Εξώφυλλο

Χρήση αργιλικών ορυκτών για την εξυγίανση ρυπασμένων αστικών εδαφών = Use of clay minerals for the sanitization of polluted urban soils.

Άννα Αντώνιος Λίτσιου

Περίληψη


Μελετήθηκε η εκπλυσιμότητα των βαρέων μετάλλων από μείγματα αργιλικών ορυκτών, συγκεκριμένα σμεκτίτη (P1) και παλυγκορσκίτη (H1 και Κ1) από τη λεκάνη των Βεντζίων και ρυπασμένων αστικών εδαφών (Π3 και Π6) από δύο κεντρικά πάρκα της πόλης της Πτολεμαΐδας. Προετοιμάστηκαν είκοσι τρία δείγματα με διαφορετικά % κ.β. ποσοστά αργιλικού ορυκτού και εδάφους. Τα δείγματα των αργιλικών ορυκτών είναι καθαρά και πλούσια σε αργιλικές φάσεις. Συγκεκριμένα, το δείγμα σμεκτίτη περιέχει 78% κ.β. σμεκτίτη, 12% κ.β. παλυγκορσκίτη και 10% κ.β. χαλαζία, ενώ τα δείγματα παλυγκορσκίτη περιέχουν 94-97% κ.β. παλυγκορσκίτη, 0-1% κ.β. χαλαζία και 3-5% κ.β. σερπεντίνη. Με βάση τις χημικές αναλύσεις, τα δείγματα των αργιλικών ορυκτών εμφανίζονται ως προς τη μέση σύσταση του φλοιού της Γης, μέτρια εμπλουτισμένα σε Fe2O3t και μέτρια έως σημαντικά εμπλουτισμένα σε MgO, ενώ τα δείγματα Ρ1 και Κ1 εμφανίζονται επιπλέον μέτρια και σημαντικά εμπλουτισμένα σε MnO αντίστοιχα. Όσον αφορά τα ιχνοστοιχεία, τα δείγματα των αργιλικών ορυκτών εμφανίζονται σημαντικά έως πολύ εμπλουτισμένα σε Co, Cr, Ni και Se, ενώ το δείγμα Ρ1 εκτός των προαναφερθέντων εμφανίζεται σημαντικά εμπλουτισμένο και σε U. Τα δείγματα εδάφους με βάση τη παγκόσμια μέση σύσταση των εδαφών, εμφανίζονται σημαντικά εμπλουτισμένα/επιβαρυμένα σε Cr, ενώ το δείγμα Π3 εμφανίζεται επιπλέον σημαντικά εμπλουτισμένο/επιβαρυμένο σε Ni και πολύ εμπλουτισμένο/επιβαρυμένο σε Rh και U. Στις παρούσες συνθήκες pH, τα αργιλικά ορυκτά αποβάλλουν στην υγρή φάση σημαντικές ποσότητες Cr, ενώ σε μικρότερες ποσότητες αποβάλλονται από τα δείγματα Ρ1 και Η1, As και Sb και από το δείγμα Ρ1, επιπλέον Se, Pb και Cd. Τα δείγματα εδάφους απελευθερώνουν στην υγρή φάση As, Cr και Mo. Από τα μείγματα αργιλικών ορυκτών-εδάφους απελευθερώνεται στην υγρή φάση Cr, Mo, Sb, Cd, As και Se, ενώ η αποδέσμευση των περισσότερων βαρέων μετάλλων επηρεάζεται από τη μεταβολή του pH. Τα εξεταζόμενα αργιλικά ορυκτά στις παρούσες συνθήκες pH, δεν συμβάλλουν σημαντικά στη δέσμευση βαρέων μετάλλων. Μετά από επεξεργασία ή και προσθήκη συγκεκριμένων προσθέτων με στόχο την επίτευξη χαμηλότερων συνθηκών pH, τα εξεταζόμενα αργιλικά ορυκτά δύναται να αποτελέσουν υλικά ικανά για τη δέσμευση βαρέων μετάλλων, καθιστώντας τα κατάλληλα για τις συγκεκριμένες περιβαλλοντικές εφαρμογές.

