Εξώφυλλο

Η κρισιμότητα των σπάνιων γαιών στην παγκόσμια οικονομία = The criticality of rare earths in the global economy.

Αρσένιος Κωνσταντίνος Δημαράς

Περίληψη


Τα στοιχεία σπάνιων γαιών (REEs) είναι μια ομάδα 17 χημικών στοιχείων που είναι ζωτικής σημασίας για πολλές βιομηχανίες υψηλής τεχνολογίας, συμπεριλαμβανομένων των ηλεκτρονικών, των ανανεώσιμων πηγών ενέργειας, της άμυνας και των ιατρικών συσκευών. Οι μοναδικές μαγνητικές, οπτικές και ηλεκτρικές ιδιότητες των REE τα καθιστούν απαραίτητα συστατικά σε ένα ευρύ φάσμα προϊόντων. Η κρισιμότητα των REE πηγάζει από τη σπανιότητά τους, καθώς και από το γεγονός ότι συχνά βρίσκονται μόνο σε μικρές ποσότητες και σε δυσπρόσιτες τοποθεσίες. Επιπλέον, η παραγωγή REE απαιτεί μια πολύπλοκη και επιβλαβή για το περιβάλλον διαδικασία εξόρυξης, η οποία αυξάνει τη σπανιότητά τους και καθιστά δύσκολη την αύξηση της προσφοράς.
Η Κίνα είναι σήμερα ο κυρίαρχος παγκόσμιος παραγωγός REE, αντιπροσωπεύοντας πάνω από το 80% της παγκόσμιας προσφοράς. Αυτό έχει εγείρει ανησυχίες σχετικά με το ενδεχόμενο διακοπής του εφοδιασμού και γεωπολιτικών εντάσεων, καθώς ο κόσμος εξαρτάται ολοένα και περισσότερο από μια μόνο πηγή για αυτά τα κρίσιμα υλικά. Καθώς η ζήτηση για REE συνεχίζει να αυξάνεται, γίνεται όλο και πιο σημαντικό για άλλες χώρες να αναπτύξουν τις δικές τους εγχώριες παραγωγικές ικανότητες REE, καθώς και να βρουν εναλλακτικά υλικά και τεχνολογίες που μπορούν να αντικαταστήσουν τους REE σε ορισμένες εφαρμογές.
Συμπερασματικά, η κρισιμότητα των REE για την παγκόσμια βιομηχανία υπογραμμίζει τη σημασία της ανάπτυξης βιώσιμων και ανθεκτικών αλυσίδων εφοδιασμού για αυτά τα βασικά υλικά, προκειμένου να διασφαλιστεί η συνεχής ανάπτυξη και ανάπτυξη βιομηχανιών υψηλής τεχνολογίας σε όλο τον κόσμο.

Rare earth elements (REEs) are a group of 17 chemical elements that are crucial for many high-tech industries, including electronics, renewable energy, defense, and medical devices. The unique magnetic, optical, and electrical properties of REEs make them essential components in a wide range of products. The criticality of REEs stems from their scarcity, as well as the fact that they are often only found in small quantities and in hard-to-reach locations. In addition, the production of REEs requires a complex and environmentally-harmful extraction process, which adds to their scarcity and makes it difficult to increase supply.
China is currently the dominant global producer of REEs, accounting for over 80% of the world's supply. This has raised concerns about the potential for supply disruptions and geopolitical tensions, as the world becomes increasingly dependent on a single source for these critical materials. As the demand for REEs continues to grow, it's becoming increasingly important for other countries to develop their own domestic REE production capacities, as well as to find alternative materials and technologies that can replace REEs in certain applications.
In conclusion, the criticality of REEs to the global industry underscores the importance of developing sustainable and resilient supply chains for these essential materials, in order to ensure the continued growth and development of high-tech industries around the world.

Πλήρες Κείμενο:

PDF

Αναφορές


“The Ames Laboratory to Lead New Research Effort to Address Shortages of Critical Materials,” Accessed 29-4-2013, ames-laboratory-lead-new-research-eff ort-address-shortages-critical-materials.

Abaka-Wood, G. B., Addai-Mensah, J., & Skinner, W. (2016). Review of flotation and physical separation of rare earth element minerals. In 4th UMaT

Biennial International Mining and Mineral Conference, MR (pp. 55-62).

Alonso, E.; Sherman, A.M.; Wallington, T.J.; Everson, M.P.; Field, F.R.; Roth, R.; Kirchain, R.E. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ. Sci. Technol. 2012, 46, 3406–3414. [CrossRef] [PubMed]

Anderson, C. D. (2014). Fundamentals of rare earth flotation surface chemistry: Electrokinetic phenomena. Mining, Metallurgy & Exploration, 31(3), 176-176.

