Εξώφυλλο

Μεταμόρφωση υπερ-υψηλής θερμοκρασίας = Ultra-High temperature metanorphism.

Ελένη Νικόλαος Βαμιανάκη

Περίληψη


Σκοπός της εργασίας αυτής είναι να εξετασθεί η μεταμόρφωση υπερ-υψηλής θερμοκρασίας. Στο πρώτο μέρος δίνεται μια γρήγορη εισαγωγή για τα μεταμορφωμένα πετρώματα σχετική με τους παράγοντες που επηρεάζουν την μεταμόρφωση, την ταξινόμηση των μεταμορφωμένων πετρωμάτων, τις αλλαγές κατά την μεταμόρφωση καθώς και τα είδη της μεταμόρφωσης. Στο δεύτερο μέρος αναλύεται η μεταμόρφωση υπερ-υψηλής θερμοκρασίας, οι μέθοδοι προσδιορισμού των συνθηκών της μεταμόρφωσης, οι πηγές θερμότητας καθώς και το γεωτεκτονικό περιβάλλον στο οποίο εμφανίζεται. Τέλος, δίνονται οι τοποθεσίες όπου έχουν βρεθεί πετρώματα υπερ-υψηλής θερμοκρασίας, όπως στην Νότια Ινδία, στην Σρι Λάνκα, στην Κεντρική Βραζιλία και στην Ινδονησία.

The aim of this Bachelor thesis is to examine ultra-high temperature metamorphism. The first part gives a quick introduction to metamorphic rocks related to factors affecting metamorphism, classification of metamorphic rocks, changes during metamorphism and types of metamorphism. In the second part, ultra-high temperature metamorphism is analysed, as well as the methods used to determine the metamorphic conditions, the sources of heat and the geotectonic environment in which ultra-high temperature metamorphism occurs. Finally, the locations where ultra-high temperature metamorphism occurs are reported, South India, Sri Lanka, Central Brazil and Indonesia.

Πλήρες Κείμενο:

PDF

Αναφορές


Baldwin, J. A., Brown, M., Schmitz, M. D., 2007. First Application of Titanium-in-Zircon Thermometry to Ultrahigh-Temperature Metamorphism. Geology, 35(4): 295–298.

Brown, M. (2007a). Metamorphic Conditions in Orogenic Belts: a Record of Secular Change. International Geology Review International Geology Review, 49 (2007), pp. 193-234

Brown, M. (2007b). Metamorphism, Plate Tectonics, and the Supercontinent Cycle. Earth Science Frontiers, 14 (2007), pp. 1-18

Chetty TRK. (2017). Proterozoic Orogens of India. A Critical Window to Gondwana, Amsterdam, The Netherlands: Elsevier.

Clark, C., Fitzsimons, L.C., Healy, D., Harley, S.L., 2011. How does the continental crust get really hot? Elements 7, 235–240.

Dallwitz, W. B. (1968). Co-Existing Sapphirine and Quartz in Granulite from Enderby Land, Antarctica. Nature, 219 (5153): 476–477.

Dharmapriya, P. L., Malaviarachchi, S. P., Kriegsman, L. M., Sajeev, K., Galli, A., Osanai, Y., N. D., Subasinghe & Dissanayake, C. B. (2017). Distinct metamorphic evolution of alternating silica-saturated and silica-deficient microdomains within garnet in ultrahigh-temperature granulites: An example from Sri Lanka. Geoscience

Frontiers, 8(5), 1115–1133.

Earle, S. (2015). Physical geology, 2nd edition. https://opentextbc.ca/geology/

Ellis, D. J. (1980). Osumilite-Sapphirine-Quartz Granulites from Enderby Land, Antarctica: P-T Conditions of Metamorphism, Implications for Garnet-Cordierite

Equilibria and the Evolution of the Deep Crust. Contributions to Mineralogy and Petrology, 74(2): 201–210. https://link.springer.com/article/10.1007/BF01132005

Farkašovský, R., Bónová, K., & Košuth, M. (2016). Microstructural, modal and geochemical changes as a result of granodiorite mylonitisation – a case study from the Rolovská shear zone (Čierna hora Mts, Western Carpathians, Slovakia). Geologos, 22(3), 171-190

Ferrero, S., Axler, J., Ague, J. J., et al. (2017). Preserved Anatectic Melt in Ultrahigh-Temperature (or High Pressure?) Felsic Granulites, Connecticut, US. EGU

General Assembly Conference Abstracts, http://adsabs.harvard.edu/abs/2017EGUGA..19.9692F

Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4):

Frost, B. R., Chacko, T., 1989. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. The Journal of Geology, 97(4): 435–450.

Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845–869.

Giustina, M. E.S.D, Pimentel M.M., Ferreira Filho C. F., Hollanda M.H.B. Maia de (2011). Dating coeval mafic magmatism and ultrahigh temperature metamorphism in the Anápolis–Itauçu Complex, Central Brazil. Lithos, 124, 1-2, 82-102

Harley, S. L. (1998a). On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 138(1): 81–107.http://doi.org/10.1144/gsl.sp.1996.138.01.06

Hensen, B. J., Harley, S. L. (1990). Graphical Analysis of p-T-x Relations in Granulite Facies Metapelites. In: Ashworth, J. R., Brown, M., eds., High Temperature Metamorphism and Crustal Anatexis. Unwin Hyman, London, 19–56.

Hsia,J., Zhang J., Zhao G., Qian J., Liu J., Sun M., Yin C., Gao P., Xian W. W., Guo M. (2023). Newly discovered youngest UHT metamorphism on Earth, Western Sulawesi, Indonesia[J]. Geoscience Frontiers, 14(2): 101500. doi: 10.1016/j.gsf.2022.101500

Jiao, S. J., Guo, J. H., Mao, Q., et al., 2011. Application of Zr-in-Rutile Thermometry: A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 162(2): 379–393.

Lei H., Xu H. (2018). A Review of Ultrahigh Temperature Metamorphism. Journal of Earth Science, 29(5): pp. 1167-1180. doi: 10.1007/s12583-018-0846-9

Lu, C., Qian, J., Yin C., Gao P., Guo M., Zhang W. (2022). Ultrahigh temperature metamorphism recorded in the Lüliang Complex, Trans-North China Orogen: P–T–t evolution and heating mechanism. Precambrian Research DOI:10.1016/j.precamres.2022.106900

McFarlane, C. R. M., Carlson, W. D., Connelly, J. N., 2003. Prograde, Peak, and Retrograde P-T Paths from Aluminium in Orthopyroxene: High-Temperature Contact Metamorphism in the Aureole of the Makhavinekh Lake Pluton, Nain Plutonic Suite, Labrador. Journal of Metamorphic Geology, 21(5): 405–423.

Stüwe, K. (2007). Geodynamics of the Lithosphere: Quantitative Description of Geological Problems, 2nd Edition. Springer-Verlag, Berlin, Heidelberg, Dordrecht, 493

Tsunogae, T., Santosh, M., Ohyama, H., et al. (2008). High-Pressure and Ultrahigh-Temperature Metamorphism at Komateri, Northern Madurai Block, Southern India. Journal of Asian Earth Sciences, 33(5/6): 395–413.

Winter, J. D. (2001). An introduction to igneous and metamorphic petrology. Prentice Hall, 697 p.

Yu, B., Santosh, M., Wang, M.-X., & Yang, C.-X. (2021). Paleoproterozoic emplacement and Cambrian ultrahigh-temperature metamorphism of a layered magmatic intrusion from the Central Madurai Block, southern India: From Columbia to Gondwana. https://www.sciencedirect.com/science/article/pii/S1674987121001249#s0045

Ιστοχώροι

https://eclass.upatras.gr/modules/document/index.php?course=GEO390&openDir=/5f91850cBIOj

https://docplayer.gr/6648884-Simeioseis-apo-tis-paradoseis-toy-mathimatos-petrologia-metamorfomenon-petromaton-dimitrios-kostopoylos-epikoyros-kathigitis.html

http://www.geo.auth.gr/106/theory/pet_metamorphic.htm

http://www.geo.auth.gr/212/1_neso/sillimanite/and_ky_sil.jpg

http://www.geo.auth.gr/106/theory/pet_metamorphic.htm

https://www.nps.gov/subjects/geology/plate-tectonics-accreted-terranes.htm National Park Service. (n.d.-a). Convergent Plate Boundaries—Accreted Terranes.

https://openpress.usask.ca/physicalgeology/chapter/10-2-classification-of-metamorphic-rocks-2/ Panchuk, K. (2019, September). Physical Geology.

https://en.wikipedia.org/wiki/Terrane


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.