The leachability of heavy metals from mixtures of clay minerals, specifically smectite (P1) and palygorskite (H1 and K1) from Ventzia basin, and polluted urban soils (P3 and P6) from two central parks in the city of Ptolemaida, were studied. Twenty-three samples were prepared, consisting of different % by weight percentages of clay minerals and soils. The clay mineral samples are pure and abundant in clay phases. Precisely, the sample of smectite consists of 78 wt% smectite, 12 wt% palygorskite and 10 wt% quartz, while the samples of palygorskite consist of 94-97 wt% palygorskite, 0-1 wt% quartz and 3-5 wt% serpentine. Based on the chemical analyses, the clay mineral samples are, compared to the average composition of the continental crust, moderately enriched in Fe2O3t and moderately to considerably enriched in MgO, while the samples P1 and K1 are additionally moderately and considerably enriched in MnO, respectively. In respect to trace elements, the clay mineral samples are considerably to very enriched in Co, Cr, Ni and Se, while the sample P1 except for the aforementioned, is considerably enriched in U. The soil samples, compared to the global average composition of soils, are considerably contaminated/enriched in Cr, while the sample P3 is additionally considerably contaminated/enriched in Ni and very contaminated/enriched in Rh and U. At the current pH conditions, clay minerals leach into the liquid phase major amounts of Cr, while in slighter amounts As and Sb from the samples P1 and H1 and additionally Se, Pb and Cd from the sample P1 are leached. The soil samples leach into the liquid phase As, Cr and Mo. From the clay mineral-soil mixtures, Cr, Mo, Sb, Cd, As and Se are leached into the liquid phase, while the release of most of heavy metals is influenced by the variations of pH. The examined clay minerals at the current pH conditions, do not contribute significantly to the capturing of heavy metals. After processing or addition of specific additives with the objective of attaining lower pH conditions, the examined clay minerals may be capable of capturing heavy metals, rendering them suitable for the specified environmental applications.

Πλήρες Κείμενο:

PDF

Αναφορές


Ξενόγλωσση Βιβλιογραφία

Appelo, C.A.J. and Postma, D. 2004. Geochemistry, Groundwater & Pollution. CRC Press. Balkema, Rotterdam. 2, pp. 648.

Bergaya, F. and Lagaly, G. 2006. General introduction: Clays, clay minerals, and clay science. In: Bergaya, F., Theng, B.K.G. and Lagaly, G. (Eds.) Handbook of clay science. Developments in clay science. Elsevier. 1, 1-18.

Bergaya, F., Lagaly, G. and Vayer, M. 2006. Cation and anion exchange. In: Bergaya, F., Theng, B.K.G. and Lagaly, G. (Eds.) Handbook of clay science. Developments in clay science. Elsevier. 1, 979-1001.

Brady, N.C. and Weil, R.R. 2008. The nature and properties of soils. Pearson Education Inc., Prentice-Hall, Upper Saddle River, New Jersey. 14, pp. 980.

Brigatti, M.F., Galán, E. and Theng. B.K.G. 2006. Structures and mineralogy of clay minerals. In: Bergaya, F., Theng, B.K.G. and Lagaly, G. (Eds.) Handbook of clay science. Developments in clay science. Elsevier. 1, 19-86.

Brookins, D.G. 1988. Eh-pH Diagrams for Geochemistry. Springer-Verlag, New York. 8, pp. 176.

Burlakovs, J., Vincevica-Gaile, Z., Stapkevica, M. and Klavins, M. 2014. Modified clay as soil amendment for remediation: studies of leaching and sorption kinetics. Mineral Processing. 14th International Multidisciplinary Scientific GeoConference SGEM. p.9.

Chibowski, E. 2011. Flocculation and Dispersion Phenomena in Soils. In: Gliński, J., Horabik, J., Lipiec, J. (Eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. 301-304.

Christidis, G.E. 2011. Industrial Clays. EMU Notes in Mineralogy, 9(9), 341-414.

Christidis, G.E. and Eberl, D.D. 2003. Determination of layer-charge characteristics of smectites. Clays and Clay Minerals. 51(6), 644-655.

Christidis, G.E., Blum, A.E. and Eberl, D.D. 2006. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites. Applied Clay Science. 34, 125-138.