Balaram, Recent advances in the determination of elemental impurities in pharmaceuticals – Status, challenges and moving frontiers, TrAC Trends in Analytical Chemistry, Volume 80, 2016, Pages 83-95, ISSN 0165-9936, https://doi.org/10.1016/j.trac.2016.02.001.

Barteková, Eva. (2014). An Introduction to the Economics of Rare Earths. Available from https://www.researchgate.net/publication/279514600_An_Introduction_to_the_Economics_of_Rare_Earths/figures?lo=1. Accessed: 12-10-2022

Bertell 1993, Dialectical Investigations

Bitsche, Gutmann, Schmolz, d'Ussel, DaimlerChrysler EPIC Minivan powered by lithium-ion batteries, in: Proceedings of the evs-18, Electric Vehicle Symposium, Berlin, Germany, 20–24 October 2001.

Bogart JA, Lippincott CA, Carroll PJ, Schelter EJ (2015) An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium. Angew Chem Int Ed 54:8222–8225. Available from https://doi.org/https://doi.org/10.1002/anie.201501659

Borisavljevic, A., Polinder, H., & Ferreira, J. A. (2011). Calculation of unbalanced magnetic force in slotless PM machines. In Proceedings of the Electrimacs 2011, 6-8 June 2011, Paris, France (pp. 1-6).

Caro P (1998) Rare earths in luminescence. In: Saez R, Caro P (eds) Rare Earths. Editorial Complutense, SA, pp 323–325

Chakhmouradian and Wall 2012, Rare Earth Elements: Minerals, Mines, Magnets (and More)

De Decker, J. (2017). Functionalized metal-organic frameworks as selective metal adsorbents (Doctoral dissertation, Ghent University).

DeWitt, E., Kwak, L.M., and Zartman, R.E., 1987, U-Th-Pb and 40Ar/39Ar dating of the Mountain Pass carbonatite and alkalic igneous rocks, S.E. Cal. [abs.]: Geological Society of America Abstracts with Programs, v. 19, p. 642.

Diatloff, F.W. Smith & C. J. Asher (1995) Rare earth elements and plant growth: III. Responses of corn and mungbean to low concentrations of cerium in dilute, continuously flowing nutrient solutions., Journal of Plant Nutrition, 18:10, 1991-2003, DOI: 10.1080/01904169509365039

Fu, F., Akagi, T., Yabuki, S. et al. The variation of REE (rare earth elements) patterns in soil-grown plants: a new proxy for the source of rare earth elements and silicon in plants. Plant and Soil 235, 53–64 (2001). https://doi.org/10.1023/A:1011837326556

Guo et al., B.S. Guo, W.M. Zhu, P.K. Xiong, Y.J. Ji, Z. Liu, Z.M. Wu, 1988, Rare Earths in Agriculture, Agricultural Scientific Technological Press, Beijing, China, pp. 23-208

Haxel et al. 2002, The speciation of rare earth elements on kaolinite at basic pH

Hayes-Labruto, Leslie & Schillebeeckx, Simon & Workman, Mark & Shah, Nilay. (2013). Contrasting perspectives on China's rare earths policies: Reframing the debate through a stakeholder lens. Energy Policy. 63. 55–68. 10.1016/j.enpol.2013.07.121.

Hedrick,J.B.(1994). Thorium. Available from http://minerals.usgs.gov/minerals/pubs/commodity/thorium/690494.pdf. Accessed: 01-03-2014.

Henderson, P. A. U. L. (1984). General geochemical properties and abundances of the rare earth elements. In Developments in geochemistry (Vol. 2, pp. 1-32). Elsevier.

Henriksen, M. (2011). Feasibility study of induction generators in direct-drive wind turbines. Master’s thesis, Technical University of Denmark. Accessed: 13-03-2014.

Hitachi Ltd (2012). Highly efficient industrial 11kW permanent magnet synchronous motor without rare-earth metals. Available from http://www.hitachi.com/New/cnews/120411.html. Accessed: 13-03-2014.

Honda Motor Co. Ltd (2013). Honda established world’s first process to reuse rare earth metals extracted from nickel-metal hydride batteries for hybrid vehicles. Available from http://www.hondanews.info/news/en/corporate/ c130303eng. Accessed: 04-03-2014.

Hu, A.H.; Kuo, C.H.; Huang, L.H.; Su, C.C. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor. Waste Manag. 2017, 60, 765–774. [CrossRef] [PubMed]

JPH_Article_Vol26_No2_2014 The U.S. Rare Earth Industry: Its Growth and Decline

Krishnamurthy, N., & Gupta, C. K. (2015). Extractive metallurgy of rare earths. CRC press.

