη περιοχή, που αφορούν αντίστοιχα στη γεωμετρική εξάπλωση και στην ανελαστική απόσβεση των σεισμικών κυμάτων. Αυτό το βήμα στοχεύει σε μία πιο λεπτομερή διερεύνηση των ιδιοτήτων της απόσβεσης του δρόμου διάδοσης, προσδοκώντας στη βελτίωση εκτίμησης των τριών παραγόντων που διαμορφώνουν τη σεισμική κίνηση. Ο αλγόριθμος είναι βασισμένος στη μέθοδο της επαναληπτικής αντιστροφής Gauss-Newton, χρησιμοποιώντας αρχικές τιμές για τις παραμέτρους που εξετάζονται. Η αποτελεσματικότητα του αλγορίθμου υποστηρίζεται από τη μείωση ~9% της συνάρτησης διαφοράς μεταξύ των πραγματικών και υπολογισμένων δεδομένων που προέκυψε από την εφαρμογή του νέου αλγορίθμου σε πραγματικά δεδομένα, σε σχέση με την εφαρμογή ενός προηγούμενου αλγορίθμου αντιστροφής για ένα μέσο μοντέλο απόσβεσης. Ακόμη, ο αλγόριθμος της αντιστροφής εφαρμόστηκε σε ένα δείγμα πραγματικών δεδομένων από σεισμικές καταγραφές S-κυμάτων στη Δυτική Ελλάδα. Χωρικές μεταβολές του παράγοντα ποιότητας, Qs υπολογίστηκαν με μέση τιμή 45, ενώ ο εξαρτώμενος από την απόσταση παράγοντας της γεωμετρικής εξάπλωσης, γ, βρέθηκε να μειώνεται σταδιακά από τα 12 km στα 200 km (από 0.98 μέχρι 0.77). Επιπλέον υπολογίστηκαν οι παράγοντες ενίσχυσης SAF των οριζόντιων και των κατακόρυφων συνιστωσών σε 24 θέσεις σταθμών επιταχυνσιογράφων στην περιοχή μελέτης, καθώς και τα μεγέθη σεισμικής ροπής, Mw και οι γωνιακές συχνότητες, fc των 180 εξεταζόμενων σεισμών, υποδεικνύοντας μία αύξηση της πτώσης τάσης, Δσ, από 6 bar σε 55 bars για εύρος μεγεθών Mw 2.5 - 5.2. Ακόμη, σε αυτή τη μελέτη παρουσιάζεται και αξιολογείται μία τεχνική εκτίμησης του παράγοντα SAF σε μία θέση μελέτης, σε σχέση με έναν απομακρυσμένο σταθμό αναφοράς, μέσω της ανάπτυξης ενός νέου αλγορίθμου, ο οποίος βασίζεται στον υπολογισμό της ελάχιστης φάσης της Χρονικής Συνάρτησης της Σεισμικής πηγής (mpSTF), σε δύο θέσεις (μελέτης και αναφοράς), χρησιμοποιώντας τη μέθοδο φασματικής παραγοντοποίησης των κυμάτων ουράς μίας σεισμικής καταγραφής (SFC), η οποία προτάθηκε από τους Sèbe et al., (2005, 2018). Η υπολογισμένη mpSTF θεωρείται ως η συνέλιξη μεταξύ της STF του σεισμού και του SAF στη θέση μελέτης, και κατά συνέπεια ο λόγος μεταξύ των mpSTFs που υπολογίζονται σε μία θέση μελέτης και σε έναν απομακρυσμένο σταθμό αναφοράς θα πρέπει να οδηγεί στην εκτίμηση του SAF στη θέση μελέτης. Υπό την προϋπόθεση της κοινής STF μεταξύ των εξεταζόμενων θέσεων, αλλά και του κοινού παράγοντα διασποράς των κυμάτων ουράς, ο λόγος μεταξύ των FAS των mpSTFs στις θέσεις μελέτης και αναφοράς, μπορεί να προσεγγίσει ικανοποιητικά τoν παράγοντα SAF, τουλάχιστον όταν η απόσταση μεταξύ των δύο σταθμών είναι ~60 km, ενώ παρέχει ικανοποιητικά αποτελέσματα για μεγαλύτερες αποστάσεις. Η τεχνική αυτή εφαρμόστηκε σε 24 θέσεις σταθμών στη Δυτική Ελλάδα, οι οποίοι χρησιμοποιήθηκαν και στην εφαρμογή του νέου αλγορίθμου GIT, καθώς και σε 18 θέσεις σταθμών στη Νοτιοανατολική Γαλλία, σε σχέση με 4 και 3 σταθμούς αναφοράς αντίστοιχα, οι οποίοι βρίσκονται σε αποστάσεις από τις θέσεις μελέτης, που κυμαίνονται από 0.4 km μέχρι 110 km.

Πλήρες Κείμενο:

PDF

Αναφορές


Aki, K., 1969. Analysis of the Seismic Coda of Local Earthquakes as Scattered Waves. J. Geophys. Res. 74, 615–631.

Aki, K., 1980a. Scattering and attenuation of shear waves in the lithosphere. J. Geophys. Res. 85, 6496–6504.

Aki, K., 1980b. Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys. Earth Planet. Inter. 21, 50–60.