Christidis, G.E., Katsiki, P., Pratikakis, A. and Kacandes, G. 2010. Rheological properties of palygorskite-smectite suspensions from the Ventzia Basin. Bulletin of Geological Society of Greece, 43(5)., 2562-2569.

Churchman, G.J., Gates, W.P., Theng, B.K.G., and Yuan, G. 2006. Clays and clay minerals for pollution control. In: Bergaya, F., Theng, B.K.G. and Lagaly, G. (Eds.) Handbook of clay science. Developments in clay science. Elsevier. 1, 625-675.

Dijkstra, J.J., Meeussen, J.C.L. and Comans, R.N.J. 2004. Leaching of heavy metals from contaminated soils: An experimental and modeling study. Environmental Science & Technology, 38(16), 4390-4395.

Eisenhour, D. and Reisch, F. 2006. Bentonite. In Kogel, J.E., Trivedi, N.C., Barker, J.M. and Krukowski, S.T. (Eds.), Industrial Minerals & Rocks. Commodities, Markets, and Uses. Society of Mining Metallurgy and Exploration Inc. Littleton, Colorado. 7, 357-368.

European Standard ΕΝ-12457/1-4. 2003. Characterisation of waste - Leaching- Compliance test for leaching of granular waste materials and sludges. Part 1: One stage batch test at a liquid to solid ratio of 2 l/kg for materials with high solid content and with particle size below 4 mm (without or with size reduction), pp. 27.

Filippidis, A. and Georgakopoulos, A. 1992. Mineralogical and chemical investigation of fly ash from the Main and Northern lignite fields in Ptolemais, Greece. Fuel. 71(4), 373-376.

Fuchs, Y. 2005. Clays, Economic Uses. In: Selley, R.C., Cocks, L.R.M. and Plimer, I.R. (Eds.) Encyclopedia of Geology. Elsevier ltd. 1, 366-370.

Fytianos, K., Tsaniklidi, B. and Voudrias, E. 1998. Leachability of heavy metals in Greek fly ash from coal combustion. Environmental International. 24(4), 477-486.

Galán, E. 2006. Genesis of clay minerals. In: Bergaya, F., Theng, B.K.G. and Lagaly, G. (Eds.) Handbook of clay science. Developments in clay science. Elsevier. 1, 1129-1162.

Georgakopoulos, A., Kassoli-Fournaraki, A. and Filippidis, A. 1992. Morphology, mineralogy and chemistry of the fly ash from Ptolemais lignite basin (Greece) in relation to some problems in human health. Trends in Mineralogy. 1, 301-305.

Georgakopoulos, A., Filippidis, A. and Kassoli-Fournaraki, A. 1994. Morphology and trace element contents of the fly ash from Main and Northern lignite fields, Ptolemais, Greece. Fuel. 73(11), 1802-1804.

Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A., Fernadez-Turiel, J.L. and Llorens, J.F. 1996. The content of some trace elements in surface soils and fly ash of Ptolemais lignite basin, Macedonia, Greece. In the Third International Conference on Environmental Pollution, Thessaloniki, 114-118.

Georgakopoulos, A., Filippidis, A. and Kassoli-Fournaraki, A. 2002. Leachability of Major and Trace Elements of Fly Ash from Ptolemais Power Station, Northern Greece. Energy Sources. Taylor and Frances. 24, 103-113.

Gionis, V., Kacandes, G.H., Kastritis I.D., Chryssikos G.D. 2006. On the structure of palygorskite by mid‐and near‐infrared spectroscopy. American mineralogist, 91, 1125‐1133.

Gionis, V., Kacandes, G.H., Kastritis, I.D., Chryssikos, G.D. 2007. Combined near‐infrared and x‐ray diffraction investigation of the octahedral sheet composition of palygorskite. Clays and clay minerals, 55, 543‐553.

Grim R.E. 1968. Clay Mineralogy. McGraw-Hill Book Company, New York. 2, pp. 384.

Grim R.E. 1973. Technical properties and application of clays and clay minerals. Proceedings of international clay conference 1972 (AIPEA), Madrid. 719-721.

Grim R.E. and Güven N. 1978. Bentonites: geology, mineralogy and uses. Developments in Sedimentology. Elsevier, New York. 24, pp. 267.

