Εξώφυλλο

Καύσωνες στην Κύπρο: Διερεύνηση της συσχέτισης των επεισοδίων καύσωνα με το θερμικό στρες και την δημόσια υγεία = Heat Waves in Cyprus: Exploring the association of heat waves with heat stress and public health.

Φραγκέσκος Λοΐζος Κέκκου

Περίληψη


Οι καύσωνες κατά τους καλοκαιρινούς μήνες αποτελούν κοινό χαρακτηριστικό των χωρών που χαρακτηρίζονται από μεσογειακό κλίμα, όπως η Κύπρος. Ωστόσο, στο πλαίσιο της ανθρωπογενούς κλιματικής αλλαγής, η συχνότητα, η ένταση και η διάρκεια των καυσώνων στην ευρύτερη περιοχή της Ανατολικής Μεσογείου έχουν αυξηθεί σημαντικά τις τελευταίες δεκαετίες. Το γεγονός αυτό έχει δημιουργήσει πιο στρεσογόνες βιοκλιματικές συνθήκες, όπως καταδεικνύουν πολλές έρευνες. Ταυτόχρονα, οι μελλοντικές κλιματικές προβλέψεις δείχνουν ότι οι καύσωνες που παρατηρήθηκαν στις αρχές του 21ου αιώνα και χαρακτηρίστηκαν ως ακραίοι θα γίνουν ο κανόνας τα επόμενα έτη. Στην παρούσα εργασία επιβεβαιώνεται η αύξηση της θερμοκρασίας στην Κύπρο την τελευταία 40ετία. Ως καύσωνες ορίζονται οι ημέρες που η μέγιστη και ελάχιστη θερμοκρασία ξεπερνούσε το 95ο ποσοστημόριο, για την περίοδο 2000 – 2019. Βάσει του κριτηρίου αυτού πραγματοποιήθηκε κλιματολογική μελέτη των επεισοδίων καύσωνα στην περιοχή της Κύπρου, ενώ ταυτόχρονα μελετήθηκε το θερμικό στρες μέσω του βιοκλιματικού δείκτη UTCI. Ο δείκτης αυτός παρέχει μια ολοκληρωμένη εκτίμηση της ανθρώπινης θερμικής δυσφορίας που προκαλείται από το θερμικό περιβάλλον. Τα δεδομένα που χρησιμοποιήθηκαν για τον σκοπό αυτό, ήταν δεδομένα θερμοκρασίας από τη βάση δεδομένων ERA5 – Land και δεδομένα βιοκλιματικού δείκτη UTCI από την αντίστοιχη βάση δεδομένων ERA5 – HEAT. Παράλληλα εκτιμήθηκε η συσχέτιση του UTCI με τα δεδομένα υγείας που αφορούν δεδομένα θνησιμότητας και νοσηλειών από οκτώ δημόσια νοσοκομεία της Κύπρου όπως προκύπτουν από τη Στατιστική Υπηρεσία Κύπρου και την Υπηρεσία Δημόσιας Υγείας του Υπουργείου Υγείας αντίστοιχα. Τέλος χρησιμοποιώντας την στατιστική μεθοδολογία των GAMs (Generalized Additive Models) εκτιμήθηκε το ρίσκο θνησιμότητας και νοσηρότητας με βάση την μέγιστη και ελάχιστη θερμοκρασία και τον δείκτη UTCI για χρόνο υστέρησης 20 ημερών. Από τα αποτελέσματα φαίνεται ότι το ρίσκο θνησιμότητας και το ρίσκο νοσηρότητας, αυξάνεται στατιστικά σημαντικά στις χαμηλότερες θερμοκρασίες συγκριτικά με τις υψηλότερες θερμοκρασίες.