Aki, K., Chouet, B., 1975. Origin of coda waves: Source, attenuation, and scattering effects. J. Geophys. Res. 80, 3322–3342.

Aki, K., Richards, P., 2002. Quantitative seismology, 2nd ed. W.H. Freeman and Company, pp. 700.

Anderson, B.Y.J.G., Hough, S.E., 1984. A model for the shape of the Fourier Amplitude Spectrum of accelertion at high frequencies. Bull. Seismol. Soc. Am. 74, 1969–1993.

Andrews, D.J., 1986. Objective determination of source parameters and similarity of earthquakes of different size. Earthq. source Mech. 37, 259–267.

Arias, A., 1970. Measure of Earthquake Intensity. Seism. Des. Nucl. Power Plants 438–483.

Assatourians, K., Atkinson, G., 2012. EXSIM12: a Stochastic Finite- Fault Computer Program in FORTRAN.

Bard, P.-Y., Bouchon, M., 1985. The Two-Dimensional Resonance of Sediment-Filled Valleys. Bull. Seismol. Soc. Am. 75, 519–541.

Bard, P.Y., Gariel, J.C., 1986. Seismic Response of Two-Dimensional Sedimentary Deposits With Large Vertical Velocity Gradients. Bull. Seismol. Soc. Am. 76, 343–366.

Baroux, E., Pino, N.A., Valensise, G., Scotti, O., Cushing, M.E., 2003. Source parameters of the 11 June 1909, Lambesc (Provence, southeastern France) earthquake: A reappraisal based on macroseismic, seismological, and geodetic observations. J. Geophys. Res. Solid Earth 108.

Baskoutas, I., Panapoulou, G., Rontouanni, T., 2000. Seismic attenuation in two geologically distinct regions of central Greece. Boll. di Geofis. Teor. ed Appl. 41, 233–242.

Benetatos, C., Kiratzi, A., Roumelioti, Z., Stavrakakis, G., Drakatos, G., Latoussakis, I., 2005. The 14 August 2003 Lefkada Island (Greece) earthquake: Focal mechanisms of the mainshock and of the aftershock sequence. J. Seismol. 9, 171–190.

Billi, A., Faccenna, C., Bellier, O., Minelli, L., Neri, G., Piromallo, C., Presti, D., Scrocca, D., Serpelloni, E., 2011. Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean. Bull. la Soc. Geol. Fr. 182, 279–303.

Bindi, D., Pacor, F., Luzi, L., Massa, M., Ameri, G., 2009. The Mw 6.3, 2009 L’Aquila earthquake: Source, path and site effects from spectral analysis of strong motion data. Geophys. J. Int. 179, 1573–1579.

Boore, D., Boatwright, J., 1984. Average body-wave radiation coefficients. Bull. - Seismol. Soc. Am. 13, 576.

Boore, D.M., 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull. Seismol. Soc. Am. Soc. Am. 73, 240.

Boore, D.M., 2003. Simulation of ground motion using the stochastic method. Pure Appl. Geophys. 160, 635–676.

Boore, D.M., Joyner, W.B., 1997. Site Amplifications for Generic Rock Sites. Bull. Seismol. Soc. Am. 87, 327–341.

Borcherdt, R., 1970. Effects of Local Geology on Ground Motion Near San Francisco Rbay. Bull. Seismol. Soc. Am. 60, 29–61.

Brune, J.N., 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75, 4997–5009.

Burton, P.W., Xu, Y., Qin, C., Tselentis, G.A., Sokos, E., 2004. A catalogue of seismicity in Greece and the adjacent areas for the twentieth century. Tectonophysics 390, 117–127.

Burton, P.W., Xu, Y., Tselentis, G.A., Sokos, E., Aspinall, W., 2003. Strong ground acceleration seismic hazard in Greece and neighboring regions. Soil Dyn. Earthq. Eng. 23, 159–181.

Cadet, H., Bard, P.-Y., Rodriguez-Marek, A., 2012. Site effect assessment using KiK-net data: Part 1. A simple correction procedure for surface/downhole spectral ratios. Bull. Earthq. Eng. 10, 421–448.

Castro, R.R., Anderson, J.G., Singh, S.K., 1990. Site response, attenuation and source spectra of S waves along the Guerrero, Mexico subduction zone. Bull. Seismol. Soc. Am. 80, 1481–1503.

Causse, M., Cornou, C., Maufroy, E., Grasso, J.-R., Baillet, L., Haber, E.E., 2021. Exceptional ground motion during the shallow Mw 4.9 2019 Le Teil earthquake, France. Commun. Earth Environ.

Courboulex, F., Dujardin, A., Vallée, M., Delouis, B., Sira, C., Deschamps, A., Honoré, L., Thouvenot, F., 2013. High-frequency directivity effect for an Mw 4.1 earthquake, widely felt by the population in southeastern France. Bull. Seismol. Soc. Am. 103, 3347–3353.

Cushing, E.M., Hollender, F., Moiriat, D., Guyonnet-Benaize, C., Theodoulidis, N., Pons-Branchu, E., Sépulcre, S., Bard, P.Y., Cornou, C., Dechamp, A., Mariscal, A., Roumelioti, Z., 2020. Building a three dimensional model of the active Plio-Quaternary basin of Argostoli (Cephalonia Island, Greece): An integrated geophysical and geological approach. Eng. Geol. 265, 105441.