Haden, L.W.Jr. and Schwint, A.I., 1967. Attapulgite its properties and applications, Industrial and Engineering Chemistry. 59(9), 8-69.

Håkanson, L. 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975-1001.

Hansen, L.D and Fisher, G.L. 1980. Elemental distribution in coal fly ash particles. Environmental Science and Technology, 9, 1111-1117.

Harben, P.W. 2002. The Industrial Mineral Handy Book-A Guide to Markets, Specifications, and Prices. Industrial Mineral Information, Worcester Park, 4, pp. 412.

Harvey, C.C. and Murray, H.H. 2006. Clays. An Overview. In Kogel, J.E., Trivedi, N.C., Barker, J.M. and Krukowski, S.T. (Eds.), Industrial Minerals & Rocks. Commodities, Markets, and Uses. Society of Mining Metallurgy and Exploration Inc. Littleton, Colorado. 7, 335-342.

Hillier, S. 1978. Clay mineralogy. In: Sedimentology. Encyclopedia of Earth Science. Berlin, Heidelberg: Springer. 223-228.

Hindersmann, I. and Mansfeldt, T. 2014. Trace element solubility in a multimetal-contaminated soil as affected by redox conditions. Water, Air and Soil Pollution. 225(10), 1-20.

Huggett, J.M. 2006. Clay minerals. In: Selley, R.C., Cocks, L.R.M. and Plimer, I.R. (Eds.) Encyclopedia of Geology. Elsevier ltd. 1, 358-365.

Huggett, J.M. 2006. Clays and their Diagenesis. In: Selley, R.C., Cocks, L.R.M. and Plimer, I.R. (Eds.) Encyclopedia of Geology. Elsevier ltd. 5, 358-365.

Iordanidis, A., Georgakopoulos, A., Filippidis, A. and Kassoli-Fournaraki, A. 2001. A correlation study of trace elements in lignite and fly ash generated in a power station. International Journal of Environmental Analytical Chemistry. 79(2), 133-141.

Jackson, T.A. 1998. The biogeochemical and ecological significance of interactions between colloidal minerals and trace elements. In: Parker A., Rae J.E. (Eds.), Environmental Interactions of Clays. Springer‐Verlag, Berlin, 93–205.

Kabata-Pendias, A. 2011. Trace Elements in Soils and Plants. CRC Press, Boca Raton, Florida, 4, pp. 505.

Kantiranis, N., Filippidis, A. and Georgakopoulos, A., 2005. Investigation of the uptake ability of fly ashes produced after lignite combustion. Journal of Environmental Management, 76, 119-123.

Kastanaki, A., Sotiropoulos, D. and Papadopoulou, E. 2012. The variability of Greek fly ashes. Estimations for their future evolution. EUROCOALASH International Conference, Thessaloniki. pp. 16.

Kastritis I.D, Kacandes, G. and Mposkos, E. 2003. The palygorskite and Mg-Fe-smectite clay deposits of the Ventzia basin, western Macedonia, Greece. In: Eliopoulos et al. (Eds.), Mineral exploration and sustainable development. Rotterdam: Millpress, 891-894.

Kaufhold, S., Chryssikos, G.D., Kacandes, G., Gionis, V., Ufer, K. and Dohrmann, R. 2019. Geochemical and mineralogical characterisation of smectites from the Ventzia basin, Western Macedonia, Greece. Clay Minerals. 54, 95-107.

Kazakis, N., Kantiranis, N., Kailatzidou, K., Kaprara, E., Mitrakas, M., Frei, R., Vargemezis, G., Tsourlos, P., Zouboulis, A. and Filippidis, A., 2017. Origin of hexavalent chromium in groundwater: The example of Sarigkiol Basin, Northern Greece, Science of the Total Environment, 593–594, 552–566.

Kazakis, N., Kantiranis, N., Kalaitzidou, K., Kaprara, E., Mitrakas, M., Frei, R, Vargemezis, G., Vogiatzis, D., Zouboulis, A., Filippidis, A., 2018. Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece). Environmental Pollution. 235, 632-641.

