Εξώφυλλο

Μελέτη της σεισμικής έξαρσης του 2021 στην περιοχή Αρκαλοχωρίου, Κρήτης = Study of the seismic excitation in the area of Arkalochori, Crete, 2021.

Ελένη Μιχαήλ Αρκουλάκη

Περίληψη


Η παρούσα διπλωματική εργασία αφορά τη μετασεισμική ακολουθία, του σεισμού της 27ης Σεπτεμβρίου 2021, μεγέθους Μ_w=6,0, που έγινε στο Αρκαλοχώρι της Κρήτης. Η περιοχή που μελετήθηκε ορίζεται από γεωγραφικό πλάτος 35,05°-35,25° και γεωγραφικό μήκος 25,10°-25,40°. Πιο συγκεκριμένα, αναλύθηκαν οι μετασεισμοί που έγιναν κατά το διάστημα 27 Σεπτεμβρίου 2021 - 26 Νοεμβρίου 2021, δηλαδή έως και δύο μήνες μετά το κύριο σεισμό.
Στο πρώτο κεφάλαιο περιγράφονται οι σεισμοτεκτονικές ιδιότητες της Κρήτης, σε σύνδεση με την ιστορική και ενόργανη σεισμικότητα, με σκοπό να δοθεί μια πλήρης εικόνα για τη σεισμική συμπεριφορά της περιοχής και για τους παράγοντες που την επηρεάζουν. Στο δεύτερο κεφάλαιο αναλύονται η περιοχή μελέτης και τα χαρακτηριστικά του κύριου σεισμού. Στο τρίτο κεφάλαιο εξετάζονται λεπτομερώς τα βήματα επεξεργασίας της μετασεισμικής ακολουθίας (συλλογή δεδομένων, υπολογισμός λόγου ταχυτήτων και εύρεση μοντέλου ταχυτήτων επιμηκών κυμάτων, υπολογισμός χρονικών υπολοίπων σταθμών και σχετικός επαναπροσδιορισμός εστιών). Τέλος στο τέταρτο και πέμπτο κεφάλαιο γίνεται περιγραφή και ερμηνεία των αποτελεσμάτων, αντίστοιχα.

This diploma thesis focuses on the study of the aftershock activity, of the mainshock (Μ_w=6.0), which occurred in Arkalochori, Crete at 27th of September 2021. The studied area is defined by latitude 35.05°-35.25° and longitude 25.10°-25.40°. More specifically, aftershocks that occurred between 27 September 2021 and 26 November 2021, i.e. up to two months after the main earthquake, were analysed.
The first chapter describes the seismotectonic properties of Crete, in connection with historical and instrumental seismicity, in order to provide a complete picture of the seismic behaviour of the region and the factors influencing it. The second chapter analyses the study area and the characteristics of the main earthquake. The third chapter discusses in detail the processing steps of the aftershock sequence (data collection, velocity ratio calculation and finding of a long-wave velocity model, calculation of station time residuals and relative redefinition of focal points). Finally, the fourth and fifth chapters describe and interpret the results, respectively.


Πλήρες Κείμενο:

PDF

Αναφορές


Ενιαίο Εθνικό Δίκτυο Σεισμολογικών Σταθμών (Ε.Ε.Δ.Σ.). http://geophysics.geo.auth.gr/ss/ethniko-diktyo.htm

ΙΤΣΑΚ, 2021. ΣΕΙΣΜΟΙ ΑΡΚΑΛΟΧΩΡΙΟΥ, Μ 6.0 της 27/09/2021 & Μ 5.3 της 28/09/2021: Προκαταρκτική Έκθεση-Καταγραφές του Δικτύου Επιταχυνσιογράφων του ΙΤΣΑΚ και Βλάβες στο Φυσικό και Δομημένο Περιβάλλον, Μονάδα Έρευνας ΙΤΣΑΚ, Θεσσαλονίκη.

Μεσημέρη Μ., 2018. Συμβολή στη μελέτη σμηνοσεισμών, σελ. 41-57.

Παπαζάχος Κ., Παπαζάχου Κ., 2003. Οι σεισμοί της Ελλάδας. Εκδόσεις Ζήτη, Θεσσαλονίκη, σελ. 264.

Angelier J., 1979. Néotectonique de l’arc égéen, Soc. Geol. Du Nord, σελ. 3, 418.

Armijo R., Flerit F., King G. and Meyer B., 2003. Linear elastic fracture mechanics explains the past and present evolution of the Aegean, Earth Plan. Sci. Lett., σελ. 217, 85–95.

Boore D., Stewart J.P., Skarlatoudis A. A., Seyhan E., Margaris B.l, Theodoulidis N., Scordilis E., Kalogeras I., Klimis N., Melis N. S.., 2020. A Ground‐Motion Prediction Model for Shallow Crustal Earthquakes in Greece. Bull. Seism. Soc. Am., σελ. 2, 111, 857–874.

