Εξώφυλλο

Contribution of applied geophysics to soil characterization and evaluation in stations of the national acceleration-sensor network = Συμβολή μεθόδων εφαρμοσμένης γεωφυσικής στον εδαφικό χαρακτηρισμό και τεκμηρίωση σε θέσεις του εθνικού δικτύου επιταχυνσιογράφων

Georgios Paraskevas Papadopoulos

Περίληψη


The strong correlation of earthquake damage and local geological conditions is clearly depicted in several studies. This correlation is the basis of the subsurface exploration studies for site characterization since adequate knowledge of the geophysical and/or geotechnical subsurface structure leads to realistic mitigation of the seismic risk. The estimation of the S-waves velocity of the topmost 30m of the subsurface (VS30) has been recognized as the main parameter for site characterization. While its use has been incorporated into several building codes, obtaining VS estimates remains a challenging task, especially in urban environments. Most VS estimation methods use active source acquisition techniques either in boreholes (downhole/crosshole methods) or surface methods (e.g., seismic refraction, MASW etc.). In each case, the time and cost of the application is large, especially when using boreholes and significant limitations apply in demanding environments. In the last decades, ambient noise is greatly utilized in site characterization by estimating the VS profile and providing information regarding the seismic response of the shallow formations. The main aim of this dissertation is the examination of single-station HVSR curve inversion to estimate 1D VS structures for the calculation of the VS30.Inversion of HVSR was based on the diffuse field assumption (DFA) (Sánchez-Sesma, F.J. et al., 2011a.) which implies the connection between the HVSR and the elastodynamic Green’s function. While ambient noise data acquisition is immensely cost-effective, HVSR inversion is subject to the solution non-uniqueness issue providing ambiguous results. To provide a possible solution for this matter, geophysical methods are applied to derive information regarding the shallow subsurface structure and incorporate it in the inversion. Tests were conducted with and without this information to explore how it facilitates the inversion procedure. The proposed methodology was applied at 6 accelerometric sites in the city of Thessaloniki, northern Greece, with different geological conditions. The electrical resistivity tomography method (ERT) was applied to distinguish subsurface layers based on their electrical resistivity. Active-source seismic data were acquired to estimate the shallow 1D VS profile and were analyzed with the seismic refraction and multichannel analysis of surface waves (MASW) methods. The ambient noise array technique was implemented to provide a large number of ambient noise recordings for selective HVSR curve computation. The passive data were also processed with the f-k method to extract the Rayleigh wave dispersion curve which was then inverted to provide a robust VSZ profile. The reliability of the obtained 1D VSΖ profiles was validated by direct comparison with the existing downhole measurements (available at 3 sites) and the ambient noise array results at each site.  Moreover, the VS30 was calculated to classify the investigation sites according to the Eurocode 8 regulations. Finally, synthetic ambient noise recordings were generated based on the final VSZ profiles derived from HVSR inversion and were analyzed with the HVSR method. Synthetic HVSR was compared with observed ambient noise HVSR and single-station earthquake HVSR at each site, validating the adopted structures.