Danciu, L., Sokos, E., Tselentis, G., 2007. Probabilistic Seismic Hazard Assessment in Terms of Engineering Parameters in Greece. Int. Symp. Seism. risk Reduct. 26–27.

Davatgari, F.T.M., Bora, S.S., Mirzaei, N., Ghofrani, H., Kazemian, J., 2021. Erratum: Spectral models for seismological source parameters, path attenuation and site-effects in Alborz region of northern Iran (Geophysical Journal International DOI: 10.1093/gji/ggab227). Geophys. J. Int. 227, 969.

Dobry, R., Idriss, I., Ng, E., 1978. Duration characteristics of horizontal components of strong-motion earthquake records. Bull. Seismol. Soc. Am. 68, 1487–1520.

Dolan, S.S., Bean, C.J., Riollet, B., 1998. The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs. Geophys. J. Int. 132, 489–507.

Drouet, S., Assumpção, M., 2013. Spectral analysis of Brazilian data and comparison with ground-motion models. 13th Int. Congr. Brazilian Geophys. Soc. EXPOGEF, Rio Janeiro, Brazil, 26–29 August 2013 1745–1749.

Drouet, S., Bouin, M.P., Cotton, F., 2011. New moment magnitude scale, evidence of stress drop magnitude scaling and stochastic ground motion model for the French West Indies. Geophys. J. Int. 187, 1625–1644.

Drouet, S., Chevrot, S., Cotton, F., Souriau, A., 2008a. Simultaneous inversion of source spectra, attenuation parameters, and site responses: Application to the data of the French accelerometric network. Bull. Seismol. Soc. Am. 98, 198–219.

Drouet, S., Cotton, F., Guéguen, P., 2010. VS30, κ, regional attenuation and Mw from accelerograms: Application to magnitude 3-5 French earthquakes. Geophys. J. Int. 182, 880–898.

Drouet, S., Triantafyllidis, P., Savvaidis, A., Theodulidis, N., 2008b. Comparison of site-effects estimation methods using the Lefkas, Greece, 2003 earthquake aftershocks. Bull. Seismol. Soc. Am. 98, 2349–2363.

Duverger, C., Mazet-Roux, G., Bollinger, L., Guilhem Trilla, A., Vallage, A., Hernandez, B., Cansi, Y., 2021. A decade of seismicity in metropolitan France (2010-2019): The CEA/LDG methodologies and observations. BSGF - Earth Sci. Bull. 192.

Edwards, B., Rietbrock, A., Bommer, J.J., Baptie, B., 2008. The acquisition of source, path, and site effects from microearthquake recordings using Q tomography: Application to the United Kingdom. Bull. Seismol. Soc. Am. 98, 1915–1935.

Field, E.H., Jacob, K.H., 1995. A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bull. - Seismol. Soc. Am. 85, 1127–1143.

Flerit, F., Armijo, R., King, G., Meyer, B., 2004. The mechanical interaction between the propagating North Anatolian Fault and the back-arc extension in the Aegean. Earth Planet. Sci. Lett. 224, 347–362.

Ganas, A., Serpelloni, E., Drakatos, G., Kolligri, M., Adamis, I., Tsimi, C., Batsi, E., 2009. The Mw 6.4 SW-achaia (Western Greece) earthquake of 8 june 2008: Seismological, field, GPS observations, and stress modeling. J. Earthq. Eng. 13, 1101–1124.

Grendas, I., Hollender, F., Theodoulidis, N., Hatzidimitriou, P., Bard, P.Y., Perron, V., 2021a. Sprectral amplification estimation, based on distant reference station. 6th IASPEI / IAEE Int. Symp. Eff. Surf. Geol. Seism. Motion, August.

Grendas, I., Theodoulidis, N., Bard, P.Y., Perron, V., Hatzidimitriou, P., Hollender, F., 2022. Can site effects be estimated with respect to a distant reference station? Performance of the spectral factorization of coda waves. Geophys. J. Int. 230, 1–28.

Grendas, I., Theodoulidis, N., Hatzidimitriou, P., Margaris, B., Drouet, S., 2018. Determination of source, path and site parameters based on non-linear inversion of accelerometric data in Greece. Bull. Earthq. Eng. 16, 5061–5094.

Grendas, I., Theodoulidis, N., Hollender, F., Hatzidimitriou, P., 2019. Improved Generalized Inversion Technique ( GIT ) and its implementation to a synthetic dataset , to retrieve seismic source , propagation path and site factors. 15th Int. Congr. Geol. Soc. Greece, Athens, 22-24 May.

Grendas, I., Theodoulidis, N., Hollender, F., Hatzidimitriou, P., 2021b. A GIT algorithm for simultaneous estimation of seismic source, site response and regional-distance dependent attenuation parameters: application to synthetic and real data. J. Seismol. 1–24.

Grendas, I., Theodoulidis, N., Hollender, F., Hatzidimitriou, P., 2021c. Effects of the S-wave time-window selection on Standard Spectral Ratio (SSR): Application to the ARGONET vertical array, Greece. 6th Int. Conf. Earthq. Eng. Seismol.

Gusev, A.A., Abubakirov, I.R., 1996. Simulated envelopes of non-isotropically scattered body waves as compared to observed ones: another manifestation of fractal heterogeneity. Geophys. J. Int. 127, 49–60.