Brun J.P., Faccenna C., 2008. Exhumation of high-pressure rocks driven by slab rollback, Earth planet. Sci. Letters, σελ. 272, 1–7.

Caputo R., Catalano S., Monaco C., Romagnoli G., Tortorici G., Tortorici L., 2010. Active faulting on the island of Crete (Greece), Geophysical Journal International, σελ. 111–126.

Crosson R. S., 1976. Crustal structure modeling of earthquake data 1. Simultaneous Least Squares Estimation of Hypocenter and Velocity Parameters. Journal of Geophysical Research.

Delibasis N., Drakopoulos J. K., Fytrolakis N., Katsi-katsos G., Makropoulos K.C., Zamani A., 1981. Seismotectonic Investigation of the area of Crete Island, Proc. of the Intern. Symp. on the Hel-lenic Arc and Trench (H.E.A.T.), σελ. 1, 121-138.

Delibasis N., Ziazia M., Voulgaris N., Papadopoulos T., Stavrakakis G., Papanastassiou D., Drakatos G., 1999. Microseismic activity and seismotectonics of Heraklion area (central Crete Island, Greece), Tectonophysics, σελ. 308, 237–248.

Drakopoulos J.K., Fytrolakis N., Delibasis N., Makropoulos K.C., 1983. Seismotectonic Map of the area of Crete Island, Publ. by the Techn. Chamb. Crete, σελ. 26.

Flerit F., Armijo R., King G., Meyer B., 2004. The mechanical interaction between the propagating North Anatolian fault and the back–arc extension in the Aegean. Earth Planet. Sci. Lett., σελ. 224, 347–362.

Frechet J., 1985. Simsogene et doublets sismiques. Universite Scientifique et MEdicale de Grenoble.

Ganas A., Parsons T., 2009. Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift. J. Geophys. Research, σελ. 114(B6), 1–14.

GéoAzur, Université de Nice Sophia-Antipolis, Valbonne – France (OCA). https://sismoazur.oca.eu/

GeoForschungsZentrum – Potsdam, Germany (GFZ).https://www.gfz-potsdam.de/en/

Global Centroid Moment Tensor (GCMT). https://www.globalcmt.org/

Got J. L., Fréchet J., Klein F. W., 1994. Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of

Kilauea. Journal of Geophysical Research, σελ. 99(B8).

Hatzfeld D., Pedotti G., Hatzidimitriou P., Makropoulos K., 1990. The strain pattern in the western Hellenic arc deduced from a microearthquake survey, Geophysical Journal International, σελ.181–202.

Institut de Physique du Globe de Paris – France (IPGP).https://datacenter.ipgp.fr/index.php?〈=EN

Instituto Nazionale di Geofisica e Vulcanologia - Roma, Italy (INGV).http://terremoti.ingv.it/en

Jost M.L., Knabenbauer O., Cheng J., Harjes H.P., 2002. Fault plane solutions of microearthquakes and small events in the Hellenic arc, Tectonophysics, σελ. 356, 87–114.

Kandilli Observatory and Earthquake Research Institute – Turkey (KOERI).http://www.koeri.boun.edu.tr/scripts/lasteq.asp

Kiratzi A., Louvari E., 2003. Focal mechanisms of shallow earthquakes in the Aegean Sea and the sourrounding lands determined by waveform modeling: a new database, J. Geodyn., σελ. 36, 251–274.

Kiratzi A., 2016. The 16 April 2015 Mw6.1 earthquake sequence near Kasos island at the eastern Hellenic subduction zone. Bulletin of the Geological Society of Greece, σελ. 50.

Kissling E., 1988. Geotomography with local earthquake data. Reviews of Geophysics, σελ. 26(4), 659–698.

Kissling E., Ellsworth W. L., Eberhart-Phillips D., Kradolfer U., 1994. Initial reference models in local earthquake tomography. Journal of Geophysical Research, σελ. 99(B10).

Laboratoire de Détection et de Géophysique - Pamatai, French Polynesia (CPPT). http://www-dase.cea.fr/

Le Pichon X., Angelier J., 1981. The Aegean SeaPhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, σελ. 357–372.

Le Pichon X., Chamot-Rooke N., Lallemant S., Noomen R., Veis G., 1995. Geodetic determination of the kinematics of central Greece with respect to Europe, Journ. of Geophys. Res., σελ.100.

Lyon-Caen H., 1987. The 1986 Kalamata (South Peloponnesus) earthquake: detailed study of a normal fault, evidences for east-west extension in the Hellenic arc, J. geophys. Res., σελ. 93.

McKenzie D. P., 1972. Active tectonics of the Mediterranean region, Geophys. J. R. Astron. Soc., σελ. 30, 109–185.

McKenzie D.P., 1978. Active tectonics of the Alpine-Himalayan belt: The Aegean Sea and surrounding regions, Geophys. J. R. Astr. Soc., σελ. 55, 217–254.