Η ισχυρή συσχέτιση μεταξύ του καταστροφικού αποτελέσματος ενός σεισμού και των τοπικών γεωλογικών συνθηκών αποτυπώνεται ξεκάθαρα σε αρκετές μελετών. Η συσχέτιση αυτή αποτελεί τη βάση για τη διερεύνηση της υπεδάφιας δομής με σκοπό τον εδαφικό χαρακτηρισμό, καθώς η επαρκής γνώση της γεωφυσικής ή/και γεωτεχνικής δομής του υπεδάφους μπορεί να οδηγήσει σε αντιμετώπιση του σεισμικού κινδύνου ως ένα βαθμό. Η μέση ταχύτητα των S-κυμάτων των πρώτων 30m του υπεδάφους (VS30) θεωρείται η κύρια παράμετρος για την κατηγοριοποίηση των εδαφών. Παρά την αξιοποίηση της παραμέτρου αυτής από πληθώρα αντισεισμικών κανονισμών, ο υπολογισμός προφίλ ταχυτήτων S-κυμάτων με το βάθος (VSZ) παραμένει μια απαιτητική διαδικασία, ειδικότερα σε αστικά περιβάλλοντα. Οι πιο συνήθεις μέθοδοι για τον υπολογισμό των VSZ περιλαμβάνουν τη χρήση τεχνητών πηγών για τη λήψη σεισμικών καταγραφών είτε μέσα σε γεωτρήσεις (downhole, crosshole) ή στην επιφάνεια της Γης (π.χ. σεισμική διάθλαση, MASW κλπ). Σε κάθε περίπτωση, η εφαρμογή των μεθόδων αυτών είναι δαπανηρή και χρονοβόρα, ειδικά όταν πραγματοποιούνται σε γεωτρήσεις, και η εφαρμογή της σε αστικά περιβάλλοντα περιορίζεται σημαντικά. Τις τελευταίες δεκαετίες, αξιοποιείται όλο και περισσότερο ο εδαφικός θόρυβος στον εδαφικό χαρακτηρισμό με υπολογισμό των VSZ μέσω της ανάλυσης επιφανειακών κυμάτων παρέχοντας επίσης πληροφορίες για την απόκριση των επιφανειακών σχηματισμών στη σεισμική κίνηση. Ο κύριος στόχος αυτής της διπλωματικής εργασίας είναι ο προσδιορισμός συγκεκριμένης μεθοδολογίας για εκτίμηση 1D VSZ προφίλ από αντιστροφή καμπυλών HVSR, και τον προσδιορισμό της VS30 για χρήση στον εδαφικό χαρακτηρισμό. Για το σκοπό αυτό πραγματοποιήθηκε διερεύνηση της αντιστροφής καμπύλης HVSR εδαφικού θορύβου από καταγραφές ενός σταθμού για 1D δομή VSZ. Η αντιστροφή των καμπυλών HVSR βασίστηκε στη θεωρία Diffuse Field Assumption (DFA) που προτάθηκε από τους Sánchez-Sesma, et al., 2011 στην οποία βασίζεται η συσχέτιση μεταξύ του HVSR και των συναρτήσεων Green του μέσου διάδοσης. Ενώ η συλλογή καταγραφών εδαφικού θορύβου είναι σημαντικά οικονομική, η αντιστροφή HVSR εμπίπτει στο πρόβλημα της μη-μοναδικότητας της λύσης. Για την αντιμετώπιση του οποίου πραγματοποιήθηκε εφαρμογή γεωφυσικών μεθόδων επιφανείας για τη δημιουργία ενός αξιόπιστου αρχικού μοντέλου. Στη συνέχεια πραγματοποιήθηκε διερεύνηση αξιοποίησης αυτού του μοντέλου και η επινόηση στρατηγικής αντιστροφής. Η μεθοδολογία εφαρμόσθηκε σε 6 θέσεις του εθνικού δικτύου επιταχυνσιογράφων στην πόλη της Θεσσαλονίκης (Β. Ελλάδα), με διαφορετικές γεωλογικές συνθήκες. Οι γεωφυσικές μέθοδοι που εφαρμόσθηκαν είναι η Τομογραφία Ηλεκτρικής Αντίστασης (ERT) για την αναγνώριση υπεδάφιων στρωμάτων βάσει της ειδικής ηλεκτρικής αντίστασης, καθώς και οι μέθοδοι της σεισμικής διάθλασης και της Πολυκαναλικής Ανάλυσης Επιφανειακών Κυμάτων (MASW) για την απόκτηση επιφανειακών προφίλ σεισμικών ταχυτήτων. Η τεχνική δικτύου εδαφικού θορύβου εφαρμόσθηκε για να παράξει μεγάλο αριθμό καμπυλών HVSR και να αποτελέσει μια αξιόπιστη σύγκριση με το τελικό αποτέλεσμα της αντιστροφής HVSR. Η αξιοπιστία των 1D VSZ προφίλ επιβεβαιώθηκε συγκρίνοντας τα με προφίλ VSZ από υπάρχουσες downhole και από το δίκτυο εδαφικού θορύβου. Επιπλέον, εξάχθηκαν τιμές VS30 για την κατηγοριοποίηση κάθε θέσης με βάση του κανονισμούς του Ευρωκώδικα 8. Τέλος, δημιουργήθηκαν συνθετικές καταγραφές εδαφικού θορύβου με βάση την τελική δομή που προέκυψε από την αντιστροφή HVSR σε κάθε θέση. Συνθετικές καμπύλες HVSR συγκρίθηκαν επιτυχώς με καμπύλες εδαφικού θορύβου και HVSR καταγραφών σεισμών σε κάθε θέση, επιβεβαιώνοντας την τελική δομή.

Πλήρες Κείμενο:

PDF

Αναφορές


Aki K., 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthq. Res. Inst., 35, 415–457

Aki K. and Richards P., 1980. Quantitative Seismology: Theory and Methods, Vol. 1 W. H. Freeman, San Francisco

Aki K. and Richards G. P., “Quantitative Seismology”, Second edition, University Science Press, 700p, 2002.

Ansary, M. A., Fuse, M., Yamazaki, F. and Katayama, T., 1995. Use of Microtremors for the Estimation of Ground Vibration Characteristics. 3rd International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics (Saint-Louis, USA), 571-574p.

Arai, H. and Tokimatsu, K., 1998. Evaluation of local site effects based on microtremor H/V spectra. Proceeding of the Second International Symposium on the Effects of Surface Geology on Seismic Motion. Yokohama, Japan, pp. 673–680.

Arai, H. and Tokimatsu K., 2000. Effects of Rayleigh and love waves on microtremor H/V spectra. Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, No. 2232.

Asten, M., (1978). Geological Control on the Three-Component Spectra of Rayleigh-Wave Microseism, Bulletin of the Seismological Society of America Vol. 68, 1623-1636.

