Εξώφυλλο

Κοιτάσματα σε ζώνες οξείδωσης και εμπλουτισμού = Supergene ore in oxidation and enrichment zones.

Ιωσηφία Παναγιώτης Σίσκου

Περίληψη


Τα κοιτάσματα σε ζώνες οξείδωσης και εμπλουτισμού ή υπεργενή κοιτάσματα αποτελούν σημαντικές συγκεντρώσεις μετάλλων λόγω του οικονομικού και περιβαλλοντικού τους ενδιαφέροντος. Από οικονομικής άποψης, αυτά τα κοιτάσματα είναι εύκολο να εξορυχθούν με μικρό κόστος εξαιτίας της σχεδόν επιφανειακής τους ανάπτυξης. Επιπλέον, αποτελούν πηγές χρήσιμων μετάλλων και παρουσιάζουν εξαιρετικό ενδιαφέρον λόγω της μεγάλης ποικιλομορφίας τους. Από περιβαλλοντικής άποψης, αυτά τα κοιτάσματα μπορούν να δώσουν πληροφορίες τόσο για την κλιματική ιστορία της Γης, όσο και για την επίδραση της διάβρωσης και αποσάθρωσης στους διάφορους τύπους πετρωμάτων και κοιτασμάτων. Διάφοροι τύποι πετρωμάτων ή πρωτογενών κοιτασμάτων μπορούν να αποτελέσουν το μητρικό υλικό για την δημιουργία των υπεργενών κοιτασμάτων όταν βρεθούν σε επιφανειακές συνθήκες. Ακόμη, μπορούν να εξαχθούν συμπεράσματα για τη συμπεριφορά κατά την αποσάθρωση διάφορων φυσικών και ανθρωπογενών υλικών. Τα μέταλλα που μπορούν να ανακτηθούν από αυτού του τύπου τα κοιτάσματα ποικίλουν και εξαρτώνται τόσο από την πηγή όσο και από τις συνθήκες που επικρατούν (κλιματικές, pH, Eh, μικροοργανισμοί). Μερικά από τα πιο σημαντικά κοιτάσματα αυτού του τύπου είναι τα υπεργενή κοιτάσματα από την οξείδωση πορφυριτικών κοιτασμάτων Cu, τα λατεριτικά κοιτάσματα, τα «μη θειούχα» μεταλλεύματα Ζn και τα CIDs (Channel iron deposits). Στην Ελλάδα τα σημαντικότερα κοιτάσματα αυτού του τύπου είναι το κοίτασμα του Λαυρίου, της Σερίφου, της Θάσου καθώς και τα κοιτάσματα Fe-Ni λατερίτη, τα βωξιτικά κοιτάσματα και τα κοιτάσματα οξειδίων του Mn στη Δράμα.

Ore deposits in oxidation and enrichment zones or supergene deposits are important concentrations of metals because of their economic and environmental interest. From an economic point of view, these deposits are easy to mine at low cost because of their almost surface distribution. In addition, they are sources of useful metals and are of significant interest because of their great mineral variety. From an environmental point of view, these deposits can provide information on both the climatic history of the Earth and the effect of erosion and weathering on the different types of rocks and deposits. Various types of rocks or primary deposits can be the parental material for the formation of the supergene deposits when found in surface conditions. Furthermore, conclusions can be drawn about the weathering behavior of various natural and man-made materials. The metals that can be recovered from this type of deposits vary and depend both on the source and on the prevailing conditions (climatic, pH, Eh, micro-organisms). Some of the most important deposits of this type are the supergene deposits from the oxidation of porphyry Cu deposits, lateritic deposits, "non-sulfide" Zn ores and CIDs (channel iron deposits). In Greece, the most important deposits of this type are the Lavrion, Serifos and Thassos deposits, as well as the Fe-Ni laterite deposits, the bauxite deposits and the Mn oxide deposits in Drama.

Πλήρες Κείμενο:

PDF

Αναφορές


Μέλφος, Β., & Βουδούρης, Π. (2022). Κοιτάσματα της Ελλάδας.

