Εξώφυλλο

Τα βενθονικά τρηματοφόρα ως αρχιτεκτονες των παράκτιων ιζημάτων = Benthic foraminifera as coastal sediment engineers.

Ευαγγελία Αθανάσιος Βαϊτση

Περίληψη


Στην παρούσα διπλωματική εργασία ερευνάται η συνεισφορά των βενθονικών τρηματοφόρων στην παράκτια ιζηματογένεση για τις ακτές της Ν. Κρήτης. Η μελέτη της συγκεκριμένης περιοχής είναι σημαντική καθώς εμφανίζει μεγάλη ποικιλότητα οικοσυστημάτων που επηρεάζονται από τις φυσικές μεταβολές και τις ανθρωπογενείς παρεμβάσεις (εξορύξεις πετρελαίου, τουριστική εκμετάλλευση, κ.α.). Τα βενθονικά τρηματοφόρα επηρεάζονται άμεσα από περιβαλλοντικές αλλαγές (pH, θερμοκρασία, αλατότητα, κ.α.) και γι’ αυτό το λόγο θεωρούνται αξιόπιστοι περιβαλλοντικοί δείκτες Επίσης, τα βενθονικά τρηματοφόρα μετά την αναπαραγωγή ή τον θάνατό τους, συσσωρεύουν τα κελύφη τους με αποτέλεσμα να συμβάλλουν σημαντικά στη βιογενή ανθρακική ιζηματογένεση. Έτσι, η μελέτη της κατανομής των τρηματοφόρων και της συνεισφοράς τους στην παράκτια ιζηματογένεση για τις ακτές της Ν. Κρήτης κρίθηκε απαραίτητη.
Η δειγματοληψία για την παρούσα εργασία πραγματοποιήθηκε κατά τους μήνες Ιουλίου και Αυγούστου 2021, σε 8 διαφορετικές θέσεις στις ακτές της Ν. Κρήτης. Οι θέσεις δειγματοληψίας επιλέχθηκαν ώστε να μελετηθεί η κατανομή των τρηματοφόρων στο κεντρικό, ανατολικό και δυτικό παράκτιο τμήμα της Ν. Κρήτης. Τα δείγματα μεταφέρθηκαν στο εργαστήριο Γεωλογίας και Παλαιοντολογίας του Τμήματος Γεωλογίας, Α.Π.Θ., ώστε να επεξεργαστούν και να πραγματοποιηθούν οι αντίστοιχες μετρήσεις με ζυγαριά ακριβείας για την ανάλυση του βιογενούς ιζήματος. Με τη βοήθεια του στερεοσκοπίου έγινε η καταμέτρηση και ο προσδιορισμός των τρηματοφόρων για κάθε δείγμα ξεχωριστά. Οι μετρήσεις (βάρη, είδη βενθονικών τρηματοφόρων) επεξεργάστηκαν στατιστικά και κατασκευάστηκαν διαγράμματα με τους δείκτες ποικιλότητας αλλά και με δείκτες βασισμένους στα τρηματοφόρα.
Στα 8 παράκτια δείγματα εντοπίστηκαν 32 είδη βενθονικών τρηματοφόρων, τα οποία ομαδοποιήθηκαν και υπολογίστηκε η σχετική συμμετοχή τους στο βιογενές ίζημα. Το δείγμα από την ακτή Γραμμένο (SP4) που είναι στο δυτικό παράκτιο τμήμα της Ν. Κρήτης είχε το μεγαλύτερο ποσοστό βιογενούς ιζήματος (59%) με τη μεγαλύτερη συμμετοχή των μαλακίων και την επικράτηση του είδους τρηματοφόρων Peneroplis spp., ενώ τα υπόλοιπα δείγματα από το κεντρικό και ανατολικό παράκτιο τμήμα έχουν μεγαλύτερη συμμετοχή του είδους Amphistegina lobifera με συγκέντρωση έως και 100% (SP3). Έτσι, στην περιοχή μελέτης τα βενθονικά τρηματοφόρα που συνεισφέρουν περισσότερο στην παράκτια ιζηματογένεση είναι το είδος Peneroplis spp. (Δυτικό παράκτιο τμήμα) και το είδος Amphistegina lobifera (κεντρικό και ανατολικό παράκτιο τμήμα).
Η ποσοτική και συγκριτική ανάλυση των τρηματοφόρων στην παρούσα μελέτη βοηθάει στην κατανόηση των περιβαλλοντικών χαρακτηριστικών και αποτελεί σημαντική πηγή δεδομένων για τον εντοπισμό διαφορών των συναθροίσεων των τρηματοφόρων ανά περιοχή και κατά συνέπεια την αξιολόγηση της σχέσης μεταξύ τρηματοφόρων και παράκτιας ιζηματογένεσης.

