Εξώφυλλο

Οι κρίσιμες Ευρωπαϊκές ορυκτές πρώτες ύλες = The European critical raw materials.

Αναστάσιος Ξενοφών Κυριάκος

Περίληψη


Η παρούσα πτυχιακή εργασία μελετά τον ανανεωμένο κατάλογο με τις κρίσιμες ορυκτές πρώτες ύλες που έχει θεσπίσει η Ευρωπαϊκή Επιτροπή το 2020. Εξετάζει κάθε μια ορυκτή ύλη ξεχωριστά και αναφέρει τα χαρακτηριστικά της. Δίνονται πληροφορίες για τους βασικούς τύπους κοιτασμάτων ή τις πηγές από οπού εξάγεται κάθε ύλη, καθώς επίσης γίνεται αναφορά στην παραγωγή και σε μερικά κοιτάσματα στις χώρες της Ευρωπαϊκής Ένωσης που υπάρχουν εξορύξεις. Τέλος υπάρχει μια ειδική αναφορά για την Ελλάδα, τα ήδη υπάρχοντα κοιτάσματα που παρουσιάζουν κρίσιμες ύλες καθώς και τις πιθανές πηγές από τις οποίες μπορεί να υπάρξει μια μελλοντική εκμετάλλευσή.

The current thesis studies the revised list of critical raw materials that have been established by the European Commission in 2020. It examines every raw material one by one, and also describes their characteristics. Further information is provided about the basic types of deposits or the sources that every material is extracted from. Also, reference is made about the material production and some of the deposits existing in the countries of the European Union where mining is in process. Lastly, there is a special report about the existing deposits of Greece, which include critical materials as well as the possible sources that can lead into future mining.

Πλήρες Κείμενο:

PDF

Αναφορές


Αρβανιτίδης (2020) Κρίσιμες ΟΠΥ της Ευρώπης - Διάλεξη ΑΜΦΙΘ

Μέλφος, Β., & Βουδούρης, Π. (2022). Κοιτάσματα της Ελλάδας. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις. http://dx.doi.org/10.57713/kallipos-32

Benzaazoua, M., Marion, P., Pinto, A., Migeon, H., & Wagner, F. E. (2003). Tin and indium mineralogy within selected samples from the Neves Corvo ore deposit (Portugal): a multidisciplinary study. Minerals Engineering, 16(11), 1291-1302.

Bhat, C. K. (2002). Estimation of gallium in a bauxite-ore deposit using an energy-dispersive X-ray fluorescence technique. Radiation Physics and Chemistry, 65(3), 193-197.

Bio Intelligence Service (2015). Study on Data for a Raw Material System Analysis. Prepared for the European Commission, DG GROW.

Blengini, G. A., El Latunussa, C., Eynard, U., de Matos, C. T., Wittmer, D. M. A. G., Georgitzikis, K.,... & Pennington, D. W. (2020). Study on the EU's List of Critical Raw Materials (2020). Publications Office of the European Union.

Cook, N. J., Ciobanu, C. L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L.,... & Melcher, F. (2009). Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73(16), 4761-4791.

Deady, É. A., Mouchos, E., Goodenough, K., Williamson, B. J., & Wall, F. (2016). A review of the potential for rare-earth element resources from European red muds: examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineralogical Magazine, 80(1), 43-61.

Deady, E., Mouchos, E., Goodenough, K., Williamson, B., & Wall, F. (2014). Rare earth elements in karst-bauxites: A novel untapped European resource?.

Depauw, G. (2009). Geology of the Rockliden volcanogenic massive sulphide deposit, north central Sweden.

Dias, C. G., Dias, F. L., & Lima, A. M. (2019, August). Largest spodumene lithium deposit in western Europe. In proceedings 15th biennial SGA meeting, Glasgow, Scotland (pp. 1792-1795).

Dill, H. G. (2010). The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Science Reviews, 100(1-4), 1-420.

Dittrich, T., Seifert, T., & Gutzmer, J. (2011, September). Gallium-can future demand be met by geological and technological availability?. In SGA 11 Conference, Society of Geology Applied to Mineral Deposits, Antofagasta, Chile (pp. 26-29).

Economou-Eliopoulos, M., & Eliopoulos, D. G. (2000). Palladium, platinum and gold concentration in porphyry copper systems of Greece and their genetic significance. Ore Geology Reviews, 16(1-2), 59-70.

Eliopoulos, D., Economou, G., Tzifas, I., & Papatrechas, C. (2014, September). The potential of rare earth elements in Greece. In Proceedings of the

ERES2014: First European Rare Earth Resources Conference, Milos, Greece (pp. 4-7).

EU Commission. (2020)a. Study on the EU’s List of Critical Raw Materials—Final Report. Publications Office: Luxembourg.

Frenzel, M., Bachmann, K., Carvalho, J. R., Relvas, J. M., Pacheco, N., & Gutzmer, J. (2019). The geometallurgical assessment of by-products—geochemical proxies for the complex mineralogical deportment of indium at Neves-Corvo, Portugal. Mineralium Deposita, 54(7), 959-982.

Frenzel, M., Ketris, M. P., & Gutzmer, J. (2014). On the geological availability of germanium. Mineralium Deposita, 49(4), 471-486.

Gautneb, H., Knežević, J., Gloaguen, E., Melleton, J., Gourcerol, B., & Törmänen, T. (2019, August). Occurrences of energy critical elements; lithium-cobalt and graphite in Europe, a preliminary overview. In Proceedings of the 15th SGA Biennial Meeting, 27-30 August 2019, Glasgow (pp. 1784-7).