Alpers, C. N., & Brimhall, G. H., 1988. Middle Miocene climatic change in the Atacama Desert, northern Chile: Evidence from supergene mineralization at La Escondida. Geological Society of America Bulletin, 100(10), 1640-1656.

Arndt, N., Ganino, C., 2012. Metals and Society: Αn Introduction to Economic Geology. Springer Heidelberg, 160 pp

Beazley, R., 2013. Developing a new rare earth discovery - an investor presentation for Peak Resources, Ltd., February, 2013, 23 slides, http://a.eqcdn.com/peakresources/media/e5f40aa400be827f2c78098d5fedb90b.pdf.

Boni, M., Gilg, H.A., Aversa, G., Balassone, G., 2003. The “Calamine” of SW Sardinia: geology, mineralogy, and stable isotope geochemistry of a supergene Zn mineralization. Economic Geology 98: 731-748

Butt, C.R.M., Cluzel, D., 2013. Nickel laterite ore deposits: weathered serpentinites. Elements 9: 123-128

Chakhmouradian, A.R., and Wall, F., 2012. Rare earth elements: minerals, mines, magnets (and more): Elements, v. 8, p. 333-340.

Chi, R., and Tian, J., 2008. Weathered Crust Elution-deposited Rare Earth Ores: Nova Science Publishers, New York, 288 p.

Cocker, M.D., 2014. Lateritic, supergene rare earth element (REE) deposits. In: Conway FM (ed) Proceedings of the 48th Annual Forum on the Geology of Industrial Minerals. Arizona Geological Survey Special Paper 9. Arizona Geological Survey, Chapter 4, pp 1-18

Dill, H.G., Melcher, F., Kaufhold, S., Techmer, A., Weber, B., & Bäumler, W., 2010. Post-Miocene and Bronze-age supergene Cu-Pb arsenate-humate-oxalate-carbonate mineralization at Mega Livadi, Serifos, Greece. The Canadian Mineralogist, 48(1), 163-181.

Dill, H.G., Weber, B, Botz, R., 2013a. Metalliferous duricrusts (“orecretes”) - markers of weathering: a mineralogical and climatic-geomorphological approach to supergene Pb-Zn-Cu-Sb-P mineralization on different parent materials. Neues Jahrbuch für Mineralogie Abhandlungen 190:123-195

Dill, H.G., Techmer A, Kus J., 2013b. Evolution of an old mining district between 725 and 1630 AD at the boundary between Thüringen and Bayern, SE Germany, using mineralogical and chemical markers, radio-carbon dating, and coal petrography of slags. Archaeological and Anthropological Sciences 5: 215-233

Dill, H.G., 2015. Supergene alteration of ore deposits: from nature to humans. Elements 11: 311-317

Evins, L. Z., Jensen, K. A., & Ewing, R. C., 2005, Uraninite recrystallization and Pb loss in the Oklo and Bangombé natural fission reactors, Gabon. Geochimica et Cosmochimica Acta, 69(6), 1589-1606.

Gilbertson, J., and Russill, J., 2013, A competent person’s report on the Tantalus Project, Northern Madagascar: report prepared for Tantalus Rare Earths AG by SRK, 140 p.

Heim, J.A., Vasconcelos, P.M., Schuster, D.L., Farley, K.A., Broadbent, G.C., 2006, Dating palaeochannel iron ore by (U-Th)/ He analysis of supergene goethite, Hamersley Province, Australia. Geology 34:173-176

Hatch, G.P., 2012, Dynamics in the global market for rare earths: Elements, v. 8, p. 341-346.

Hitzman, M.W., Reynolds, N.A., Sangster, D.F., Allen, C.R, Carman, C.E., 2003, Classification, genesis, and exploration guides for nonsulfide zinc deposits. Economic Geology 98: 685-714

Iseppi, M., Sevin, B., Cluzel, D., Maurizot, P., & Bayon, B. L., 2018, Supergene nickel ore deposits controlled by gravity-driven faulting and slope failure, Peridotite Nappe, New Caledonia. Economic Geology, 113(2), 531-544.