The current thesis investigates the contribution of benthic foraminifera to coastal sedimentation on the coasts of South Crete. The study of this area is important as it includes a great diversity of ecosystems affected by natural changes and anthropogenic interventions (oil extraction, tourism, etc.). Benthic foraminifera are directly affected by natural environmental changes (pH, temperature, salinity, etc.) and this is the reason that they are reliable environmental indicators. Also, benthic foraminifera after their reproduction or death, deposit their tests resulting to significant contribution to biogenic carbonate sedimentation. Thus, the study of the distribution of foraminifera and their contribution to coastal sedimentation for the coast of South Crete was considered necessary.
Sampling for this study was conducted in July-August 2021, at 8 different locations on the coast of South Crete. The sampling sites were chosen in order to investigate the distribution of foraminifera in the central, eastern and western coastal part of South Crete. The samples were transferred to the Geology and Paleontology Laboratory of the Department of Geology, Aristotle University of Thessaloniki, in order to be further processed and the corresponding measurements were conducted with a precision balance for the analysis of the biogenic sediment. The determination of the foraminifera and counting for each sample was succeed with a stereomicroscope. Measurements (weights, species of benthic foraminifera) were statistically processed in order to create diagrams with diversity indices and foraminiferal indices.
In the 8 coastal samples, 32 species of benthic foraminifera were identified, which were grouped and their relative contribution to the biogenic sediment was calculated. The sample from the coast of Grammeno (SP4), which is in the western coastal part of South Crete, exhibit the highest percentage of biogenic sediment (59%) with the highest proportion of molluscs and the domination of the foraminifera species Peneroplis spp, while the rest of the samples from the central and eastern coastal part displayed a higher proportion of Amphistegina lobifera with a concentration of up to 100% (SP3). Thus, in the study area the benthic foraminifera which contribute the most to the coastal sedimentation are Peneroplis spp. (western coastal part) and Amphistegina lobifera (central and eastern coastal part).
The quantitative and comparative analysis of foraminifera in this study helps to comprehend the environmental characteristics and is an important source of data for identifying differences in assemblages of foraminifera by region and evaluating the relationship between them and consequently the coastal sedimentation.

Πλήρες Κείμενο:

PDF

Αναφορές


Adler, E., and Inbar, M., 2007. Shoreline sensitivity to oil spills, the Mediterranean coast of Israel: Assessment and analysis. Ocean & Coastal Management, 50(1-2), 24-34. doi:10.1016/j.ocecoaman.2006.08.016

Alves, T. M., Kokinou, E., and Zodiatis, G., 2014. A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins. Marine Pollution Bulletin, 86(1-2), 443-457. doi:10.1016/j.marpolbul.2014.06.034

Alves, T.M., Lykousis, V., Sakellariou, D., Alexandri, S., Nomikou, P., 2007. Constraining the origin and evolution of confined turbidite systems: southern Cretan margin, Eastern Mediterranean Sea (34°30–36°N). Geo-Marine Letters, 27, 41-61. https://doi.org/10.1007/s00367-006-0051-1

Androulidakis, Y. S., and Krestenitis, Y. N., 2022. Sea Surface Temperature Variability and Marine Heat Waves over the Aegean, Ionian, and Cretan Seas from 2008–2021. Journal of Marine Science and Engineering, 10(1), 42. https:// doi.org/10.3390/jmse10010042

Avşar, N., and Yerbilimleri, Ç. Ü., 1997. Foraminifera of the eastern Mediterranean coastline. ÇÜ Yerbilimleri Geosound, 31, 67-81.

Bonneau, M., 1984. Correlation of the Hellenide nappes in the south-east Aegean and their tectonic reconstruction. Geological Society, London, Special Publications, 17(1), 517-527.

Bradshaw, J. S., 1957. Laboratory Studies on the Rate of Growth of the Foraminifer," Streblus beccarii (Linné) var. tepida (Cushman)". Journal of

Paleontology, 31(6), 1138-1147.