Heatwaves during the summer months are a common characteristic of countries with a Mediterranean climate, such as Cyprus and Greece. However, within the context of anthropogenic climate change, the frequency, intensity, and duration of heatwaves in the broader Eastern Mediterranean region have significantly increased in recent decades, particularly since 1990. This has resulted in more stressful bioclimatic conditions, as indicated by numerous studies. Concurrently, future climate predictions suggest that the heatwaves observed in the early 21st century, once considered extreme, will become the norm in the coming years. This study confirms the rise in temperatures in Cyprus over the last 40 years. Heatwaves are defined as days where both maximum and minimum temperatures exceed the 95th percentile for the period 2000–2019. Using this criterion, a climatological analysis of heatwave events in the Cyprus region was conducted, while the thermal stress was studied through the Universal Thermal Climate Index (UTCI). This index provides a comprehensive assessment of human thermal discomfort caused by the thermal environment. The data utilized for this purpose included temperature data from the ERA5 – Land database and UTCI bioclimatic index data from the ERA5 – HEAT database. Additionally, the correlation of UTCI with health data, including mortality and hospitalizations from eight public hospitals in Cyprus, was examined based on statistics from the Cyprus Statistical Service and the Public Health Service of the Ministry of Health, respectively. Lastly by using the statistical methodology of Generalized Additive Models (GAMs), the risk of mortality and morbidity was estimated based on maximum and minimum temperatures and the UTCI index for a lag of 20 days. Results indicate a statistically significant increase in the risk of mortality and morbidity at lower temperatures compared to higher temperatures.

Πλήρες Κείμενο:

PDF

Αναφορές


Anderson, G. Brooke, and Michelle L. Bell. 2011. “Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities.” Environmental Health Perspectives 119 (2): 210–18. https://doi.org/10.1289/ehp.1002313.

Basagaña, Xavier, Claudio Sartini, Jose Barrera-Gómez, Payam Dadvand, Jordi Cunillera, Bart Ostro, Jordi Sunyer, and Mercedes Medina-Ramón. 2011. “Heat Waves and Cause-Specific Mortality at All Ages.” Epidemiology 22 (6): 765–72. https://doi.org/10.1097/EDE.0b013e31823031c5.

Blazejczyk, Krzysztof, Yoram Epstein, Gerd Jendritzky, Henning Staiger, and Birger Tinz. 2012a. “Comparison of UTCI to Selected Thermal Indices.” International Journal of Biometeorology 56 (3): 515–35. https://doi.org/10.1007/s00484-011-0453-2.

———. 2012b. “Comparison of UTCI to Selected Thermal Indices.” International Journal of Biometeorology 56 (3): 515–35. https://doi.org/10.1007/s00484-011-0453-2.

Błazejczyk, Krzysztof, Gerd Jendritzky, Peter Bröde, Dusan Fiala, George Havenith, Yoram Epstein, Agnieszka Psikuta, and Bernhard Kampmann. 2013. “An Introduction to the Universal Thermal Climate Index (UTCI).” Geographia Polonica 86 (1): 5–10. https://doi.org/10.7163/GPol.2013.1.

Błażejczyk, Krzysztof, Gerd Jendritzky, Peter Bröde, Dusan Fiala, George Havenith, Yoram Epstein, Agnieszka Psikuta, and Bernhard Kampmann. 2013. “An Introduction to the Universal Thermal Climate Index (UTCI).” Geographia Polonica 86 (1): 5–10. https://doi.org/10.7163/GPol.2013.1.

Brooke Anderson, G., and Michelle L. Bell. 2011. “Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave

Characteristics in 43 U.S. Communities.” Environmental Health Perspectives 119 (2): 210–18. https://doi.org/10.1289/ehp.1002313.

Cheng, Jian, Zhiwei Xu, Hilary Bambrick, Vanessa Prescott, Ning Wang, Yuzhou Zhang, Hong Su, Shilu Tong, and Wenbiao Hu. 2019. “Cardiorespiratory Effects of Heatwaves: A Systematic Review and Meta-Analysis of Global Epidemiological Evidence.” Environmental Research. Academic Press Inc. https://doi.org/10.1016/j.envres.2019.108610.

Christidis, Nikolaos, Gareth S. Jones, and Peter A. Stott. 2015. “Dramatically Increasing Chance of Extremely Hot Summers since the 2003 European Heatwave.” Nature Climate Change 5 (1): 46–50. https://doi.org/10.1038/nclimate2468.

Cos, Josep, Francisco Doblas-Reyes, Martin Jury, Raül Marcos, Pierre Antoine Bretonnière, and Margarida Samsó. 2022. “The Mediterranean Climate

Change Hotspot in the CMIP5 and CMIP6 Projections.” Earth System Dynamics 13 (1): 321–40. https://doi.org/10.5194/esd-13-321-2022.