Asten, M., J., Henstridge (1984). Array Estimators and Use of Microseisms for Reconnaissance of Sedimentary Basins, Geophysics (49), 1828-1873.

Bard, P.-Y., 1999. Microtremor Measurement: A Tool for Site Effect Estimation?. The Effects of Surface Geology on Seismic Motion, 1251-1279p. https://doi.org/10.12681/bgsg.16536

Bard P.-Y. & SESAME Participants (2004), “The SESAME Project: An Overview and Main Results”, Proceedings of the 13th World Conference on Earthquake Engineering (Vancouver, Canada), Paper No. 2207, 2004.

Bard P.-Y., Cadet H, Endrun B, Hobiger M, Renalier F, Theodulidis N, Ohrnberger M, Fäh D, Sabetta F, Teves-Costa P, Duval A-M, Cornou C, Guillier B, Wathelet M, Savvaidis A, Köhler A, Burjanek J, Poggi V, Gassner-Stamm G, Havenith HB, Hailemikael S, Almeida J, Rodrigues I, Veludo I, Lacave C, Thomassin S, Kristekova M (2010) From non-invasive site characterization to site amplification: recent advances in the use of ambient vibration measurements. Geotech Geol Earthq Eng 17:105–123

Bonnefoy-Claudet, S., Cornou, C., Kristek, J., Ohrnberger, M., Wathelet, M., Bard, P.-Y., Fah, D., Moczo, P. and Cotton, F., 2004. Simulation of Seismic Ambient Noise: I. H/V and Array Techniques on Canonical Models. Proceedings of the 13th World Conference on Earthquake Engineering (Vancouver, Canada), Paper No. 1120.

Bonnefoy-Claudet, S., C., Cornou, P., Bard, F., Cotton, P., Moczo, J., Kristek, D. Fah (2006a). H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations, Geophys. J. Int. 167, 827-837.

Bonnefoy-Claudet, S., C., F., Cotton, P., Bard (2006b). The nature of noise wavefield and its applications for site effects studies A literature review. Earth Science Reviews 79, 205-227.

Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay*. Bulletin of the Seismological Society of America, 60(1), 29–61. https://doi.org/10.1785/BSSA0600010029

Byrd, R. H., Hribar, M. E., & Nocedal, J. (1999). An interior point algorithm for large-scale nonlinear programming. SIAM Journal on Optimization, 9(4), 877–900. https://doi.org/10.1137/S1052623497325107

Capon, J., 1969. High Resolution Frequency-Wavenumber Spectrum Analysis. Proceedings of the IEEE (Vol.57), 1408-1418p.

CEN., Eurocode 8, 2004. Design of Structures for Earthquake Resistance—Part 1: general rules, seismic actions and rules for buildings. EN 1998-1: 2004. Comite

Europeen de Normalisation, Brussels.

Chouet, B., De Luca, G., Milana, G., Dawson, P., Martini, M. and Scarpa, R., 1998. Shallow velocity of Stromboli volcano, Italy, derived from small-aperture array

measurements of Strombolian tremor. Bulletin of the Seismological Society of America 88 (3), 653–666.

Christopher C. Pain, Jörg V. Herwanger, Michael H. Worthington, Cassiano R. E. de Oliveira, Effective multidimensional resistivity inversion using finite-element techniques, Geophysical Journal International, Volume 151, Issue 3, December 2002, Pages 710–728, https://doi.org/10.1046/j.1365-246X.2002.01786.x

Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. GEOPHYSICS, 52(3), 289–300. https://doi.org/10.1190/1.1442303

Cornou, C., 2002. Traitement d'antenne et imagerie sismique dans l'agglomération grenobloise (Alpes françaises): implications pour les effets de site. Ph.D. Thesis, University Joseph Fourier, Grenoble, France. (In French with English abstract).

Cornou, C., Bard, P.-Y. and Dietrich, M., 2003a. Contribution of dense array analysis to identification and quantification of basin-edge induced waves. Part I: methodology. Bulletin of the Seismological Society of America 93 (6), 2604–2623.

Cornou, C., Bard, P.-Y. and Dietrich, M., 2003b. Contribution of dense array analysis to identification and quantification of basin-edge induced waves. Part II: application to Grenoble basin (French Alps). Bulletin of the Seismological Society of America 93 (6), 2624–2648.

Pridmore, D. F., Hohmann, G. W., Ward, S. H., & Sill, W. R. (1981). An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics, 46(7), 1009–1024. https://doi.org/10.1190/1.1441239

Douze E. J. (1964), “Rayleigh Waves in Short-Period Seismic Noise”, Bulletin of the Seismological Society of America (Vol. 54), 1197-1212p.

Douze, E. J. (1967). Short-period seismic noise. Bulletin of the Seismological Society of America, 57(1), 55–81. https://doi.org/10.1785/BSSA0570010055

Emad K. Mohamed, M.M.F. Shokry, Awad Hassoup, A.M.A. Helal, Evaluation of local site effect in the western side of the Suez Canal area by applying H/V and

MASW techniques, Journal of African Earth Sciences, Volume 123, 2016, Pages 403-419, ISSN 1464-343X, https://doi.org/10.1016/j.jafrearsci.2016.07.004.