Kolovos N., Georgakopoulos A., Filippidis A., Kavouridis K., Kassoli-Fournaraki A., Kantiranis N., Stamoulis K., Sotiropoulos D., Laskos K. 2000. The economic and environmental importance of the intercalated sterile materials co-excavation in the Southern field of the Lignite Center of Ptolemais-Amynteon. 1st Congress of the Economic Geology, Mineralogy and Geochemistry Committee of the Geological Society of Greece, Kozani, Greece, Proceedings, 212-222.

Komonweeraket, K., Cetin, B., Aydilek, A., Benson, C. and Tuncer, E. 2015. Effects of pH on the leaching mechanisms of element from fly ash mixed soils. Fuel, 140, 788-802.

Koukakis, P., Tsakiridis, P., Ntziouni, A., Kordatos, K. and Perraki M. 2016. Attapulgite clay of the Ventzia basin, Western Macedonia, Greece, as template in synthesizing amorphous carbon nanotubes. Bulletin of the Geological Society of Greece, Proceedings of the 14th International Congress, Thessaloniki. 1895-1902.

Koukouzas N., Krassakis P., Koutsovitis P., Karkalis C. 2019. An integrated approach to the coal deposits in the Mesohellenic Trough, Greece. Bulletin Geological Society of Greece, 54, 34-59.

Król, A., Mizerna, K. and Bożym, M. 2020. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502.

Kumari, N. and Mohan, C. 2021. Basics of clay minerals and their characteristic properties. In: Morari Do Nascimento, G. (Ed.), Clay and Clay Minerals, IntechOpen, London, 1-29.

Louloudis, G., Roumpos, C., Mertiri, E., Kasfikis, G. and Pavloudakis, F. 2021. Rational and Sustainable Water Resource Management in the Ptolemais Lignite Basin Using Remotely Sensed Data. Materials Proceedings. 5(1), 44-50.

Mason, B. and Moore, C. 1982. Principles of Geochemistry. Wiley, New York, pp. 352.

Meuser, H. 2010. Contaminated urban soils. In: Alloway, B.J. and Trevors, J.T. (Eds.), Environmental Pollution. Springer. 18, p. 318.

Michailidis, K. and Trontsios, G. 2000. Morphology and geochemistry of fly ash from Kozani District-Environmental impact. 1st Conference of Economic Geology, Mineralogy and Geochemistry Committee of the Geological Society of Greece. Kozani. Proceedings. 299-307.

Michot, L.J. and Villiéras, F. 2006. Surface area and porosity. In: Bergaya, F., Theng, B.K.G. and Lagaly, G. (Eds.) Handbook of clay science. Developments in clay science. Elsevier. 1, 965- 978.

Millot, G., 1970. Geology of clays. Weathering, Sedimentology, Geochemistry. Springer-Verlag Wien, Paris. p. 429.

Moore, D.C. and Reynolds, R.C. 1997. X-ray Diffraction and identification and Analysis of clay Minerals. Oxford University Press, New York. 2, p. 378.

Murray, H.H. 1991. Overview – clay mineral applications. Applied Clay Science. 5, 379-395.

Murray, H.H. 2000. Traditional and new applications for kaolin, smectite and palygorskite: a general overview. Applied Clay Science. 17, 207-221.

Murray, H.H. 2007. Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. In H.H. Murray (Ed.), Developments in Clay Science, Elsevier, Amsterdam. 2, p. 180.

Murray, H.H. and Zhou, H., 2006. Palygorskite and Sepiolite (Hormites). In Kogel, J.E., Trivedi, N.C., Barker, J.M. and Krukowski, S.T. (Eds.), Industrial Minerals & Rocks. Commodities, Markets, and Uses. Society of Mining Metallurgy and Exploration Inc. Littleton, Colorado. 7, 401-406.

Nawrot, N., Wojciechowska, E., Mohsin, M., Kuittinen, S., Pappinen, A. and Rezania, S. 2021. Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods. Minerals. 11, 872-904.

Odom, I.E. 1984. Smectite clay minerals: properties and uses. Philosophical Transactions of the Royal Society of London, A311, 391-409

Otunola, B.O. and Ololade, O.O. 2020. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environmental Technology & Innovation. 18, 100692.

Petaloti, C., Triantafyllou, A., Kouimtzis, T. and Samara, C., 2006. Trace elements in atmospheric particulate matter over a coal burning power production area of western Macedonia, Greece, Chemosphere, 65, 2233-2243.

