Εξώφυλλο

Συνοπτική κλιματική ανάλυση επεισοδίων χιονόπτωσης στον ελληνικό χώρο = Synoptic climatological analysis of extreme snowfalls in Greece.

Ηρακλής Νικόλαος Κυριακίδης

Περίληψη


Στόχος της τρέχουσας εργασίας είναι η μελέτη δύο εκ των κυρίαρχων τηλεσυνδέσεων (teleconnection patterns) στο Βόρειο Ημισφαίριο, οι οποίες είναι η ατμοσφαιρική ταλάντωση του Β. Ατλαντικού (North Atlantic Oscillation, NAO) και η Αρκτική ταλάντωση (Arctic Oscillation, AO). Ειδικότερα, θα εξεταστεί η συσχέτιση των τιμών των δεικτών αυτών με ατμοσφαιρικές διαταράξεις που πλήττουν την περιοχή της Ελλάδας κατά την χειμερινή περίοδο, καθώς και η δυνατότητα ενός προσεγγιστικού εύρους τιμών, ικανό για να δώσει μια προγνωστική ακρίβεια για την πορεία των διαταραχών και τις περιοχές που δυνητικά θα επηρεαστούν από αυτές. Για χάριν της μελέτης, έχουν επιλεγεί 11  σημαντικές κακοκαιρίες που επηρέασαν τη χώρα από το 1963 έως το 2021, με τις τέσσερις να αφορούν κυρίως τη Βόρεια Ελλάδα και πέντε τη Νότια Ελλάδα. Δύο εξ’ αυτών αφορούν ολόκληρη τη χώρα, καθώς βάσει αναφορών έπληξαν το μεγαλύτερο μέρος τόσο του ηπειρωτικού κορμού όσο και της νησιωτικής χώρας. Έχουν χρησιμοποιηθεί επίσης δεδομένα επανανάλυσης από το NCEP/NCAR (NCEP/NCAR Reanalysis. Reanalysis data are available from Jan 1, 1948 through this day), τα οποία αντιπροσωπεύουν τις ανωμαλίες και τη μέση κατάσταση της ατμοσφαιρικής πίεσης στα γεωδυναμικά ύψη των 1000mb και 500mb, για τις περιόδους ενδιαφέροντος. Επιπλέον, χρησιμοποιήθηκε το διάγραμμα Hovm?ller για να εντοπιστούν οι θερμοκρασιακές ανωμαλίες (σε βαθμούς Kelvin), η χρονική περίοδος και η κύμανση αυτών κατά την περίοδο των διαταραχών που θα μελετηθούν. Τέλος, δημιουργήθηκαν διαγράμματα με τις ημερήσιες τιμές των δεικτών NAO και AO, τα δεδομένα των οποίων πάρθηκαν από την Εθνική Υπηρεσία Ωκεανών & Ατμόσφαιρας των Η.Π.Α. (ΝΟΑΑ).

The aim of the present study is to research two of the most impactful teleconnection patterns in the Northern Hemisphere, the NAO (North Atlantic Oscillation) and AO (Arctic Oscillation). In particular, the correlation between weather disturbances in greater Greek area on winter and those two patterns will be analyzed, creating an approach range of values of the NAO and AO, which can predict the track of atmospheric lows. For this study, eleven of the most important winterstorms that have affected Greece between 1963 and 2021 have been selected, four of which referring mostly to the Northern part of the country, while five the Southern. The other two storms – based on meteorological data and reports – have affected both mainland Greece and most of its islands. For this purpose, NCEP/NCAR reanalysis data were used, covering the period 1948-2021. The reanalysis represent the anomalies and mean condition for the climate parameters of atmospheric pressure, at 500hPa and 1000hPa. Furthermore, the Hovm?ller diagram was used to highlight the temperature anomalies (on Kelvin degrees) in the Eastern Mediterranean for the period each winterstorm lasted. Lastly, a great amount of data has been collected by the National Oceanic and Atmospheric Administration (NOAA), referring to the daily values of NAO and AO.

Πλήρες Κείμενο:

PDF

Αναφορές


Ahrens, D. (2007). Meteorology today: an introduction to weather, climate, and the environment. Cengage learning. p. 296. ISBN: 978-0-495-01162-0.