Field E. and Jacob K., 1993. The theoretical response of sedimentary layers to ambient seismic noise. Geophys. Res. Lett., 20-24, 2925–2928.

Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.-Y., Comina, C., Cornou, C., Cox, B., di Giulio, G., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., & Socco, V. (2018). Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bulletin of Earthquake Engineering, 16(6), 2367–2420. https://doi.org/10.1007/s10518-017-0206-7

Gabr, Amir & Murad, Ahmed & Baker, Haydar & Al Bloushi, Khalid & Arman, Hasan & Mahmoud, Saber. (2012). The use of seismic refraction and electrical techniques to investigate groundwater aquifer, Wadi Al-Ain, United Arab Emirates (UAE).

García-Jerez, A., Piña-Flores, J., Sánchez-Sesma, F. J., Luzón, F., & Perton, M. (2016). A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption. Computers & Geosciences, 97, 67–78. https://doi.org/https://doi.org/10.1016/j.cageo.2016.06.016

Goffe, W. L., Ferrier, G. D., & Rogers, J. (1994). Global optimization of statistical functions with simulated annealing. Journal of Econometrics, 60(1), 65–99. https://doi.org/https://doi.org/10.1016/0304-4076(94)90038-8

Goffe, W. L., (1996). SIMANN: A Global Optimization Algorithm using Simulated Annealing. Studies in Nonlinear Dynamics & Econometrics, 1(3), 1–9. https://EconPapers.repec.org/RePEc:bpj:sndecm:v:1:y:1996:i:3:n:al1

Gutenberg, P. (1958) Microseisms, Advanced Geophysics (5), 53-92.

Haghshenas, E., Bard, P.-Y. and Theodulidis, N., 2008. Empirical evaluation of microtremor H/V spectral ratio. Bulletin of Earthquake Engineering 6.1: 75-108.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109. https://doi.org/10.1093/biomet/57.1.97

Hauksson, E., and P. M. Shearer (2006), Attenuation models (QP and QS) in three dimensions of the southern California crust: Inferred fluid saturation at seismogenic depths, J. Geophys. Res., 111, B05302, doi:10.1029/2005JB003947.

Hiroshi Kawase, Francisco J. Sánchez-Sesma, Shinichi Matsushima; The Optimal Use of Horizontal-to-Vertical Spectral Ratios of Earthquake Motions for Velocity Inversions Based on Diffuse-Field Theory for Plane Waves. Bulletin of the Seismological Society of America 2011; 101 (5): 2001–2014. doi: https://doi.org/10.1785/0120100263

Hisada, Y. (1994). An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths. Bulletin of the Seismological Society of America, 84(5), 1456–1472. https://doi.org/10.1785/BSSA0840051456

Hisada, Y. (1995). An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths (part 2). Bulletin of the Seismological Society of America, 85(4), 1080–1093. https://doi.org/10.1785/BSSA0850041080

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.

Horike, M. (1985). Inversion of phase velocity of long-period microtremors to the S-wave velocity structure down to the basement in urbanized AREAS. Journal of Physics of the Earth, 33, 59–96.

Horike, M., (1996). Geophysical Exploration Using Microtremor Measurements, Proceedings of the 10th World Conference on Earthquake Engineering (Acapulco, Mexico), Paper No. 2033.

Hunter, J. & Crow, Heather & Brooks, Gregory & Pyne, M & Motazedian, Dariush & Lamontagne, M & Pugin, A & Pullan, S & Cartwright, T & Douma, M & Burns, R & Good, R & Kaheshi-Banab, K & Caron, Raymond & Kolaj, Michal & Folahan, I & Dixon, L & Dion, K & Duxbury, A & Muir, D.. (2010). Seismic site classification and site period mapping in the Ottawa area using geophysical methods.

Hunter, J., Crow, H., Brooks, G., Pyne, M., Motazedian, D., Lamontagne, M., Pugin, A., Pullan, S., Cartwright, T., Douma, M., Burns, R., Good, R., Kaheshi-Banab, K., Caron, R., Kolaj, M., Folahan, I., Dixon, L., Dion, K., Duxbury, A., & Muir, D. (2010). Seismic site classification and site period mapping in the Ottawa area using geophysical methods.

Hunter, J.A. and Crow, H.L. (ed.), 2012. Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock; Geological Survey of Canada, Open File 7078, 227 p. doi:10.4095/291753

Igboekwe M. U. and Ohaegbuchu H. E. (2011). Investigation into the weathering layer using up- ole method of seismic refraction. Department of Physics, Michael Okpara University of Agriculture, Umudike, Abia State. Nigeria. https://doi.org/10.5897/JGMR.9000042

Iglesias, A., Cruz Atienza, V. M., Shapiro, N. M., Singh, S. K., & Pacheco, J. F. (2001). Crustal structure of south-central Mexico estimated from the inversion of surface-wave dispersion curves using genetic and simulated annealing algorithms. Geofísica Internacional, 40(3), 181–190.https://www.redalyc.org/articulo.oa?id=56840303

Institute of Engineering Seismology and Earthquake Engineering (2008) – Sample drilling and borehole installation for the accommodation of triaxonic accelerometers. Central Macedonia Regional Operational Programme (ROP).