John, D. A., Ayuso, R. A., Barton, M. D., Blakely, R. J., Bodnar, R. J., Dilles, J. H.,... & Vikre, P. G., 2010, Porphyry copper deposit model, Chapter B of Mineral deposit models for resource assessment: US Geological Survey Scientific Investigations Report 2010-5070-B.

Kasama, T., & Murakami, T., 2001, The effect of microorganisms on Fe precipitation rates at neutral pH. Chemical Geology, 180(1-4), 117-128.

Katerinopoulos, A., Solomos, C., and Voudouris, P., 2005, Lavrion smithsonites: A mineralogical and mineral chemical study of their coloration. In Mineral deposit research: Meeting the global challenge (pp. 983-986). Springer, Berlin, Heidelberg.

Lynas Corporation, 2013, Lynas advanced materials plant. http://www.lynascorp.com/SiteCollectionDocuments/Fact%20Sheets/

Lynas_Advanced_Material_PlaPl.pdf/ Website accessed March 24, 2013.

Mariano, A.N., and Mariano, A.N., Jr., 2012, Rare earth mining and exploration in North America: Elements, v. 8, p. 369-376.

Michailidis, K. M., Nicholson, K., Nimfopoulos, M. K., & Pattrick, R. A. D., 1997, An EPMA and SEM study of the Mn-oxide mineralization of Kato Nevrokopi, Macedonia, northern Greece: Controls on formation of the Mn4+ oxides. Geological Society, London, Special Publications, 119(1), 265-280.

Morteani, G., and Preinfalk, C., 1996, REE distribution and REE carriers in laterites formed on the alkaline complexes of Araxá and Catalao (Brazil), in, Jones, A.P., Wall, F., and Williams, (eds.), C.T., Rare Earth Minerals: Chemistry, origin and ore deposits: Chapman & Hall, London, p.227-255.

Nimfopoulos, M. K., & Pattrick, R. A. D., 1991, Mineralogical and textural evolution of the economic manganese mineralisation in western Rhodope massif, N. Greece. Mineralogical Magazine, 55(380), 423-434.

Nimfopoulos, M. K., Pattrick, R. A. D., Michailidis, K. M., Polya, D. A., & Esson, J., 1997, Geology, geochemistry, and origin of the continental karst-hosted supergene manganese deposits in the western Rhodope Massif, Macedonia, northern Greece. Exploration and Mining Geology, 2(6), 171-184.

Price, J.G., 2013, The challenges of mineral resources for society. In: Bickford ME (ed) The Impact of the Geological Sciences on Society. Geological Society of America Special Papers 501, pp 1-19

Quatrini, R., & Johnson, D. B., 2019, Acidithiobacillus ferrooxidans. Trends in microbiology, 27(3), 282-283.

Ramanaidou, E. R., Morris, R. C. and Horwitz, R. C., 2003, Channel iron deposits of the Hamersley Province, Western Australia, Aust.J. Earth Sci., 50, 669-690.

Ramanaidou, E. R., & Morris, R. C., 2010, A synopsis of the channel iron deposits of the Hamersley Province, Western Australia. Applied Earth Science, 119(1), 56-59.

Reich, M., Palacios, C., Parada, M. A., Fehn, U., Cameron, E. M., Leybourne, M. I., & Zúñiga, A., 2008, Atacamite formation by deep saline waters in copper deposits from the Atacama Desert, Chile: evidence from fluid inclusions, groundwater geochemistry, TEM, and 36 Cl data. Mineralium Deposita, 43, 663-675.

Reich, M., Palacios, C., Vargas, G., Luo, S., Cameron, E. M., Leybourne, M. I., & You, C. F., 2009, Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Mineralium Deposita, 44, 497-504.Reith F, Stewart L, Wakelin SA (2012) Supergene gold transformation: Secondary and nano-particulate gold from southern New Zealand. Chemical Geology 320-321: 32-45

Reich, M., & Vasconcelos, P. M., 2015, Geological and economic significance of supergene metal deposits. Elements, 11(5), 305-310.