Petrotou, A., Skordas, K., Papastergios, G. and Filippidis, A. 2012. Factors affecting the distribution of potentially toxic elements in surface soils around an industrialized area of northwestern Greece. Environmental Earth Science. 65, 823-833.

Pickering, S.M. and Heivilin, F.G. 2006. Fuller’s Earth. In Kogel, J.E., Trivedi, N.C., Barker, J.M. and Krukowski, S.T. (Eds.), Industrial Minerals & Rocks. Commodities, Markets, and Uses. Society of Mining Metallurgy and Exploration Inc. Littleton, Colorado. 7, 373-381.

Querol, X., Umaña, J.C., Alastuey, A., Ayora, C., Lopez-Soler, A. and Plana, F., 2001. Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. Fuel, 80(6), 801-813.

Rate, A. 2022. Urban Soil Remediation. In: Rate, A. (ed.), Urban Soils: Principles and Practice. Springer Nature Switzerland AG, Cham, Switzerland. 351-398.

Sachanidis, Ch., Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A., Iordanidis, A. and Kantiranis, N. 2000. Environmental aspects of trace elements in Ptolemais-Amynteon lignites, Northern Greece. 5th International Conference on Environmental Pollution, Thessaloniki, Greece, Proceedings. 533-540.

Tan, X., Hu, L., Reed, A.H., Furukawa, Y. and Zhang, G. 2014. Flocculation and particle size analysis of expansive clay sediments affected by biological, chemical, and hydrodynamic factors. Ocean Dynamics. 64, 143-157.

The Clay Minerals Society (2019) The Clay Minerals Society Glossary of Clay Science. The Clay Minerals Society, Chantilly, Canada, p. 120.

Tiller, K.G. 1996. Soil contamination issues: past, present and future, a personal perspective. In: Naidu R., Kookana R.S., Oliver D.P., Rogers S., McLaughlin M.J. (Eds.), Contaminants and the Soil Environment in the Australasia‐Pacific Region. Kluwer, Dordrecht, 1–27.

Tsikritzis, L.I., Ganatsios, S.S., Duliu, O.G., Kavouridis, C.V. and Savvidis, T.D. 2002. Trace elements distribution in soil in areas of lignite power plants of Western Macedonia. Journal of Trace and Microprobe Techniques. 20(2), 269-282.

Uddin, M.K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal. 308, 438-462.

Weaver, C.E. 1989. Clays, Muds, and Shales. In: Developments in Sedimentology. Elsevier, Amsterdam. 44, 1-5, 837.

Xu, Y., Liang, X., Xu, Y., Qin, X., Huang, Q., Wang, L. and Sun, Y. 2017. Remediation of heavy metal-polluted agricultural soils using clay minerals: A Review. Pedosphere. 27(2), 193-204.

Ελληνική Βιβλιογραφία

Αδαμίδου, Κ., Γεωργακόπουλος, Α., Αμανατίδου, Ε. και Τσικριτζής, Λ. 2005. Μελέτη της μορφολογίας και ορυκτολογίας της ιπτάμενης τέφρας των ΑΗΣ του λιγνιτικού κέντρου Δυτικής Μακεδονίας. 2ο Συνέδριο της Επιτροπής Οικονομικής Γεωλογίας, Ορυκτολογίας και Γεωχημείας. Θεσσαλονίκη, Πρακτικά. 1-8.

Βούτα, Ν.Σ., 2018. Μελέτη της έκπλυσης βαρέων μετάλλων από μίγματα ιπτάμενης τέφρας- ζεολιθικού τόφφου τύπου HEU (Κλινοπτιλόλιθος-Ευλανδίτης). Μεταπτυχιακή Διπλωματική Εργασία, Τμήμα Γεωλογίας, ΑΠΘ. 102 σελ.

Γεωργακόπουλος, Α., Φιλιππίδης, Α., Fernandez-Turiel, J.L., Κασώλη-Φουρναράκη, Α., Ιορδανίδης, Α., 2002. Λιθογενής και ανθρωπογενής προέλευση των ιχνοστοιχείων σε επιφανειακά εδάφη της λιγνιτοφόρου λεκάνης Αμυνταίου-Πτολεμαΐδας-Κοζάνης. 6ο Πανελλήνιο Γεωγραφικό Συνέδριο, Θεσσαλονίκη, Πρακτικά, Τόμος ΙΙ, 335- 342.