Gourcerol, B., Gloaguen, E., Melleton, J., Tuduri, J., & Galiegue, X. (2019). Re-assessing the European lithium resource potential-A review of hard-rock resources and metallogeny. Ore Geology Reviews, 109, 494-519.

Gunn, A. G., & Benham, A. J. (2009). Platinum.

Gunn, G. (Ed.). (2014). Critical metals handbook. John Wiley & Sons.

Herrington, R. (2012, April). Potential for cobalt recovery from lateritic ores in Europe. In EGU General Assembly Conference Abstracts (p. 13888).

Hokka, J., & Halkoaho, T. (2016). 3D modelling and mineral resource estimation of the Kiviniemi Scandium deposit, Eastern Finland. Geological

Survey of Finland, Report, 65(2015), 16.

Keim, M. F., Walter, B. F., Neumann, U., Kreissl, S., Bayerl, R., & Markl, G. (2019). Polyphase enrichment and redistribution processes in silver-rich mineral associations of the hydrothermal fluorite-barite-(Ag-Cu) Clara deposit, SW Germany. Mineralium Deposita, 54(2), 155-174.

Kojonen, K., Laukkanen, J., & Gervilla, F. (2008). Applied mineralogy of the Kevitsa nickel-copper-PGE deposit, Sodankylä, Northern Finland. In Ninth International Congress for Applied Mineralogy”, Brisbane (Vol. 605, No. 613, pp. 899-904).

Laskou, M., & Economou-Eliopoulos, M. (2007). The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-

Ghiona bauxite deposits, Greece. Journal of Geochemical Exploration, 93(2), 67-77.

Lauri, L. S., Eilu, P., Brown, T., Gunn, G., Kalvig, P., & Sievers, H. (2018). Identification and quantification of primary CRM resources in Europe. SCRREEN Deliverable, 3, 65.

Melcher, F., & Buchholz, P. (2014). Germanium. Critical metals handbook, 177-203.

Melfos, V., & Voudouris, P. C. (2012). Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals, 2(4), 300-317.

Minerals4EU (2019). European Minerals Yearbook. [online] Available at: http://minerals4eu.brgm-rec.fr/m4eu-yearbook/theme_selection.html

Pohl, W. L. (2011) Bismuth In Economic Geology, Principles and Practises, Part I Metalliferous ore deposits, Chapter 2.5.5. Wiley&Sons.

Rockfire (2022) Critical Metal, Germanium, discovered at Molaoi Available at:https://polaris.brighterir.com/public/rockfire_resources/news/rns_widget/story/xlgzq7r

Rudnick, R. L., Gao, S., Holland, H. D., & Turekian, K. K. (2003). Composition of the continental crust. The crust, 3, 1-64.

Santaguida, F., Luolavirta, K., Lappalainen, M., Ylinen, J., Voipio, T., & Jones, S. (2015). The Kevitsa Ni-cu-PGE deposit in the Central Lapland greenstone belt in Finland. In Mineral deposits of Finland (pp. 195-210). Elsevier.

Schulte, R. F., & Foley, N. K. (2013). Compilation of gallium resource data for bauxite deposits. USGS.

Schulz, K. J., DeYoung, J. H., Seal, R. R., & Bradley, D. C. (Eds.). (2017). Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Geological Survey.

Shand, M. A. (2006). Chapter 2: Formation and occurrence of magnesite and brucite. The Chemistry and Technology of Magnesia. John Wiley & Sons, New York. https://doi. org/10.1002/0471980579. ch2.

Shaw, R., & Goodenough, K. (2011). Niobium-tantalum: April 2011.

Stergiou, C. L., Melfos, V., & Voudouris, P. (2018, July). A review on the critical and rare metals distribution throughout the Vertiskos Unit, N. Greece. In Proceedings of the 1st International Electronic Conference on Mineral Science at Sciforum, Online (pp. 16-31).

Stergiou, C. L., Melfos, V., Voudouris, P., Papadopoulou, L., Spry, P. G., Peytcheva, I.,... & Giouri, K. (2021). Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece. Minerals, 11(6), 630.

Tercero Espinoza, Luis A., Henning Stotz, Otmar Deubzer, Rocío Barros García, Gloria Rodríguez Lepe, Katarzyna Bilewska, Malgorzata Osadnik et al. "Critical raw material substitution profiles. SCRREEN-D5. 1." (2018).

Vassiliadou, V. (2015) ‘Bauxite-Alumina-Aluminium’. Available at: https://www.oryktosploutos.net/wp-content/uploads/2014/07/Bauxite-alumina-aluminium-Presentation-.pdf

Vind, J., Malfliet, A., Bonomi, C., Paiste, P., Sajó, I. E., Blanpain, B.,... & Panias, D. (2018). Modes of occurrences of scandium in Greek bauxite and bauxite residue. Minerals Engineering, 123, 35-48.

Vind, J., Malfliet, A., Bonomi, C., Paiste, P., Sajó, I. E., Blanpain, B.,... & Panias, D. (2018). Modes of occurrences of scandium in Greek bauxite and bauxite residue. Minerals Engineering, 123, 35-48.

Watari, T., Nansai, K., and Nakajima, K., 2020. Review of critical metal dynamics to 2050 for 48 elements. Resources, Conservation and Recycling, 155, 104669.

Witt, W. K., Hagemann, S. G., Roberts, M., & Davies, A. (2020). Cobalt enrichment at the Juomasuo and Hangaslampi polymetallic deposits, Kuusamo Schist Belt, Finland: a role for an orogenic gold fluid?. Mineralium Deposita, 55(2), 381-388.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.