Kanai, K. and T. Tanaka (1954). Measurements of microtremor, Bull Earth Res. Inst., Tokyo Univ. 30, 199-209.

Kim, J. H. (2010). DC_2DPro - User’s Guide. Korea: KIGAM.

Kim, J.-H., Supper, R., Tsourlos, P., & Yi, M.-J. (2013). Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations. Geophysical Journal International, 195(3), 1640–1656. https://doi.org/10.1093/gji/ggt324

Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by Simulated Annealing. Science (New York, N.Y.), 220, 671–680. https://doi.org/10.1126/science.220.4598.671

Konno, K. and Ohmachi, T., 1998. Ground Motion Characteristics Estimated from Spectral Ratio Between Horizontal and Vertical Components of Microtremor. Bulletin of Seismological Society of America (Vol.88), 228- 241p.

Kramer, S. (1997). “Geotechnical Earthquake Engineering”. University of Washington. ISBN 0-13-374943-6

Kritikakis, G., 2010, “Surface Waves: Applications to Environmental and Geotechnical Problems” (in Greek), PhD Thesis, Technical University of Crete, (Greece), 357p.

Kvaerna, T. and F. Ringdal (1986) Stability of various f-k estimation techniques. NORSAR Scientific Report 1-86/87, 29-40, https://doi.org/10.21348/p.1986.0001

Lachet, C., and Bard, P.-Y., 1994. Numerical and Theoretical Investigations on the Possibilities and Limitations of Nakamura’s Technique, J. Phys. Earth., 42, 377–397.

Lacoss, R. T., Kelly, E. J. and Toksoz, M. N., 1969. Estimation of Seismic Noise Structure Using Arrays. Geophysics (34), 21-38p.

Langston, C. A., Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res., 84, 4749-4762, 1979.

Lay T. and Wallace C. T., 1995. Modern Global Seismology, International Geophysics Series, Vol. 58, Academic Press, pp. 521

Lee, Y. S., Graham, E., Jackson, G., Galindo, A., & Adjiman, C. S. (2019). A comparison of the performance of multi-objective optimization methodologies for solvent design. Computer Aided Chemical Engineering, 46, 37–42. https://doi.org/10.1016/B978-0-12-818634-3.50007-2

Lermo, J., & Chávez-García, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83(5), 1574–1594. https://doi.org/10.1785/BSSA0830051574

Lermo, J. and F. J. Chavez-Garcia (1994). Site effect evaluation at Mexico City: dominant period and relative amplification from strong motion and microtremor records, Soil Dyn. Earthquake Eng. 13, 413-423.

Li T. M., Ferguson J. F., Herrin E. & Drham H. B., “High-Frequency Seismic Noise at Lajitas, Texas”, Bulletin of the Seismological Society of America (Vol. 74), 2015-2033p, 1984.

Lontzetidis K. (1993). “Application of the cross-hole method in the city of Thessaloniki”. Master Thesis (in Greek), Faculty of Engineering, Aristotle University of Thessaloniki.

Loupasakis, C., Tsangaratos, P., Rozos, D., Rondoyianni, Th., Vafidis, A., Kritikakis, G., Steiakakis, M., Agioutantis, Z., Savvaidis, A., Soupios, P., Papadopoulos, I., Papadopoulos, N., Sarris, A., Mangriotis, M.-D., & Dikmen, U. (2015). Cross validation of geotechnical and geophysical site characterization methods: near surface data from selected accelerometric stations in Crete (Greece). Proc.SPIE, 9535. https://doi.org/10.1117/12.2192673

Lozano L., Herraiz M. & Singh S. K., “Site Effect Study in Central Mexico Using H/V and SSR Techniques: Independence of Seismic Site Effects on Source Characteristics”, Soil Dynamics and Earthquake Engineering (Article in Press), 13p, 2008. Luco, J. E. and Apsel R. J., 1983. On the Green's functions for a layered half-space, part 1, Bull. Seism. Soc. Am. 73, 909-929.

Martin, A., Yong, A., Stephenson, W. J., Boatwright, J., & Diehl, J. (2017). Geophysical Characterization Of Seismic Station Sites In The United States – The Importance Of A Flexible, Multi‐Method Approach.

McMechan, G. & Yedlin, M. J. (1981). Analysis of dispersive waves by wave field transformation. Geophysics, 46 (6), 869-874.

Moczo P. and Kristek, J. (2002), FD code to generate noise synthetics, SESAME EVG1-CT-2000-00026 project, Deliverable D02.09, 31 p, http://SESAME-fp5.obs.ujf-grenoble.fr, 2002.