Gutenberg, B., Richter, C.F., 1944. Frequency of earthquakes in California. Bull. Seism. Soc. Am. 34, 185–188.

Haghshenas, E., Bard, P.Y., Theodulidis, N., Atakan, K., Cara, F., Cornou, C., Cultrera, G., Di Giulio, G., Dimitriu, P., Fäh, D., De Franco, R., Marcellini, A., Pagani, M., Rovelli, A., Savvaidis, A., Tento, A., Vidal, S., Zacharopoulos, S., 2008. Empirical evaluation of microtremor H/V spectral ratio. Bull. Earthq. Eng. 6, 75–108.

Hanks, T.C., Kanamori, H., 1979. A moment magnitude scale. J. Geophys. Res. 84, 2348–2350.

Hartzell, S.H., 1978. Earthquake aftershocks as Green’s functions. Geophys. Res. Lett. 1–4.

Hashida, T., Stavrakakis, G., Shimazaki, K., 1988. Three-dimensional seismic attenuation structure beneath the Aegean region and its tectonic implication. Tectonophysics 145, 43–54.

Hatzfeld, D., Kassaras, I., Panagiotopoulos, D., Amorese, D., Makropoulos, K., Karakaisis, G., Coutant, O., 1995. Microseimicity and strain pattern in northwestern Greece. Tectonics 14, 773–785.

Hatzidimitriou, P., 1996. Backward scattering coefficient and attenuation of shear waves in the crust in Northern Greece. In: First Congress of the Balkan Geophysical Society. pp. 36–37.

Hatzidimitriou, P., Papazachos, C., Kiratzi, A., Theodulidis, N., 1993. Estimation of attenuation structure and local earthquake magnitude based on acceleration records in Greece. Tectonophysics 217, 243–253.

Hatzidimitriou, P.M., Papadimitriou, E.E., Mountrakis, D.M., Papazachos, B.C., 1985. The seismic parameter b of the frequency-magnitude relation and its association with the geological zones in the area of Greece. Tectonophysics 120, 141–151.

Herraiz, M., Espinosa, A.F., 1986. Scattering and attenuation of high-frequency seismic waves development of the theory of coda waves. US Geol. Surv. 86–455.

Hollender, F., Cornou, C., Dechamp, A., Oghalaei, K., Renalier, F., Maufroy, E., Burnouf, C., Thomassin, S., Wathelet, M., Bard, P.Y., Boutin, V., Desbordes, C., Douste-Bacqué, I., Foundotos, L., Guyonnet-Benaize, C., Perron, V., Régnier, J., Roullé, A., Langlais, M., Sicilia, D., 2018. Characterization of site conditions (soil class, VS30, velocity profiles) for 33 stations from the French permanent accelerometric network (RAP) using surface-wave methods. Bull. Earthq. Eng. 16, 2337–2365.

Hough, S.E., Seeber, L., Lerner-Lam, A., Armbruster, J.C., Guo, H., 1991. Empirical Green’s function analysis of Loma Prieta aftershocks. Bull. Seismol. Soc. Am. 1737–1753.

Imtiaz, A., Cornou, C., Bard, P.Y., Hobiger, M., 2021. Diffracted wavefield decomposition and multidimensional site effects in the Argostoli valley, Greece. Geophys. J. Int. 224, 1849–1869.

Ito, E., Nakano, K., Nagashima, F., Kawase, H., 2020. A method to directly estimate s-wave site amplification factor from horizontal-to-vertical spectral ratio of earthquakes (Ehvsrs). Bull. Seismol. Soc. Am. 110, 2892–2911.

Iwata, T., Irikura, K., 1988. Source parameters of the 1983 Japan sea earthquake sequence. J. Phys. Earth 36, 155–184.

Kagami, H., Duke, C.M., Liang, G.C., Ohta, Y., 1982. Evaluation of site effect upon seismic wave amplification due to extremely deep soil deposits. Bull. - Seismol. Soc. Am. 987–998.

Karakostas, V., Papadimitriou, E., Mesimeri, M., Gkarlaouni, C., Paradisopoulou, P., 2015. The 2014 Kefalonia Doublet (Mw6.1 and Mw6.0), central Ionian Islands, Greece: Seismotectonic implications along the Kefalonia transform fault zone. Acta Geophys. 63, 1–16.

Kassaras, I., Kapetanidis, V., Karakonstantis, A., 2016. On the spatial distribution of seismicity and the 3D tectonic stress field in western Greece. Phys. Chem. Earth 95, 50–72.

Kawase, H., Aki, K., 1989. A study of the response of a soft basin for incident S, P, and Rayleigh waves with special reference to the long duration observed in Mexico City. Bull. - Seismol. Soc. Am. 79, 1361–1382.

Kawase, H., Sánchez-Sesma, F.J., Matsushima, S., 2011. The optimal use of horizontal-to-vertical spectral ratios of earthquake motions for velocity inversions based on diffuse-field theory for plane waves. Bull. Seismol. Soc. Am. 101, 2001–2014.

Kennett, B.L., Kerry, N.J., 1979. Seismic waves in a stratified half space. Geophys. J. R. Astron. Soc. 57, 557–583.