Anagnostopoulou, C.; Maheras, P.; Karacostas, Th.; Vafiadis, M. (2003) Spatial and temporal analysis of dry spells in Greece. DOI:10.1007/s00704-002-0713-5.

Anagnostopoulou, C.; Tolika, K.; Maheras, P. (2008) Classification of circulation types: A new flexible automated approach applicable to NCEP and GCM datasets. DOI:10.1007/s00704-008-0032-6.

Anagnostopoulou, C; Tolika, K; Lazoglou, G; Maheras, P. (2017) The Exceptionally Cold January of 2017 over the Balkan Peninsula: A Climatological and Synoptic Analysis. Atmosphere 2017, 8, 252; doi:10.3390/atmos8120252.

Andrews, D.G.; McIntyre, M.E. (1976) Planetary Waves in Horizontal and Vertical Shear: The Generalized Eliassen-Palm Relation and the Mean Zonal Acceleration. https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

Baldwin, M.P.; Dunkerton, T.J.; (1999) Propagation of the Arctic Oscillation from the Stratosphere to the Troposphere. Journal of Geophysical Research: Atmospheres, 104, 30937-30946. https://doi.org/10.1029/1999JD900445.

Barnston, A.G.; Livezey, R.E. (1987). Classifications, Seasonality, and Persistence of Low-Frequency Atmospheric Circulation Patterns. Monthly Weather Review, 115, 1083-1126. (https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2).

Brandimarte, L.; Baldassarre, G.; Bruni, G.; D’Odorico, P.; Montanari, A. (2011) Relation Between the North-Atlantic Oscillation and Hydroclimatic Conditions in Mediterranean Areas. DOI:10.1007/s11269-010-9742-5.

Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, 2017.

Castanheira, J.M.; Barriopedro, D. (2010) Dynamical connection between tropospheric blockings and stratospheric polar vortex. https://doi.org/10.1029/2010GL043819.

Castanheira, J.M.; Graf H.-F. North Pacific–North Atlantic relationships under stratospheric control?. https://doi.org/10.1029/2002JD002754.

Chen, G., Zhang, P., & Lu, J. (2020). Sensitivity of the latitude of the westerly jet stream to climate forcing. Geophysical Research Letters, 47, e2019GL086563. https://doi.org/10.1029/2019GL086563.

Christiansen, B. (2001) Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: Model and reanalysis. https://doi.org/10.1029/2000JD000214.

Daniela I. V. Domeisen, Gualtiero Badin, and Inga M. Koszalka. (2018) How Predictable Are the Arctic and North Atlantic Oscillations? Exploring the Variability and Predictability of the Northern Hemisphere. DOI: https://doi.org/10.1175/JCLI-D-17-0226.1.

Deser, C.; Walsh, J.E.; Timlin, M.S. Arctic Sea Ice Variability in the Context of Recent Atmospheric Circulation Trends (2000). DOI: https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

Flocas, H.A.; Hatzaki, M.; Anagnostopoulou, C.; Tolika, K.; Kostopoulou, E.; Tegoulias, J. (2009) Association of large scale circulation with climatic extremes over the Mediterranean: validation of three regional models. EGU General Assembly 2009.

Flocas, H.A.; Karacostas, T.S. (2007) Cyclogenesis over the Aegean Sea: Identification and synoptic categories. Meteorological Applications. 3. 53 - 61. 10.1002/met.5060030106.

Flocas, H.A.; Patrikas, I.; Anagnostopoulou, C. (2001) A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. https://doi.org/10.1002/joc.599

Hatzaki, M.; Flocas, H.; Asimakopoulos, D.N.; Maheras, P. (2006) The eastern Mediterranean teleconnection pattern: identification and definition. https://doi.org/10.1002/joc.1429.

Hilmer, M.; Lemke, P. On the Decrease of Arctic Sea Ice Volume (2000). https://doi.org/10.1029/2000GL011403.

Hurrell, J.W. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. National Center for Atmospheric Research Climate and Global Dynamics Division, Climate Analysis Section.

Hurrell, J.W.; Kushnir, Y; Ottersen, G; Visbeck, M. The North Atlantic Oscillation Climatic Significance and Environmental Impact (2003, ISBN 0-87590-994-9).

Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; Zhu, Y.; Chelliah, M.; Ebisuzaki, W.; Higgins, W.; Janowiak, J.; Mo, K.C.; Ropelewski, C.; Wang, J.; Leetmaa, A.; Reynolds, R.; Jenne, R.; Joseph, D. (1996) The NCEP/NCAR 40-Year Reanalysis Project. DOI: https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; Van den Dool, H.; Jenne, R.; Fiorino, M. (2001) The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. DOI: https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

Kistler, RE & Kalnay, Eugenia & Collins, William & Saha, Suranjana & White, G. & Woollen, John & Chelliah, Muthuvel & Ebisuzaki, Wesley & Kanamitsu, Masao & Kousky, Vernon & Dool, Huug & RL, Jenne & Fiorino, Mike. (2001). The NCEP/NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society. 82. 247-268. 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

Labitzke, K. (1965). On the mutual relation between stratosphere and troposphere during periods of stratospheric warmings in winter. Journal Of Applied Meteorology, 4, 91-99. doi:10.1175/1520-0450(1965)004<0091:OTMRBS>2.0.CO;2.

Langlois, A.; T. Fisico, D.; G. Barber; T. N. Papakyriakou. (2008) Response of snow thermophysical processes to the passage of a polar low-pressure system and its impact on in situ passive microwave radiometry: A case study, J. Geophys. Res., 113, C03S04, https://doi.org/10.1029/2007JC004197.

Lawrence, Z. D., & Manney, G. L. (2018) Characterizing stratospheric polar vortex variability with computer vision techniques. Journal of Geophysical Research: Atmospheres, 123, 1510–1535. https://doi.org/10.1002/2017JD027556.

Lockwood, J.G. (1974) World climatology — an environmental approach. DOI:10.1016/0002-1571(74)90084-3.

Maheras, P. (1983) Variation saisonnière des masses d'air en Grèce. DOI:10.3406/medit.1983.2128.

Maheras, P. (1988) Les types de temps synoptiques au-dessus de la Méditerranée orientale. Méditerranée. 66. 35-42. 10.3406/medit.1988.2579. DOI:10.3406/medit.1988.2579

Maheras, P.; Flocas, H.; Anagnostopoulou, C. et al. (2002) On the vertical structure of composite surface cyclones in the Mediterranean region. Theoretical and Applied Climatology. 71. 199-217. 10.1007/s007040200005.

Maheras, P.; Tolika, K.; Anagnostopoulou, C.; Vafiadis, M.; Patrikas, I.; Flocas, H. (2004) On the relationships between circulation types and changes in rainfall variability in Greece. https://doi.org/10.1002/joc.1088.

Manney, G.L.; Zurek, R.W.; Gelman, M.E.; Miller, A.J.; Nagatani, R. (1994) The anomalous Arctic lower stratospheric polar vortex of 1992–1993. https://doi.org/10.1029/94GL02368.

Markowski et al. (2010) Mesoscale Meteorology in Midlatitudes. DOI:10.1002/9780470682104.

Martius, O.; Polvani, L.M.; Davies, H.C. (2009) Blocking precursors to stratospheric sudden warming events. https://doi.org/10.1029/2009GL038776.

McIntyre, M.E.; Palmer, T.N. (1983) Breaking waves in the stratosphere. DOI:10.1038/305593a0.

Meteorological Office. Weather in the Mediterranean. Vol. 1: General meteorology (1962).

Parker, T., Woollings, T., Weisheimer, A., O'Reilly, C. H., Baker, L., & Shaffrey, L. (2019). Seasonal predictability of the winter North Atlantic Oscillation from a jet stream perspective. Geophysical Research Letters, 46, 10,159–10,167. https://doi.org/10.1029/2019GL084402.

Quiroz, Roderick S. (1986) The association of stratospheric warmings with tropospheric blocking. Journal of Geophysical Research, 91. 5277pp. doi:10.1029/jd091id04p05277.

Radinović, D. Cyclonic activity in Yugoslavia and surrounding areas (1965).

Rothrock, D.A.; Zhang, J. Arctic Ocean sea ice volume: What explains its recent depletion (2005). https://doi.org/10.1029/2004JC002282.

Schoeberl, M.R.; Douglass, A.R.; Kawa, S.R.; Dessler, A.E.; Newman, P.A.; Stolarski, R.S.; Roche, A.E.; Waters, J.W.; Russell III, J.M.