Mohamed, E., Farag, M., Hassoup, A., & Helal, A. M. A. (2016). Evaluation of local site effect in the western side of the Suez Canal area by applying H/V and

MASW techniques. Journal of African Earth Sciences, 123. https://doi.org/10.1016/j.jafrearsci.2016.07.004

Moisidi M., Vallianatos F., Soupios P., Kershaw S., Rust D., Piscitelli S. (2012). Spatial spectral variations of microtremors and electrical resistivity tomography surveys for fault determination in southwestern Crete, Greece J. Geophys. Eng., 9 (2012), pp. 261-270

Murphy, J. R., & Shah, H. K. (1988). An analysis of the effects of site geology on the characteristics of near-field Rayleigh waves. Bulletin of the Seismological Society of America, 78(1), 64–82. https://doi.org/10.1785/BSSA0780010064

Nakamura, Y., 1989. A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface. Quarterly Report of Railway Technical Research Institute, (Vol. 30), 25-33p.

Nakamura, Y., 1996. Real-Time information systems for hazards mitigation. Proceedings of the 11th World Conference on Earthquake Engineering (Acapulco, Mexico).

Nakamura, Y. (1997). Vulnerability indexes for surface ground and structures using microtremor, 8th Soil Dynamics Earthquake Engineering ’97, Istanbul, Turkey, 20–24 July 1997.

Nakamura, Y., 2000. Clear Identification of Fundamental Idea of Nakamura’s Technique and its Applications. Proceedings of the 12th World Conference on Earthquake Engineering (Auckland, New Zealand), 8p.

Nakamura, Y. (2014). A modified estimation method for amplification factor of ground and structures using the H/V spectral ratio, Proc. Of the 2nd Workshop on Dynamic Interaction of Soil and Structure ’12, L’Aquila, Italy, 29–30 March 2012, 273–284.

Nakamura, Y. (2019). What Is the Nakamura Method?, Seism. Res. Letters, 90, 4, 1437- 1443.

Nazarian S., Stokoe II, K.H. and Hudson W.R., 1983. Use of spectral analysis of surface waves meth-od for determination of moduli and thicknesses of pavement systems, Transp. Res. Rec. Vol. 930, Washington DC, 38-45.

Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308

Nogoshi, M. and Igarashi, T., 1971. On the Amplitude Characteristics of Microtremor (Part 2) (in Japanese with English Abstract). Journal of Seismological Society of Japan (Vol. 24), 24-40p.

Ohmachi, T. and Umezono, T., 1998. Rate of Rayleigh waves in microtremors. Proceeding of the Second International Symposium on the Effects of Surface Geology on Seismic Motion. Yokohama. Japan, pp. 587–592.

Ohori, M., Nobata, A., & Wakamatsu, K. (2002). A Comparison of ESAC and FK Methods of Estimating Phase Velocity Using Arbitrarily Shaped Microtremor Arrays. Bulletin of the Seismological Society of America, 92(6), 2323–2332. https://doi.org/10.1785/0119980109

Ohrnberger, M., 2004. User manual for software package CAP—a continuous array processing toolkit for ambient vibration array analysis, SESAME report D18.06, pp. 83 http://sesamefp5.obs.ujf-grenoble.fr

Ohrnberger, M., Schissele, E., Cornou, C., Bonnefoy-Claudet, S., Wathelet, M., Savvaidis, A., Scherbaum, F., & Jongmans, D. (2004). Frequency wavenumber and spatial autocorrelation methods for dispersion curve determination from ambient noise vibration recordings.

Okada, H., 2003. The Microtremor Survey Method. Society of Exploration Geophysics (SEG), 135p.

Panou, A.A., Theodulidis, N. P., Cornu, C., Hatzidimitriou, P. M., Papazachos, C.B. P.-Y. Bard and Leventakis, G. Use of ambient noise for microzonation studies in urban environment: The city of Thessaloniki (N. Greece). 4th Int. Conf. on Earthquake Geotechnical Engineering, June 25-28, 2007, Thessaloniki, Greece, Paper No. 1580, 2007.

Papazachos, C., and Papazachos, B., (2013) Introduction to Geophysics (in Greek), Ziti Publ., Thessaloniki, 581pp., ISBN 978-960-456-121-6.

Park, C. B., Miller R. D., and Xia J., 1998. Ground roll as a tool to image near-surface anomaly, SEG expanded abstracts, 23, 1437.

Park, C. B. and Carnevale, M. (2010). Optimum MASW Survey - Revisit after a Decade of Use. In Fratta, D. O., Puppala, A. J. & Muhunthan, B (editors),

GeoFlorida 2010: Advences in Analysis, Modeling and Design (pp. 1303-1312). doi: 10.1061/41095(365)130

Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64(3), 800–808. https://doi.org/10.1190/1.1444590

Permanent Regional Seismological Network operated by the Aristotle University of Thessaloniki, http://dx.doi.org/doi:10.7914/SN/HT

Perton, M., Sánchez-Sesma, F.J., Rodriguez-Castellanos, A., Campillo, M. &Weaver,R.L., 2009.Two perspectives on equipartition in diffuse elastic fields in three dimensions, J. acoust. Soc. Am., 126, 1125–1130.