Kijko, A., 2011. Seismic Hazard. Gupta H.K. Encycl. Solid Earth Geophys. Springer, Dordrecht.

Kiratzi, A.A., 2014. Mechanisms of Earthquakes in Aegean. Encycl. Earthq. Eng. 1–22.

Kishida, T., Ktenidou, O.J., Darragh, R.B., Walter, S., 2016. Semi-automated procedure for windowing time series and computing Fourier amplitude spectra (FAS) for the NGA-West2 database.

Klin, P., Laurenzano, G., Priolo, E., 2018. Gitanes: A Matlab package for estimation of site spectral amplification with the generalized inversion technique. Seismol. Res. Lett. 89, 182–190.

Konno, K., Ohmachi, T., 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88, 228–241.

Kopnichev, Y.F., 1977. The role of multiple scattering in the formation of seismogram’s tail. Izv. Acad. Sci. USSR, Phys. Solid Earth 13, 394–398.

Koutrakis, S.I., Karakaisis, G.F., Hatzidimitriou, P.M., Koliopoulos, P.K., Margaris, V.N., 2002. Seismic hazard in Greece based on different strong gound motion parameters. J. Earthq. Eng. 60, 75–109.

Kovachev, S.A., Kuzin, I.P., Shoda, O.Y., Soloviev, S.L., 1991. Attenuation of S-waves in the lithosphere of the Sea of Crete according to OBS observations. Phys. Earth Planet. Inter. 69, 101–111.

Lacombe, C., Campillo, M., Paul, A., Margerin, L., 2003. Separation of intrinsic absorption and scattering attenuation from Lg coda decay in central France using acoustic radiative transfer theory. Geophys. J. Int. 154, 417–425.

Le Breton, E., Handy, M.R., Molli, G., Ustaszewski, K., 2017. Post-20 Ma Motion of the Adriatic Plate: New Constraints From Surrounding Orogens and Implications for Crust-Mantle Decoupling. Tectonics 36, 3135–3154.

Lekkas, E., Mavroulis, S., Carydis, P., Alexoudi, V., 2018. The 17 November 2015 Mw 6.4 Lefkas (Ionian Sea, Western Greece) Earthquake: Impact on Environment and Buildings, Geotechnical and Geological Engineering. Springer International Publishing.

Lentas, K., Gkarlaouni, C., Kalligeris, N., Melis, N., 2021. The 30 October 2020, Mw 7.0, Samos Earthquake: Aftershock Relocation, Slip Model, Coulomb Stress Evolution and Estimation of Shaking.

Lermo, J., Chavez-Garcia, F.J., 1993. Site effect evaluation using spectral ratios with only one station. Bull. - Seismol. Soc. Am. 83, 1574–1594.

Louvari, E., Kiratzi, A.A., Papazachos, B.C., 1999. The Cephalonia Transform Fault and its extension to western Lefkada Island (Greece). Tectonophysics 308, 223–236.

Makropoulos, K., Kaviris, G., Kouskouna, V., 2012. An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth

Syst. Sci. 12, 1425–1430.

Makropoulos, K.C., Burton, P.W., 1985. Seismic hazard in Greece. I. Magnitude recurrence. Tectonophysics 117.

Manchuel, K., Traversa, P., Baumont, D., Cara, M., Nayman, E., Durouchoux, C., 2018. The French seismic CATalogue (FCAT-17). Bull. Earthq. Eng. 16, 2227–2251.

Mandal, P., Dutta, U., 2011. Estimation of earthquake source parameters in the Kachchh seismic zone, Gujarat, India, from strong-motion network data using a generalized inversion technique. Bull. Seismol. Soc. Am. 101, 1719–1731.

Margaris, B., Athanasopoulos, G., Mylonakis, G., Papaioannou, C., Klimis, N., Theodulidis, N., Savvaidis, A., Efthymiadou, V., Stewart, J.P., 2010. The 8 june 2008 Mw6.5 Achaia-Elia, Greece earthquake: Source characteristics, ground motions, and ground failure. Earthq. Spectra 26, 399–424.

Margaris, B., Scordilis, E.M., Stewart, J.P., Boore, D.M., Theodoulidis, N., Kalogeras, I., Melis, N.S., Skarlatoudis, A.A., Klimis, N., Seyhan, E., 2021. Hellenic Strong-Motion Database with Uniformly Assigned Source and Site Metadata for the Period 1972–2015. Seismol. Res. Lett.

Margaris, B.N., Boore, D.M., 1998. Determination of Δσ and κo from response spectra of large earthquakes in Greece. Bull. Seismol. Soc. Am. 88, 170–182.

Margaris, B.N., Hatzidimitriou, P.M., 2002. Source spectral scaling and stress release estimates using strong-motion records in Greece. Bull. Seismol. Soc. Am. 92, 1040–1059.

Margerin, L., Campillo, M., Shapiro, N.M., Van Tiggelen, B., 1999. Residence time of diffuse waves in the crust as a physical interpretation of coda Q: Application to seismograms recorded in Mexico. Geophys. J. Int. 138, 343–352.

Margheriti, L., Wennerberg, L., Boatwright, J., 1994. A comparison of coda and S-wave spectral ratios as estimates of site response in the southern San Francisco Bay area. Bull. - Seismol. Soc. Am. 84, 1815–1830.