Θωμαΐδου, Ε.Λ. 2009. Γεωλογική δομή της νήσου Λέσβου. Διδακτορική Διατριβή, Τμήμα Γεωλογίας, ΑΠΘ, 199 σελ.

Ι.Γ.Μ.Ε., 2001. Εδαφοχημική-Εδαφολογική έρευνα περιοχής Κοζάνης-Πτολεμαΐδας-Αμυνταίου, ΠΕΠ Δυτικής Μακεδονίας, Αθήνα, 2001.

Ι.Γ.Μ.Ε., 2015. Γεωλογικός Χάρτης της Ελλάδος, Φύλλο Λιβαδερό, Κλίμακα 1:50.00, Αθήνα.

Καβουρίδης, Κ. 2000. Η αξιοποίηση του λιγνιτικού κοιτάσματος Πτολεμαΐδας-Τα πλεονεκτήματα της λιγνιτικής δραστηριότητας για την ανάπτυξη της Δυτικής Μακεδονίας & της χώρας μας. 1ο Συνέδριο της Επιτροπής Οικονομικής Γεωλογίας, Ορυκτολογίας και Γεωχημείας, Κοζάνη, Πρακτικά. 137-157.

Καντηράνης, Ν., Φιλιππίδης, Α., Δρακούλης, Α., και Τσιραμπίδης Α., 2005. Μελέτη δεσμευτικής ικανότητας του μπεντονίτη της Μήλου και του ατταπουλγίτη των Γρεβενών. 2ο Συνέδριο Επιτροπής Οικονομικής Γεωλογίας, Ορυκτολογίας, Γεωχημείας., Ε.Γ.Ε., Θεσσαλονίκη, Πρακτικά. 105-112.

Κούη, Μ., Χειλάκου, Ε., Θεοδωρακέας, Π., Δρίτσα, Β. και Αβδελίδης, Ν. 2015. Μη καταστρεπτικές και φασματοσκοπικές μέθοδοι εξέτασης των υλικών: Θεωρία, τεχνικές και εφαρμογές. Σύνδεσμος Ελληνικών ακαδημαϊκών βιβλιοθηκών. Εθνικό Μετσόβιο Πολυτεχνείο. 220 σελ.

Κώτης, Θ. και Παπανικολάου, Κ. 2000. Ποιοτικά και ποσοτικά χαρακτηριστικά των λιγνιτικών κοιτασμάτων ξυλιτικού τύπου των Ανατολικών περιθωρίων των Νεογενών λεκανών Πτολεμαΐδας-Φλώρινας. 1ο συνέδριο της επιτροπής οικονομικής γεωλογίας, ορυκτολογίας και γεωχημείας "Ορυκτός πλούτος και περιβάλλον στη Δυτική Μακεδονία", Κοζάνη, 273-287.

Μουντράκης, Δ. 2021. Γεωλογία και γεωτεκτονική εξέλιξη της Ελλάδας, University Studio Press, Θεσσαλονίκη. 324 σελ.

Μουχτάρης, Θ., Φιλιππίδης, Α., Κασώλη-Φουρναράκη, Α. και Χαριστός, Δ., 1999. Σύνθεση ζεολίθου από ιπτάμενη τέφρα του ΑΗΣ Αμυνταίου –Φιλώτα με επίδραση NaOH 0,5Μ. Πρακτικά Γενικής Επιστημονικής Συνεδρίας της Ε.Γ.Ε., Αθήνα, Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, 33, 69-74.

Μουχτάρης. Θ., Φιλιππίδης. Α., Κασώλη – Φουρναράκη. Α. και Χαριστός. Δ., 2000. Σύνθεση ζεολίθου από ιπτάμενη τέφρα του ΑΗΣ Αγίου Δημητρίου με επίδραση διαλυμάτων NaOH. 1ο Συνέδριο Επιτροπής Οικονομικής Γεωλογίας, Ορυκτολογίας και Γεωχημείας της Ε.Γ.Ε., Κοζάνη, Πρακτικά, 308-318.