Piña-Flores, J., Perton, M., García-Jerez, A., Carmona, E., Luzon, F., Molina Villegas, J., & Sánchez-Sesma, F. (2016). The inversion of spectral ratio H/V in a layered system using the Diffuse Field Assumption (DFA). Geophysical Journal International, 208. https://doi.org/10.1093/gji/ggw416

Piña‐Flores, J., Cárdenas‐Soto, M., García‐Jerez, A., Campillo, M., & Sánchez‐Sesma, F. J. (2021). The Search of Diffusive Properties in Ambient Seismic Noise. Bulletin of the Seismological Society of America, 111(3), 1650–1660. https://doi.org/10.1785/0120200189

Rhie J, Romanowicz B. Excitation of Earth's continuous free oscillations by atmosphere-ocean-seafloor coupling. Nature. 2004 Sep 30;431(7008):552-6. doi: 10.1038/nature02942. PMID: 15457256.

Richart, F.E., Hall, J.R. and Woods, R.D. (1970) Vibrations of Soils and Foundations. Prentice-Hall Inc., Upper Saddle River.

Roberts, J. C., & Asten, M. W. (2004). Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method. Exploration Geophysics, 35(1), 14–18. https://doi.org/10.1071/EG04014

Robinson, E.S. and Coruh, C. (1988) Basic Exploration Geophysics. John Wiley & Sons, New York, 562p.

Salinas, V., Luzón, F., García‐Jerez, A., Sánchez‐Sesma, F. J., Kawase, H., Matsushima, S., Suarez, M., Cuellar, A., & Campillo, M. (2014). Using Diffuse Field

Theory to Interpret the H/V Spectral Ratio from Earthquake Records in Cibeles Seismic Station, Mexico City. Bulletin of the Seismological Society of America, 104(2), 995–1001. https://doi.org/10.1785/0120130202

Sambridge M., “Geophysical Inversion with a Neighborhood Algorithm I. Searching a Parameter Space”, Geophysical Journal International (103), 4839-4878p, 1999.

Sánchez-Sesma, F. J., Rodr´ıguez, M., Iturrar´an-Viveros, U., Rodr´ıguez- Castellanos, A., Suarez, M., Santoyo, M. A., Garc´ıa-Jerez, A.&Luz´on, F., (2010). Site effects assessment using seismic noise, in Proceedings of the 9th International Workshop on Seismic Microzoning and Risk Reduction, 2010, February 21–24, Cuernavaca, Mexico.

Sánchez-Sesma, F. J., M. Rodríguez, U. Iturrarán-Viveros, F. Luzón, M. Campillo, L. Margerin, A. García-Jerez, M. Suárez, M. A. Santoyo, and A. Rodríguez-Castellanos (2011). A theory for microtremor H/V spectral ratio: Application for a layered medium, Geophys. J. Int. 186, 221–225.

Sánchez-Sesma, F. J., Pérez-Ruiz, J. A., Luzón, F., Campillo, M., & Rodríguez-Castellanos, A. (2008). Diffuse fields in dynamic elasticity. Wave Motion, 45(5), 641–654. https://doi.org/https://doi.org/10.1016/j.wavemoti.2007.07.005

Sánchez-Sesma, F. J., R. L. Weaver, H. Kawase, S. Matsushima, F. Luzón, and M. Campillo (2011). Energy partitions among elastic waves for dynamic surface loads in a semi-infinite solid, Bull. Seismol. Soc. Am. 101, no. 4, 1704–1709.

Sánchez-Sesma, F., Rodriguez, M., Iturraran-Viveros, U., Luzon, F., Campillo, M., Margerin, L., García-Jerez, A., Suarez, M., Santoyo, M., & Rodríguez-Castellanos, A. (2011). A theory for microtremor H/V spectral ratio: Application for a layered medium. Geophysical Journal International, 186, 221–225. https://doi.org/10.1111/j.1365-246X.2011.05064.x

Sasaki, Y. (1994). 3-D resistivity inversion using the finite‐element method. 165 Geophysics, 59(11), 1839–1848. https://doi.org/10.1190/1.1443571

Seo, K. (1997). Comparison of Measured Microtremors with Damage Distribution, In JICA, Research and Development Project on Earthquake Disaster Prevention.

SESAME European research project, “Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: Measurements, Processing and Interpretation”, Deliverable D23.12, 62p, 2004. http://sesame.geopsy.org/Papers/HV_User_Guidelines.pdf

Schmidt, R.O., 1981. A signal subspace approach to multiple emitter location and spectral estimation. Ph.D, thesis, Stanford University, California, USA, Society of America 91 (2), 206–218.

Sheriff, R., & Geldart, L. (1995). Exploration Seismology (2nd ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139168359

Steidl, J. H., A. G. Tumarkin, and R. J. Archuleta (1996). What is a reference site?, Bull. Seism. Soc. Am. 86, 1733-1748.