Caputo, R., Catalano, S., Monaco, C., Romagnoli, G., Tortorici, G., and Tortorici, L., 2010. Active faulting on the island of Crete (Greece). Geophysical Journal International, 183(1), 111–126. doi:10.1111/j.1365-246x.2010.04749.x

Dawson, J. L., Smithers, S. G., and Hua, Q., 2014. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef. Geomorphology, 222, 68-81. doi:10.1016/j.geomorph.2014.03.023

Fassoulas, C., 2001. The tectonic development of a Neogene basin at the leading edge of the active European margin: the Heraklion basin, Crete, Greece. Journal of Geodynamics, 31(1), 49-70. doi:10.1016/s0264-3707(00)00017-x

Fortuin, A. R., 1978. Late Cenozoic history of eastern Crete and implications for the geology and geodynamics of the southern Aegean area. Geologie en mijnbouw Delft, 3, 451-464.

Gallen, S. F., Wegmann, K. W., Bohnenstiehl, D. R., Pazzaglia, F. J., Brandon, M. T., and Fassoulas, C., 2014. Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece. Earth and Planetary Science Letters, 398, 11–24. doi:10.1016/j.epsl.2014.04.038

Geslin, E., Debenay, J. P., Duleba, W., and Bonetti, C., 2002. Morphological abnormalities of foraminiferal tests in Brazilian environments: comparison between polluted and non-polluted areas. Marine Micropaleontology, 45(2), 151-168.

Gille, S. T., Metzger, E. J., and Tokmakian, R., 2004. Seafloor topography and ocean circulation. Oceanography, 17(1), 47–54. https://doi.org/10.5670/oceanog.2004.66.

Glover, A. G., Gooday, A. J., Bailey, D. M., Billett, D. S. M., Chevaldonné, P., Colaço, A., and Vanreusel, A., 2010. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Advances in Μarine Βiology, 58, 1-95.

Goldstein, S. T., 1999. Foraminifera: a biological overview. In Modern foraminifera 3, 37-55. Springer, Dordrecht.

Gooday, A. J., and Hughes, J. A., 2002. Foraminifera associated with phytodetritus deposits at a bathyal site in the northern Rockall Trough (NE Atlantic): seasonal contrasts and a comparison of stained and dead assemblages. Marine Micropaleontology, 46(1-2), 83-110.

Hallock, P., and Larsen, A. R., 1979. Coiling direction in Amphistegina. Marine Micropaleontology, 4, 33-44.

Hallock, P., 1981. Production of Carbonate Sediments by Selected Large Benthic Foraminifera on Two Pacific Coral Reefs. SEPM Journal of Sedimentary Research, 51(2), 467-474. doi:10.1306/212f7cb1-2b24-11d7-8648000102c1865d

Hallock, P., 1985. Why are larger foraminifera large?. Paleobiology, 11(2), 195-208.

Hallock, P., and Glenn, E. C., 1986. Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios, 1(1), 55-64.

Hallock, P., 1988. The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeography, Palaeoclimatology, Palaeoecology, 63(1-3), 275-291.

Hallock, P., 1999. Symbiont-bearing foraminifera. In Modern Foraminifera 8, 123-139. Springer, Dordrecht.

Hallock, P., Williams, D. E., Toler, S. K., Fisher, E. M., and Talge, H. K., 2006. Bleaching in reef-dwelling foraminifers: implications for reef decline. Marine Science Faculty Publications, 1222, 729-737.

Hammer, Ø., Harper, D. A., and Ryan, P. D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 9.

Hohenegger, J., 2002. Inferences on Sediment Production and Transport at Carbonate Beaches Using Larger Foraminifera. Carbonate Beaches 2000, American Society of Civil Engineers, 112-125. doi:10.1061/40640(305)9

Hohenegger, J., 2006. The importance of symbiont-bearing benthic foraminifera for West Pacific carbonate beach environments. Marine Micropaleontology, 61(1-3), 4-39. doi:10.1016/j.marmicro.2006.05.007

Hottinger, L., 2006. The" face" of benthic Foraminifera. Bollettino-Societa Paleontologica Italiana, 45(1), 75.

Hyams, O., Almogi-Labin, A., and Benjamini, C., 2002. Larger foraminifera of the southeastern Mediterranean shallow continental shelf off Israel. Israel Journal of Earth Sciences, 51, 169-179.

Kociok, M., 2016. Holocene extreme wave event deposits along the Southern Cretan coast, Master thesis, Institute of Neotectonics and Natural Hazards, RWTH Aachen, Germany, 89 pp.

Koukousioura, O., Dimiza, M. D., and Triantaphyllou, M. V., 2010. Alien foraminifers from Greek coastal areas (Aegean Sea, eastern Mediterranean). Mediterranean Marine Science, 11(1), 155-172.