Margrave, G.F., 1998. Theory of nonstationary linear filtering in the Fourier domain with application to time-variant filtering. Geophysics 63, 244–259.

Margrave, G.F., Lamoureux, M.P., Henley, D.C., 2011. Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics 76, W15–W30.

MATLAB, 2017. The MathWorks, Inc., Natick, Massachusetts, United States.

Melis, N.S., Brooks, M., Pearce, R.G., 1989. A microearthquake study in the Gulf of Patras region, western Greece, and its seismotectonic interpretation. Geophys. J. Int. 98, 515–524.

Milana, G., Barba, S., Del Pezzo, E., Zambonelli, E., 1996. Site response from ambient noise measurements: new perspectives from an array study in Central Italy. Bull. Seismol. Soc. Am. 320–328.

Mueller, C.S., 1985. Source pulse enhancement by deconvolution of an empirical Green’s function. Geophys. Res. Lett. 33–36.

Nakamura, Y., 1989. A method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface. Railw. Tech. Res. Institute, Q. Reports.

Nakano, K., Matsushima, S., Kawase, H., 2015. Statistical properties of strong ground motions from the generalized spectral inversion of data observed by K-NET, KiK-net, and the JMA Shindokei network in Japan. Bull. Seismol. Soc. Am. 105, 2662–2680.

Nocquet, J.M., Calais, E., 2004. Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure Appl. Geophys. 161, 661–681.

Oppenheim, A. V., Ronald, W.S., 1975. Digital Signal Processing. In: Prentice-Hall. Englewood Cliffs, New Jersey.

Ortiz-Alemán, C., Reyes-Olvera, M., Iglesias-Mendoza, A., Orozco-Del-Castillo, M.G., Hernández-Gómez, J.J., 2017. Estimation of source; path and site effects at MASE array stations: A comprehensive study. Geofis. Int.

Oth, A., Parolai, S., Bindi, D., Wenzel, F., 2009. Source spectra and site response from S waves of intermediate-depth Vrancea, Romania, earthquakes. Bull. Seismol. Soc. Am. 99, 235–254.

Papaioannou, C.A., Papazachos, B.C., 2000. Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bull. Seismol. Soc. Am. 90, 22–33.

Papanikolaou, D.J., Royden, L.H., 2007. Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene-Quaternary normal faults - Or what happened at Corinth? Tectonics 26, 1–16.

Papazachos, B., Papazachou, C., 1997. The earthquakes of Greece, Ziti. ed. Thessaloniki.

Papazachos, B.C., 1990. Seismicity of the Aegean and surrounding area. Tectonophysics 178, 287–308.

Papazachos, B.C., Comninakis, P.E., Karakaisis, G.F., Karakostas, B.G., Papaioannou, C.A., Papazachos, C.B., Scordilis, E.M., 2000. A catalogue of earthquakes in Greece and surrounding area for the period 550BC-1999. Publ. Geoph. Lab., Univ. of Thessaloniki.

Papazachos, B.C., Papadimitriou, E.E., Kiratzi, A.A., Papazachos, C.B., Louvari, E.K., 1998. Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication. Boll. Geof. teor. appl, 39, 199–218.

Papazachos, B.C., Papaioannou, C.A., Margaris, B.N., Theodulidis, N.P., 1993. Regionalization of seismic hazard in Greece based on seismic sources. Nat. Hazards 8, 1–18.

Papazachos, B.C., Papaioannou, C.A., Papazachos, C.B., Savvaidis, A.S., 1999. Rupture zones in the Aegean region. Tectonophysics 308, 205–221.

Papazachos, C., 1999. An Alternative Method for a Reliable Estimation of Seismicity with an Application in Greece and the Surrounding Area. Bull. Seismol. Soc. Am. 89, 111–119.

Papazachos, C., Kiratzi, A., 1996. A detailed study of the active crustal deformation in the Aegean and surrounding area. Tectonophysics 253, 129–153.

Papazachos, C.B., 1992. Anisotropic radiation modelling of macroseismic intensities for estimation of the attenuation structure of the upper crust in Greece. Pure Appl. Geophys. 138, 445–469.

Papoulia, J., Nicolich, R., Makris, J., Slejko, D., Mascle, J., Papadopoulos, G., Anagnostou, C.H., Camera, L., Daskalaki, E., Fasoulaka, C.H., Fokaefs, A., Fountoulis, I., Garcia, J., Gülkan, P., Mariolakos, I., Pomonis, A., Santulin, M., Tsambas, A., Wardell, N., Yalçiner, A., 2014. A new seismogenic model for the Kyparissiakos Gulf and western Peloponnese (SW Hellenic Arc). Boll. di Geofis. Teor. ed Appl. 55, 405–432.

Pérouse, E., Sébrier, M., Braucher, R., Chamot-Rooke, N., Bourlès, D., Briole, P., Sorel, D., Dimitrov, D., Arsenikos, S., 2017. Transition from collision to subduction in Western Greece: the Katouna–Stamna active fault system and regional kinematics. Int. J. Earth Sci.

Perron, V., Gélis, C., Froment, B., Hollender, F., Bard, P.Y., Cultrera, G., Cushing, E.M., 2018a. Can broad-band earthquake site responses be predicted by the ambient noise spectral ratio? Insight from observations at two sedimentary basins. Geophys. J. Int. 215, 1442–1454.