Meier T., Rische M., Endrun B., Vafidis A., Harjes H. P., 2004. Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks, Tectonophysics, σελ. 383, 149–169.

Meier T., Becker D., Endrun B., Rische M., Bohnhoff M., Stockhert B., Harjes H. P., 2007. A model for the Hellenic subduction zone in the area of Crete based on seismological investigations, in Late Palaeozoic and Mesozoic Ecosystems in SE Asia, Geol. Soc. Spec. Pub, σελ.183–199.

National Observatory of Athens, Geodynamic Institute - Athens, Greece (NOA).https://www.gein.noa.gr/

Nikolintaga I., Karakostas V., Papadimitriou E., Vallianatos F., Panopoulou G., 2007. Velocity models inferred from p-waves travel time curves in south Aegean. Bulletin of the Geological Society of Greece, σελ. 40(3).

Papadimitriou E. E., Karakostas V. G., 2005. Faulting geometry and seismic coupling of the southwest part of the Hellenic subduction zone,

Abstract in 33th IASPEI General Assembly, Sandiago, Chile, 2-8 October.

Papadimitriou E.E., Karakostas V.G., 2008. Rupture model of the great AD 365 Crete earthquake in the southwestern part of the Hellenic Arc. Acta Geophys, σελ. 56, 293–312.

Papadimitriou E., Karakostas V., Mesimeri M., Vallianatos F., 2016. The Mw6.7 12 October 2013 western Hellenic Arc main shock and its aftershock sequence: implications of the slab properties.

Papazachos B. C., Comninakis, P. E., 1969. Geophysical features of the Greek Island Arc and Eastern Mediterranean Ridge, Com. Ren. Séances Conf. Reunie Madrid, σελ. 16, 74–75.

Papazachos B. C., Comninakis P. E., 1971. Geophysical and tectonic features of the Aegean arc. Journ. of Geophys. Res., σελ. 76.

Papazachos C. B., Kiratzi A. A., 1996. A detailed study of the active crustal deformation in the Aegean and surrounding area, Tectonophysics, σελ. 253, 129-153.

Papazachos B., Papazachou C., 1997. The Earthquakes of Greece, Editions ZITI, Thessaloniki, σελ. 304.

Papazachos, 1998. A deterministic seismic hazard analysis for shallow earthquakes in Greece, Scientific Figure on ResearchGate.

Papazachos C. B., 1999. Seismological and GPS evidence for the Aegean-Anatolia interaction, Geoph. Res Lett., σελ. 26.

Pirazzoli P.A., Thommeret J., Thommeret Y., Laborel J., Montaggioni L.F., 1982. Crustal block movements from Holocene shorelines: Crete and Antikithera (Greece), Tectonophysics, σελ. 86, 27–43.

Pondrelli S., Morelli A., Ekstrom G., Mazza S., Boschi E., Dziewonski A.M., 2002. European-Mediterranean regional centroid-moment tensors: 1997–2000, Phys. Earth planet. Int., σελ. 130, 71–101.

Ritsema A., 1974. The earthquake mechanics of the Balkan region. R. Netherl. Meteorol. Inst., De Bilt, Sci. Rep.

Shaw B., 2008. Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake, Nat. Geosci., σελ. 268–276.

Shebalin N.V., Karnik V., Hadzievski D., 1974. Catalogue of earthquakes of the Balkan region. I, UNDP-UNESCO Survey of the seismicity of the Balkan region. Skopje, σελ. 600.

Taymaz T., Jackson J., Westaway R., 1990. Earthquke mechanics in the Hellenic Trench near Crete, Geophys. J. Int., σελ. 102, 695–731.

Thurber C. H., 1992. Hypocenter-velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors, σελ. 75(1–3), 55–62.

Triantafyllou I., Karavias A., Koukouvelas I., Papadopoulos G.A., Parcharidis I., 2022. The Crete Isl. (Greece) Mw6.0 Earthquake of 27 September 2021: Expecting the Unexpected. GeoHazards 2022, σελ. 106–124.

United States Geological Survey (USGS). https://earthquake.usgs.gov/

University of Athens – Athens, Greece (UOA).http://www.geophysics.geol.uoa.gr/stations/maps/recent.html

Vassilakis E., Kaviris G., Kapetanidis V., Papageorgiou E., Foumelis M., Konsolaki A., Petrakis S., Evangelidis C.P., Alexopoulos J., Karastathis

V., 2022. The 27 September 2021 Earthquake in Central Crete (Greece)—Detailed Analysis of the Earthquake Sequence and Indications for Contemporary Arc‐Parallel Extension to the Hellenic Arc.

Wadati K., 1933. On the travel time of earthquake waves. Part II. Journal of the Meteorological Society of Japan, σελ. 101–111.

Waldhauser F., Ellsworth W. L., 2000. A Double-difference Earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, σελ. 90(6).


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.