Schoeberl, M.R.; Lait, L.R.; Newman, P.A.; Rosenfield, J.E. (1992) The structure of the polar vortex. https://doi.org/10.1029/91JD02168.

Serreze, M.C.; Walsh, J.; Chapin III, F.S.; Osterkamp, T.; Dyurgerov, M.; Romanovsky, V.; Oechel, W.; Morison, J.; Zhang, T.; Barry, R. Observational Evidence of Recent Change in the Northern High-Latitude Environment (2000). DOI: 10.1023/A:1005504031923.

Sigmond, M.; J. F. Scinocca; V. V. Kharin; T. G. Shepherd. (2013) Enhanced seasonal forecast skill following stratospheric sudden warmings. DOI:10.1038/ngeo1698.

Stockdale, T. N., F. Molteni, and L. Ferranti (2015), Atmospheric initial conditions and the predictability of the Arctic Oscillation, Geophys. Res. Lett., 42, 1173–1179, doi:10.1002/2014GL062681.

Strahler, A.N.; Strahler, A.H. (1978) Modern Physical Geography. ISBN 10: 0471018716 / ISBN 13: 9780471018711.

Taguchi, M. (2008) Is There a Statistical Connection between Stratospheric Sudden Warming and Tropospheric Blocking Events?. DOI: https://doi.org/10.1175/2007JAS2363.1.

Thompson, D.W.J.; Wallace, J.M. (1998) The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields. Geophysical Research Letters, 25, 1297-1300. https://doi.org/10.1029/98GL00950.

Thompson, D.W.J.; Wallace, J.M. (2000) Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability. DOI: https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

Tripathi, O.; Baldwin, M.; Charlton-Perez, A.; Charron, M.; Eckermann, S.; Gerber, D.; Harrison, E.; Jackson, D.; Kim, B.M.; Kuroda, Y.; Lang, A.; Mahmood, S.; Mizuta, R.; Roff, G.; Sigmondkand, M.; Sonl, S.W.. (2015) The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts.

Tripathi, O.P. et al. (2015) Environ. Res. Lett. 10 104007. (2015) Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. DOI:10.1088/1748-9326/10/10/104007.

Van Loon, H.; Rogers, C.J. The See-Saw in Winter Temperatures between Greenland and Northern Europe, Part II (1979). Some Oceanic and Atmospheric Effects in Middle and High Latitudes. DOI: https://doi.org/10.1175/1520-0493(1979)107<0509:TSIWTB>2.0.CO;2.

Van Loon, H.; Rogers, C.J. The Seesaw in Winter Temperatures between Greenland and Northern Europe. Part I: General Description (1978). DOI: https://doi.org/10.1175/1520-0493(1978)106<0296:TSIWTB>2.0.CO;2.

Wadhams, P.; Davis, N.R. (2000) Further evidence of ice thinning in the Arctic Ocean. https://doi.org/10.1029/2000GL011802.

Walker, G.T.; Bliss, E.W. (1932). World Weather V. Memoirs of the Royal Meteorological Society, 4, 53-84.

Wallace, J.M.; Gutzler, D.S. (1981). Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109, 784-812. http://dx.doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

Wallace, J.M.; Panetta, R.L.; Estberg, J. Representation of the Equatorial Stratospheric Quasi-Biennial Oscillation in EOF Phase Space (1993). DOI: https://doi.org/10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2.

Willett, H.C. (1933) American Air Mass Properties.

Woollings, T.; Hannachi, A.; Hoskins. B. (2010) Variability of the North Atlantic eddy-driven jet stream. https://doi.org/10.1002/qj.625.

Zhang, Y.; W. B. Rossow; A. A. Lacis; V. Oinas; M. I. Mishchenko. (2004) Calculation of radiative fluxes from thesurface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data,J. Geophys. Res.,109, D19105, https://doi.org/10.1029/2003JD004457.

Zhao, J.; Cao, Y.; Shi, J. (2006) Core region of Arctic Oscillation and the main atmospheric events impact on the Arctic. https://doi.org/10.1029/2006GL027590.

Μπαλαφούτης Χ. & Μαχαίρας Π. (1985) Μαθήµατα Γενικής Κλιµατολογίας.

Σαχσαµάνογλου Χ. & Μακρογιάννης Τ. (2004) Μαθήµατα Γενικής Μετεωρολογίας. ISBN: 960-88036-2-4.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.