Perron, V., Laurendeau, A., Hollender, F., Bard, P.Y., Gélis, C., Traversa, P., Drouet, S., 2018b. Selecting time windows of seismic phases and noise for engineering seismology applications: a versatile methodology and algorithm. Bull. Earthq. Eng. 16, 2211–2225.

Polatidis, A., Kiratzi, A., Hatzidimitriou, P., Margaris, B., 2003. Attenuation of shear-waves in the back-arc region of the Hellenic arc for frequencies from 0.6 to 16 Hz. Tectonophysics 367, 29–40.

Rautian, T.G., Khalturin, V.I., 1978. The use of the coda for determination of the earthquake source spectrum. Bull. Seismol. Soc. Am. 68, 923–948.

Régnier, J., Laurendeau, A., Duval, A.-M., 2010. From heterogeneous set of soil data to Vs profile : Application on the French permanent accelerometric network (RAP) sites. 14th Eur. Conf. Earthq. Eng. Ohrid, Repub. Maced. 30 August-3 Sept. 2010.

Ritz, J., Baize, S., Delouis, B., Mathot, E., Larroque, C., Audin, L., Al, M.C., 2019. Surface rupture and shallow fault reactivation during the 2019 Mw 4.9 Le Teil earthquake, France. Commun. Earth Environ. 1–12.

Sachpazi, M., Hirn, A., Clément, C., Haslinger, F., Laigle, M., Kissling, E., Charvis, P., Hello, Y., Lépine, J.C., Sapin, M., Ansorge, J., 2000. Western Hellenic subduction and Cephalonia Transform: Local earthquakes and plate transport and strain. Tectonophysics 319, 301–319.

Sánchez-Sesma, F.J., Pérez-Ruiz, J.A., Luzón, F., Campillo, M., Rodríguez-Castellanos, A., 2008. Diffuse fields in dynamic elasticity. Wave Motion 45, 641–654.

Sato, H., 1977. Energy propagation including scattering effects single isotropic scattering approximation. J. Phys. Earth 25, 27–41.

Sato, H., 1978. Mean free path of S-waves under the Kanto district of Japan. J. Phys. Earth 26, 185–198.

Sato, H., 1982. Attenuation of S waves in the lithosphere due to scattering by its random velocity structure. J. Geophys. Res. Solid Earth 87, 7779–7785.

Sato, H., Fehler, M.C., Maeda, T., 2012. Seismic wave propagation and scattering in the heterogeneous earth, Vol. (496). ed. Springer, Berlin.

Scordilis, E.M., Karakaisis, G.F., Karacostas, B.G., Panagiotopoulos, D.G., Comninakis, P.E., Papazachos, B.C., 1985. Evidence for transform faulting in the Ionian sea: The Cephalonia island earthquake sequence of 1983. Pure Appl. Geophys. PAGEOPH 123, 388–397.

Scordilis, E.M., Kementzetzidou, D., Papazachos, B.C., 2016. Local magnitude calibration of the Hellenic Unified Seismic Network. J. Seismol. 20, 319–332.

Sèbe, O., Bard, P.-Y., Guilbert, J., 2005. Single station estimation of seismic source time function from coda waves: The Kursk disaster. Geophys. Res. Lett. 32, 1–4.

Sèbe, O., Guilbert, J., Bard, P.-Y., 2014. Estimation des effets de site par factorisation spectrale du signal de coda (Spectral factorization of seismic site effect from coda waves). Spec. issue "Hazard Geosci. 1157–741X, 37–42.

Sèbe, O., Guilbert, J., Bard, P.-Y., 2018. Spectral factorization of the source time function of an earthquake from coda waves, application to the 2003 rambervillers, France, earthquake. Bull. Seismol. Soc. Am. 108, 2521–2542.

Seekins, L.C., Wennerberg, L., Margheriti, L., Liu, H.P., 1996. Site amplification at five locations in San Francisco, California: A comparison of S waves, codas, and microtremors. Bull. Seismol. Soc. Am. 86, 627–635.

Singh, S., Herrmann, R.B., 1983. Regionalization of crustal coda Q in the continental United States. J. Geophys. Res. Solid Earth 88, 527–538.

Soham, B., Abhishek, K., 2016. Determination of seismic wave attenuation: A Review. Disaster Adv. 9.

Sokos, E., Gallovič, F., Evangelidis, C., Serpetsidaki, A., Plicka, V., Kostelecký, J., Zahradník, J., 2020. The 2018 Mw 6.8 Zakynthos, Greece, Earthquake : Dominant

Strike-Slip Faulting near Subducting Slab. Seismol. Res. Lett. 91, 721–732.

Sokos, E., Kiratzi, A., Gallovič, F., Zahradník, J., Serpetsidaki, A., Plicka, V., Janský, J., Kostelecký, J., Tselentis, G.A., 2015. Rupture process of the 2014 Cephalonia, Greece, earthquake doublet (Mw6) as inferred from regional and local seismic data. Tectonophysics 656, 131–141.

Sokos, E., Zahradník, J., Gallovič, F., Serpetsidaki, A., Plicka, V., Kiratzi, A., 2016. Asperity break after 12years: The Mw6.4 2015 Lefkada (Greece) earthquake. Geophys. Res. Lett. 1–8.