Renock, D., Shuller-Nickles, L.C., 2015, Predicting geologic corrosion with electrodes. Elements 11: 331-336

Rimstidt, J.D., Chermak, J.A., Gagen, P.M., 1994, Rates of reaction of galena, sphalerite, chalcopyrite, and arsenopyrite with Fe(III) in acidic solutions. In: Alpers CN, Blowes DW (eds) Environmental Geochemistry of Sulfide Oxidation. American Chemical Society Symposium Series 550. American Chemical Society, Washington, pp 2-13

Rose, Jr., H.J., Blade, L.V., and Ross, M., 1958, Earthy monazite at Magnet Cove, Arkansas: The American Mineralogist, v. 43, p. 995-997

Sangameshwar, S.R., and Barnes, H.L., 1983, Supergene processes in zinc-lead-silver sulfide ores in carbonate rocks: ECONOMIC GEOLOGY, v. 78, p.1379-1397.

Sato, M., 1992, Persistency-field Eh-pH diagrams for sulfides and their application to supergene oxidation and enrichment of sulfide ore bodies. Geochimica et Cosmochimica Acta, 56(8), 3133-3156.

Sillitoe, R.H., 2013, Copper provinces. In: Hedenquist JW, Harris M, Camus F (eds) Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe. Society of Economic Geologists Special Publication 16, pp 1-18

Skarpelis, N., 2006, Lateritization processes of ultramafic rocks in Cretaceous times: The fossil weathering crusts of mainland Greece. Journal of Geochemical Exploration, 88(1-3), 325-328.

Skarpelis, N., and Argyraki, A., 2009, Geology and origin of supergene ore at the Lavrion Pb‐Ag‐Zn deposit, Attica, Greece. Resource geology, 59(1), 1-14.

Solomos, Ch., Voudouris, P. and Katerinopoulos, A., 2004, Mineralogical study of bismuth-gold-antimony mineralization at the area of Kamariza, Lavrion. Bulletin of the Geological Society of Greece, 36(1), 387-396.

Taylor, R. 2011, Gossans and Leached Cappings: Field Assessment. Springer-Verlag, Berlin, 146 pp

Valeton, I., Biermann, M., Reche, R., & Rosenberg, F., 1987, Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews, 2(4), 359-404.

Vasconcelos, P. 1999, K-Ar and Ar40/Ar39 geochronology of weathering processes. Annual Review of Earth and Planetary Sciences 27: 183-229

Vasconcelos, P. M., Reich, M., & Shuster, D. L., 2015, The paleoclimatic signatures of supergene metal deposits. Elements, 11(5), 317-322.

Vavelidis, M., Amstutz, G. C., 1983, Investigations on the gold occurrences in the Kinyra and Thasos (City) area on Thasos Island (Greece). In: Mineral Deposits of the Alps and of the Alpine Epoch in Europe: Berlin-Heidelberg, Springer, pp. 385-391.

Voudouris, P, Economou-Eliopoulos, M., 2003, Mineralogy and chemistry of Cu-rich ores from the Kamariza carbonate-hosted deposit (Lavrion), Greece. In: Eliopoulos et al. (eds) Mineral Exploration and Sustainable Development. Millpress, Rotterdam, pp 499-502

Voudouris, P., Melfos, V., Spry, P. G., Bonsall, T., Tarkian, M., and Economou-Eliopoulos, M., 2008, Mineralogical and fluid inclusion constraints on the evolution of the Plaka intrusion-related ore system, Lavrion, Greece. Mineralogy and Petrology, 93(1-2), 79-110.

Voudouris, P., Melfos, V., Mavrogonatos, C., Photiades, A., Moraiti, E., Rieck, B.,... & Zaimis, S., 2021, The Lavrion mines: a unique site of geological and mineralogical heritage. Minerals, 11(1), 76.

Voudouris, P. & Melfos, V., 2022, https://www.oryktosploutos.net/2022/09/the-lavrion-mines-geological-metallogenic-and mineralogical-overview/

Wu, C., Yuan, Z., & Bai, G., 1995, Rare earth deposits in China. Mineralogical Society Series, 7, 281-310.

Zammit, C.M., Shuster, J.P., Gagen, E.J., Southam, G., 2015, The geomicrobiology of supergene metal deposits. Elements 11: 337-342


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.