Koukousioura, O., Dimiza, M. D., Triantaphyllou, M. V., and Hallock, P., 2011. Living benthic foraminifera as an environmental proxy in coastal ecosystems: a case study from the Aegean Sea (Greece, NE Mediterranean). Journal of Marine Systems, 88(4), 489-501.

Langer, M. R., Silk, M. T., and Lipps, J. H., 1997. Global ocean carbonate and carbon dioxide production; the role of reef Foraminifera. The Journal of Foraminiferal Research, 27(4), 271-277.

Langer, M. R., and Hottinger, L., 2000. Biogeography of selected" larger" foraminifera. Micropaleontology, 46, 105-126.

Langer, M. R., 2008. Assessing the Contribution of Foraminiferan Protists to Global Ocean Carbonate Production. Journal of Eukaryotic Microbiology, 55(3), 163-169. doi:10.1111/j.1550-7408.2008.00321.x

Lee, J. J., Sang, K., Ter Kuile, B., Strauss, E., Lee, P. J., and Faber, W. W., 1991. Nutritional and related experiments on laboratory maintenance of three species of symbiont-bearing, large foraminifera. Marine Biology, 109(3), 417-425.

Manutsoglu, E., Soujon, A., and Jacobshagen, V., 2003. Tectonic structure and fabric development of the Plattenkalk unit around the Samaria gorge, Western Crete, Greece. Zeitschrift der Deutschen Geologischen Gesellschaft, 154(1), 85-100.

McConnaughey, T. A., Burdett, J., Whelan, J. F., and Paull, C. K., 1997. Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta, 61(3), 611-622.

Meriç, E., Yokeş, M. B., Avşar, N., Kıyak, N. G., Öner, E., Nazik, A., and Öztürk, M. Z., 2016. Did Amphistegina lobifera Larsen reach the Mediterranean via the Suez Canal? Quaternary International, 401, 91-98. doi:10.1016/j.quaint.2015.08.088

Pinko, D., Abramovich, S., and Titelboim, D., 2020. Foraminiferal holobiont thermal tolerance under future warming, roommate problems or successful collaboration? Biogeosciences, 17(8), 2341-2348. doi: 10.5194/bg-17-2341-2020

Pope, R., Wilkinson, K., Skourtsos, E., Triantaphyllou, M., and Ferrier, G., 2008. Clarifying stages of alluvial fan evolution along the Sfakian piedmont, southern Crete: New evidence from analysis of post-incisive soils and OSL dating. Geomorphology, 94(1-2), 206-225. doi:10.1016/j.geomorph.2007.05.007

Pyökäri, M., and Lehtovaara, J. J., 1993. Beach material and its transport in accordance with the predominant and prevailing wave directions on some shores in northern Greece. Journal of Coastal Research, 9(3), 609-627.

Pyökäri, M., 1997. The provenance of beach sediments on Rhodes, southeastern Greece, indicated by sediment texture, composition and roundness. Geomorphology, 18(3-4), 315-332.

Pyökäri, M., 1999. Beach sediments of Crete: Texture, composition, roundness, source and transport. Journal of Coastal Research, 15(2), 537-553.

Rahl, J. M., Anderson, K. M., Brandon, M. T., and Fassoulas, C., 2005. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece. Earth and Planetary Science Letters, 240(2), 339-354.

Stuhr, M., Meyer, A., Reymond, C. E., Narayan, G. R., Rieder, V., Rahnenführer, J., and Hallock, P., 2018. Variable thermal stress tolerance of the reef-associated symbiont-bearing foraminifera Amphistegina linked to differences in symbiont type. Coral Reefs, 37(3), 811-824.

Shaw, B., and Jackson, J., 2010. Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International, 181(2), 966-984.

Skliris, N., Sofianos, S., Gkanasos, A., Mantziafou, A., Vervatis, V., Axaopoulos, P., and Lascaratos, A., 2011. Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dynamics, 62(1), 13-30. doi:10.1007/s10236-011-0493-5

Streftaris, N., and Zenetos, A., 2006. Alien marine species in the Mediterranean-the 100 ‘Worst Invasives’ and their impact. Mediterranean Marine Science, 7(1), 87-118.

Strozyk, F., Huhn, K., Strasser, M., Krastel, S., Kock, I., and Kopf, A., 2009. New evidence for massive gravitational mass-transport deposits in the southern Cretan Sea, eastern Mediterranean. Marine Geology, 263(1-4), 97-107. doi:10.1016/j.margeo.2009.04.002

Talge, H. K., and Hallock, P., 1995. Cytological examination of symbiont loss in a benthic foraminifera, Amphistegina gibbosa. Marine Micropaleontology, 26(1-4), 107-113.