Παπαδημητρίου, Δ.Σ., 2020. Ρεολογικές ιδιότητες αιωρημάτων ενεργοποιημένου παλυγκορσκίτη και Mg-Fe-Σμεκτίτη των Γρεβενών με χρήση πολυμερών. Μεταπτυχιακή Διπλωματική Εργασία, Τμήμα Γεωλογίας, ΑΠΘ, 149 σελ.

Παυλίδης, Σ.Β. 1985. Νεοτεκτονική εξέλιξη της λεκάνης Φλώρινας-Βεγορίτιδας-Πτολεμαΐδας (Δ. Μακεδονία). Διδακτορική Διατριβή, Τμήμα Γεωλογίας, ΑΠΘ, 265.

Τζούλης, Χ., Γερούκη, Φ. και Φώσκολος, Α.Η. 2000. Προσδιορισμός των φυσικοχημικών μορφών των βαρέων και τοξικών μετάλλων σε τροφοδότη λιγνίτη και ιπτάμενη τέφρα του ΑΗΣ Καρδιάς καθώς και σε αποθέσεις και εδάφη της περιοχής Κοζάνης-Πτολεμαΐδας. 1ο Συνέδριο της Επιτροπής Οικονομικής Γεωλογίας, Ορυκτολογίας και Γεωχημείας, Κοζάνη, Πρακτικά. 427-438.

Τσόγκας, Γ.Ζ. 2007. Απομόνωση και ποσοτικός προσδιορισμός με φασματοσκοπία ατομικής απορρόφησης των στοιχείων της ομάδας του λευκόχρυσου σε αστικά περιβαλλοντικά δείγματα. Διδακτορική Διατριβή, Τμήμα Χημείας, Πανεπιστήμιο Ιωαννίνων, 229.

Τσώλας, Ι. 2000. Ο Υποκλάδος των Λιγνιτορυχείων. Εξέλιξη και Προοπτικές. 1ο Συνέδριο της Επιτροπής Οικονομικής Γεωλογίας, Ορυκτολογίας και Γεωχημείας, Κοζάνη, Πρακτικά. 474-484.

Φιλιππίδης, Α., Κασώλη-Φουρναράκη Α., Γεωργακόπουλος, Α., 1997. Ορυκτολογία, κύρια στοιχεία και ιχνοστοιχεία ιπτάμενων τεφρών των ΑΗΣ του Λιγνιτικού Κέντρου Πτολεμαΐδας-Αμυνταίου. Διημερίδα: Χρήση της Ιπτάμενης Τέφρας στις Κατασκευές, Κοζάνη, Πρακτικά, Τόμος Β, 159-168.

Διαδικτυακές Πηγές

All About Energy, n.d. Ανακτήθηκε από: http://www.allaboutenergy.gr/LigniteMakedonia.html

Bruker, n.d. Ανακτήθηκε από: https://www.bruker.com/en/products-and-solutions/elemental-analyzers/handheld-xrf-spectrometers/S1-TITAN.html

E.E.A. (European Environment Agency). 2019. Interview-Soil contamination: The unsettling legacy of industrialization. Ανακτήθηκε από: https://www.eea.europa.eu/signals/signals- 2019content-list/articles/interview-soil-contamination-the-unsettling

Mindat.org. n.d. Ανακτήθηκε από: https://www.mindat.org/min-49430.html

Δ.Ε.Η. (Δημόσια Επιχείρηση Ηλεκτρισμού). n.d. Ιστορική αναδρομή. Ανακτήθηκε από: https://www.dei.gr/el/dei-omilos/i-dei/istoriki-diadromi/

Δ.Ε.Η. (Δημόσια Επιχείρηση Ηλεκτρισμού). n.d. Σχετικά με τη Δ.Ε.Η. Ανακτήθηκε από: https://www.dei.gr/el/dei-omilos/i-dei/sxetika-me-ti-dei/

Δ.Ε.Η. (Δημόσια Επιχείρηση Ηλεκτρισμού). n.d. Τομείς δραστηριότητας. Συμβατική παραγωγή. Ανακτήθηκε από: https://www.dei.gr/el/dei-omilos/i-dei/tomeis-drastiriotitas/symvatiki- paragogi/


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.