Stein S. and Wysession M., “An Introduction to Seismology, Earthquakes and Earth Structure”, Blackwell Publishing, 498p, 2003.

Stephenson, W. J., Odum, J. K., Hartzell, S. H., Leeds, A. L., & Williams, R. (2021). Shear-wave velocity site characterization in Oklahoma from joint inversion of multi-method surface seismic measurements: Implications for central U.S. Ground Motion Prediction. Bulletin Seismological Society America, 111(4), 1693–1712. https://doi.org/10.1785/0120200348

Stokoe K. H., II, Wright G. W., James A. B., and Jose M. R., 1994. Characterization of geotechnical sites by SASW method, in Woods, R. D., Ed., Geophysical characterization of sites: Oxford Publ.

Styles P. (2012). Environmental Geophysics: Everything you ever wanted (needed!) to know but were afraid to ask! European Association of Geoscientists and Engineers (EAGE), Educational Tour Series, no. 7, 220 pp. Xia J., Mill

Telford, W., Geldart, L., & Sheriff, R. (1990). Applied Geophysics (2nd ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139167932

Tokimatsu, K., Aarai H. and Asaka, Y., 1996. Three-Dimensional Soil Profiling in Kobe Area Using Microtremors. 10th World Conference of Earthquake Engineering (Acapulco, Mexico), Paper No. 1764.

Tokimatsu, K., 1997. Geotechnical site characterization using surface waves. Proceedings of the First International Conference on Earthquake Geotechnical Engineering, vol. 3, pp. 1333–1368.

Toksöz, M. N., & Lacoss, R. T. (1968). Microseisms: Mode Structure and Sources. Science, 159(3817), 872–873. https://doi.org/10.1126/science.159.3817.872

Tsourlos, P. I., Szymanski, J., & Tsokas, G. N. (1998). A smoothness constrained algorithm for the fast 2-D inversion of DC resistivity and induced polarization data. 1.

Waltz, R. A., Morales, J. L., Nocedal, J., & Orban, D. (2006). An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3), 391–408. https://doi.org/10.1007/s10107-004-0560-5

Tsourlos, P. I., & Ogilvy, R. D. (1999). An algorithm for the 3-D inversion of 166 tomographic resistivity and induced polarization data: Preliminary results. Journal of the Balkan Geophysical Society, 2(2), 30–45.

Wathelet, M., D. Jongmans, and M. Ohrnberger (2004). Surface wave inversion using a direct search algorithm and its application to ambient vibration measurements, Near Surface Geophysics 2, 211--221.f

Wathelet M., (2005) “Array Recordings of Ambient Vibrations: Surface-Wave Inversion”, PhD Thesis, University of Liège (Belgium), 177p,.

Wathelet, M., D. Jongmans, M. Ohrnberger, and S. Bonnefoy-Claudet (2008). Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. Journal of Seismology, 12, 1-19.

Wathelet, M., B. Guillier, P. Roux, C. Cornou and M. Ohrnberger (2018). Rayleigh wave three-component beamforming: signed ellipticity assessment from high-resolution frequency-wavenumber processing of ambient vibration arrays. Geophysical Journal International, 215(1), 507-523.

Wathelet, M., Chatelain, J., Cornou, C., Giulio, G. di, Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A User‐Friendly Open‐Source Tool Set for Ambient Vibration Processing. Seismological Research Letters, 91(3), 1878–1889. https://doi.org/10.1785/0220190360

Woods, J. W., & Lintz, P. R. (1973). PLANE WAVES AT SMALL ARRAYS. GEOPHYSICS, 38(6), 1023–1041. https://doi.org/10.1190/1.1440393

Yamamoto, H., 2000. Estimation of shallow S-wave velocity structures from phase velocities of Love- and Rayleigh-waves in microtremors. Proceedings of the 12thWorld Conference on Earthquake Engineering. Auckland, New Zealand.

Yamanaka, H., Takemura, M., Ishida, H. and Niwa, M., 1994. Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers. Bulletin of the Seismological Society of America 84 (6), 1831–1841.

Yi, M. J., Kim, J. H., Song, Y., Cho, S. J., Chung, S. H., & Suh, J. H. (2001). Three-dimensional imaging of subsurface structures using resistivity data. Geophysical Prospecting, 49(4), 483–497. https://doi.org/10.1046/j.1365-2478.2001.00269.x

Yilmaz, Öz (2001). Seismic data analysis. Society of Exploration Geophysicists. ISBN 1-56080-094-1.

Yong, A., Martin, A., Stokoe, K., and Diehl, J., 2013, ARRA-funded VS30 measurements using multi-technique approach at strong-motion stations in California and central-eastern United States: U.S. Geological Survey Open-File Report 2013–1102, 59 p. and data files, http://pubs.usgs.gov/of/2013/1102/.

Websites:

http://www.iris-instruments.com/

https://www.geometrics.com/

https://www.guralp.com/

https://www.geopsy.org/

http://geophysics.geo.auth.gr/ss/ - Seismological Station AUTh


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.