Ter Kuile, B., and Erez, J., 1984. In situ growth rate experiments on the symbiont-bearing foraminifera Amphistegina lobifera and Amphisorus hemprichii.

The Journal of Foraminiferal Research, 14(4), 262-276.

Theocharis, A., Georgopoulos, D., Lascaratos, A., and Nittis, K., 1993. Water masses and circulation in the central region of the Eastern Mediterranean: Eastern Ionian, South Aegean and Northwest Levantine, 1986–1987. Deep Sea Research Part II: Topical Studies in Oceanography, 40(6), 1121-1142. doi:10.1016/0967-0645(93)90064-t

Theocharis, A., Balopoulos, E., Kioroglou, S., Kontoyiannis, H., and Iona, A., 1999. A synthesis of the circulation and hydrography of the South Aegean Sea and the Straits of the Cretan Arc (March 1994–January 1995). Progress in Oceanography, 44(4), 469-509. doi:10.1016/s0079-6611(99)00041-5

Titelboim, D., Almogi-Labin, A., Herut, B., Kucera, M., Schmidt, C., Hyams-Kaphzan, O., and Abramovich, S., 2016. Selective responses of benthic foraminifera to thermal pollution. Marine Pollution Bulletin, 105(1), 324-336.

Triantaphyllou, M. V., Koukousioura, O., and Dimiza, M. D., 2009. The presence of the Indo-Pacific symbiont-bearing foraminifer Amphistegina lobifera in Greek coastal ecosystems (Aegean Sea, Eastern Mediterranean). Mediterranean Marine Science, 10(2), 73-86.

Triantaphyllou, M. V., Dimiza, M. D., Koukousioura, O., and Hallock, P., 2012. Observations on the life cycle of the symbiont-bearing foraminifer Amphistegina lobifera Larsen, an invasive species in coastal ecosystems of the Aegean Sea (Greece, E. Mediterranean). Journal of Foraminiferal Research, 42(2), 143-150.

Van Hinsbergen, D. J., and Meulenkamp, J. E., 2006. Neogene supradetachment basin development on Crete (Greece) during exhumation of the South Aegean core complex. Basin Research, 18(1), 103-124.

Velaoras, D., Krokos, G., Nittis, K., and Theocharis, A., 2014. Dense intermediate water outflow from the Cretan Sea: A salinity driven, recurrent phenomenon, connected to thermohaline circulation changes. Journal of Geophysical Research: Oceans, 119(8), 4797-4820.

Vu, A. T., 2020. Foraminiferal assemblages of Cretan beaches (Greece)-proxy for tsunami deposits?. Doctoral dissertation, Universitäts bibliothek der RWTH Aachen.

Walker, S. E., Parsons-Hubbard, K., Richardson-White, S., Brett, C., and Powell, E., 2011. Alpha and beta diversity of encrusting foraminifera that recruit to long-term experiments along a carbonate platform-to-slope gradient: Paleoecological and paleoenvironmental implications. Palaeogeography,

Palaeoclimatology, Palaeoecology, 312(3-4), 325-349.

Yokeş, M. B., Meriç, E., Avşar, N., 2007. On the Presence of Alien Foraminifera Amphistegina lobifera Larsen on the coasts of the Maltese Islands. Aquatic

Invasions, 2(4), 439-441. doi:10.3391/ai.2007.2.4.15

Yokeş, M. B., Meriç, E., Avşar, N., Öncel, M. S., Eryilmaz, M., and Barut, İ., 2014. The expanded population of Amphistegina lobifera at Üç Adalar and Beş Adalar (Antalya, Turkey). Marine Biodiversity Records, 7, 1-10. doi:10.1017/s175526721400044x

Zenetos, A., Meriç, E., Verlaque, M., Galli, P., Boudouresque, C. F., Giangrande, A., and Bilecenoglu, M., 2008. Additions to the annotated list of marine alien biota in the Mediterranean with special emphasis on Foraminifera and Parasites. Mediterranean Marine Science, 9(1), 119-166.

Zervakis, V., Georgopoulos, D., Karageorgis, A. P., and Theocharis, A., 2004. On the response of the Aegean Sea to climatic variability: a review. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(14), 1845-1858.

Ελληνική Βιβλιογραφία

Τριανταφύλλου, Μ. Β., και Δήμιζα, Μ. Δ., 2012. Μικροπαλαιοντολογία και Γεωπεριβάλλον. Εκδοτικός Όμιλος ΙΩΝ.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.