Lazaridis, S., Kipourou-Panagiotou, A., Papadopoulos, A., Kantiranis, N., Koroneos, A., & Albanakis, K. (2019). Rare Earth Elements In The Black Sands From Coastal Cliffs Sedimentary Deposits, of Aggelochori Area (No. 861).

LCA-Based_Carbon_Footprint_Accounting_of_Mixed_Rar

Lee, J.C.K.;Wen, Z.G. Pathways for greening the supply of rare earth elements in China. Nat. Sustain. 2018, 1, 598–605. [CrossRef]

Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85), p. 4-17 CRC press.

Lin, S.-L., Hwang, C.-S., 1996. Structures of CeO2– Al2O3– SiO2 glasses. J. Non-Cryst. Solids 202, 61–67.

McCallum, R. W. (2012). Replacing critical rare earth materials in high energy density magnets. Bulletin of the American Physical Society, 57.

McLennan, S. M., & Ross Taylor, S. (2011). Geology, Geochemistry and Natural Abundances. Encyclopedia of Inorganic and Bioinorganic Chemistry.

Melfos, V., & Voudouris, P. C. (2012). Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals, 2(4), 300-317.

Molycorp, Inc., 2012, Molycorp’s rare earth reserves at Mountain Pass increase by 36%: Molycorp Press Release, April 9, 2012.

Nguyen, R.T., Diaz, L.A., Imholte, D.D. et al. Economic Assessment for Recycling Critical Metals From Hard Disk Drives Using a Comprehensive Recovery

Process. JOM 69, 1546–1552 (2017). https://doi.org/10.1007/s11837-017-2399-2

Papadopoulos, A., Tzifas, I. T., & Tsikos, H. (2019). The potential for REE and associated critical metals in coastal sand (placer) deposits of Greece: A review. Minerals, 9(8), 469.

Redling, Kerstin (2006): Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry. Dissertation, LMU München: Tierärztliche Fakultät

Thomas, Carpenter, Boutin, Allison, Rare earth elements (REEs): Effects on germination and growth of selected crop and native plant species, Chemosphere,Volume 96, 2014, Pages 57-66, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2013.07.020

Tzifas, I. T., Papadopoulos, A., Misaelides, P., Godelitsas, A., Göttlicher, J., Tsikos, H.& Hatzidimitriou, A. (2019). New insights into mineralogy and geochemistry of allanite-bearing Mediterranean coastal sands from Northern Greece. Geochemistry, 79(2), 247-267.

Van Gosen, B. S., Verplanck, P. L., Seal II, R. R., Long, K. R., & Gambogi, J. (2017). Rare-earth elements (No. 1802-O). US Geological Survey.

Voncken 2016, The Rare Earth Elements—A Special Group of Metals

Wakabayashi, T., Ymamoto, A., Kazaana, A. et al. Antibacterial, Antifungal and Nematicidal Activities of Rare Earth Ions. Biol Trace Elem Res 174, 464–470 (2016). https://doi.org/10.1007/s12011-016-0727-y

Zaitsev, V., and Kogarko, L. N., 2012, Sources and perspective of REE in the Lovozero massif (Kola Peninsula, Russia): European Mineralogical Conference 2012, Frankfurt, Germany, v. 1, p. 290.

Zhang J, Cheng H, Gao Q, Zhang Z, Liu Q. [Effect of lanthanum on growth and biochemical property of Sclerotinia sclerotiorum]. Ying Yong Sheng tai xue bao = The Journal of Applied Ecology. 2000 Jun;11(3):382-384. PMID: 11767637.

Zhang, H., Feng, J., Zhu, W. et al. Bacteriostatic effects of cerium-humic acid complex. Biol Trace Elem Res 73, 29–36 (2000). https://doi.org/10.1385/BTER:73:1:29

Καλαθά, Σ. 2017. Μεταλλογενετικές διεργασίες που συνδέονται με τον σχηματισμό βωξιτικών λατεριτών και Ni–λατεριτών: εμπλουτισμός σπανίων γαιών (Doctoral dissertation, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Σχολή Θετικών Επιστημών. Τμήμα Γεωλογίας και Γεωπεριβάλλοντος. Τομέας Οικονομικής Γεωλογίας και Γεωχημείας).

Μέλφος, B. 2020, Οι σπάνιες γαίες και η γεωπολιτική θέση της Ελλάδας, Ελληνικό πανόραμα, ΕΠ 124 https://www.elliniko-panorama.gr

Διαδικτυακές πηγές

https://www.oryktosploutos.net/2021/04/rare-earth-metals-production-is-no-longer-monopolized-by-china/

https://www.ameslab.gov/news/news-releases/

https://www.usgs.gov/centers/nmic/rare-earths-statistics-and-information


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.