Stavrakakis, G.N., Drakopoulos, J., 1995. Bayesian probabilities of earthquake occurrences in Greece and surrounding areas. Pure Appl. Geophys. PAGEOPH 144, 307–319.

Steidl, J.H., Tumarkin, A.G., Archuleta, R.J., 1996. What is a reference? Bull. Seismol. Soc. Am. 86, 1743–1748.

Svigkas, N., Atzori, S., Kiratzi, A., Tolomei, C., Antonioli, A., Papoutsis, I., Salvi, S., Kontoes, C., 2019. On the segmentation of the Cephalonia-Lefkada Transform Fault Zone (Greece) from an InSAR multi-mode dataset of the Lefkada 2015 sequence. Remote Sens. 11.

Svigkas, N., Kiratzi, A., Antonioli, A., Atzori, S., Tolomei, C., Salvi, S., Polcari, M., Bignami, C., 2021. Earthquake source investigation of the kanallaki, march 2020 sequence (north-western greece) based on seismic and geodetic data. Remote Sens. 13, 1–16.

Tarantola, A., 2005. Inverse problem theory and methods for model parameter estimation. Soc. Ind. Appl. Math. 343.

Theodoulidis, N., Hollender, F., Mariscal, A., Moiriat, D., Bard, P.Y., Konidaris, A., Cushing, M., Konstantinidou, K., Roumelioti, Z., 2018. The ARGONET (Greece) seismic observatory: An accelerometric vertical array and its data. Seismol. Res. Lett. 89, 1555–1565.

Theodoulidis, N., Karakostas, C., Lekidis, V., Makra, K., Margaris, B., Morfidis, K., Papaioannou, C., Rovithis, E., Salonikios, T., Savvaidis, A., 2016. The Cephalonia, Greece, January 26 (M6.1) and February 3, 2014 (M6.0) earthquakes: near-fault ground motion and effects on soil and structures. Bull. Earthq. Eng. 14, 1–38.

Theodulidis, N., Bard, P.Y., Archuleta, R., Bouchon, M., 1996. Horizontal-to-vertical spectral ratio and geological conditions: The case of Garner Valley Downhole Array in southern California. Bull. Seismol. Soc. Am. 86, 306–319.

Theodulidis, N.P., Bard, P.Y., 1995. Horizontal to vertical spectral ratio and geological conditions: an analysis of strong motion data from Greece and Taiwan (SMART-1). Soil Dyn. Earthq. Eng. 14, 177–197.

Traversa, P., Maufroy, E., Hollender, F., Perron, V., Bremaud, V., Shible, H., Drouet, S., Guéguen, P., Langlais, M., Wolyniec, D., Péquegnat, C., Douste-Bacque, I., 2020. RESIF RAP and RLBP Dataset of earthquake ground motion in Mainland France. Seismol. Res. Lett. 91, 2409–2424.

Tselentis, G.A., 1998. Intrinsic and scattering seismic attenuation in W. Greece. Pure Appl. Geophys. 153, 703–712.

Tselentis, G.A., Danciu, L., Sokos, E., 2010. Probabilistic seismic hazard assessment in Greece - Part 2: Acceleration response spectra and elastic input energy spectra. Nat. Hazards Earth Syst. Sci. 10, 41–49.

Tselentis, G.A., Sokos, E., Martakis, N., Serpetsidaki, A., 2006. Seismicity and seismotectonics in Epirus, western Greece: Results from a microearthquake survey. Bull. Seismol. Soc. Am. 96, 1706–1717.

Vallée, M., 2004. Stabilizing the empirical Green function analysis: Development of the projected Landweber method. Bull. Seism. Soc. Am. 94, 394–409.

Vamvakaris, D.A., Papazachos, C.B., Papaioannou, C.A., Scordilis, E.M., Karakaisis, G.F., 2016a. A detailed seismic zonation model for shallow earthquakes in the broader Aegean area. Nat. Hazards Earth Syst. Sci. 16, 55–84.

Vamvakaris, D.A., Papazachos, C.B., Papaioannou, C.A., Scordilis, E.M., Karakaisis, G.F., 2016b. Seismic hazard assessment in the broader aegean area using time-independent seismicity models based on synthetic earthquake catalogs. Bull. Geol. Soc. Greece 50, 1463–1472.

Vassiliou, M.S., Kanamori, H., 1982. The energy release in earthquakes. Bull. Seismol. Soc. Am. 72, 371–387.

Weaver, R. l., 1982. On diffuse waves in solid media. Accoustical Soc. Am. 71, 1608–1609.

Weinstein, C.J., 1979. Programs for Digital Signal Processing. In: IEEE Press. New York.

Wessel, P., Smith, W.H.F., 1998. New, improved version of generic mapping tools released. Eos, Trans. Am. Geophys. Union 79, 579–579.

Γρένδας, Ι., Suroyo, P., Θεοδουλίδης, Ν., Hollender, F., Bard, P.-Y., Perron, V., Χατζηδημητρίου, Π., 2019. Εκτίμηση Επίδρασης Τοπικών Εδαφικών Συνθηκών με Ανάλυση Κυμάτων Ουράς Σεισμικών Καταγραφών. Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής και Τεχνικής Σεισμολογίας, Αθήνα, 5-7 Σεπτεμβρίου, ΕΤΑΜ/ΤΕΕ.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.