Curriero, F. C. 2002. “Temperature and Mortality in 11 Cities of the Eastern United States.” American Journal of Epidemiology 155 (1): 80–87. https://doi.org/10.1093/aje/155.1.80.

Diffenbaugh, Noah S., and Filippo Giorgi. 2012. “Climate Change Hotspots in the CMIP5 Global Climate Model Ensemble.” Climatic Change 114 (3–4): 813–22. https://doi.org/10.1007/s10584-012-0570-x.

Ebi, Kristie L., Jennifer Vanos, Jane W. Baldwin, Jesse E. Bell, David M. Hondula, Nicole A. Errett, Katie Hayes, et al. 2020a. “Extreme Weather and Climate Change: Population Health and Health System Implications.” In Annual Review of Public Health, 42:293–315. Annual Reviews Inc. https://doi.org/10.1146/annurev-publhealth-012420-105026.

———. 2020b. “Extreme Weather and Climate Change: Population Health and Health System Implications.” In Annual Review of Public Health, 42:293–315. Annual Reviews Inc. https://doi.org/10.1146/annurev-publhealth-012420-105026.

Epstein, Yoram, and Daniel S Moran. 2006a. “Thermal Comfort and the Heat Stress Indices.” Industrial Health. Vol. 44.

———. 2006b. “Thermal Comfort and the Heat Stress Indices.” Industrial Health. Vol. 44.

Faizi, Nafis, and Yasir Alvi. 2023. “Correlation.” In Biostatistics Manual for Health Research, 109–26. Elsevier. https://doi.org/10.1016/B978-0-443-18550-2.00002-5.

Garcia-Herrera, R., J. Díaz, R. M. Trigo, J. Luterbacher, and E. M. Fischer. 2010. “A Review of the European Summer Heat Wave of 2003.” Critical Reviews in Environmental Science and Technology. Taylor and Francis Inc. https://doi.org/10.1080/10643380802238137.

Gasparrini, Antonio, Fabian Scheipl, Ben Armstrong, and Michael G. Kenward. 2017. “A Penalized Framework for Distributed Lag Non‐linear Models.” Biometrics 73 (3): 938–48. https://doi.org/10.1111/biom.12645.

Giorgi, F. 2006. “Climate Change Hot‐spots.” Geophysical Research Letters 33 (8). https://doi.org/10.1029/2006GL025734.

Guo, Yuming, Antonio Gasparrini, Shanshan Li, Francesco Sera, Ana Maria Vicedo-Cabrera, Micheline de Sousa Zanotti Stagliorio Coelho, Paulo Hilario Nascimento Saldiva, et al. 2018. “Quantifying Excess Deaths Related to Heatwaves under Climate Change Scenarios: A Multicountry Time Series Modelling

Study.” PLOS Medicine 15 (7): e1002629. https://doi.org/10.1371/journal.pmed.1002629.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning. New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-84858-7.

Havenith, George, Dusan Fiala, Krzysztof Błazejczyk, Mark Richards, Peter Bröde, Ingvar Holmér, Hannu Rintamaki, Yael Benshabat, and Gerd Jendritzky. 2012. “The UTCI-Clothing Model.” International Journal of Biometeorology 56 (3): 461–70. https://doi.org/10.1007/s00484-011-0451-4.

Heaviside, Clare, Haritini Tsangari, Anastasia Paschalidou, Sotiris Vardoulakis, Pavlos Kassomenos, Kyriakos E. Georgiou, and Edna N. Yamasaki. 2016. “Heat-Related Mortality in Cyprus for Current and Future Climate Scenarios.” Science of The Total Environment 569–570 (November): 627–33. https://doi.org/10.1016/j.scitotenv.2016.06.138.

Karl, Thomas R, and Richard W Knight. 1997. “The 1995 Chicago Heat Wave: How Likely Is a Recurrence?” Bulletin of the American Meteorological Society 78 (6): 1107–20.

Katsouyianni K, Trichopoulos D, Zavitsanos X, and Touloumi G. 1988. “The 1987 Athens Heatwave.” The Lancet 332 (8610): 573.

Koppe, Christina, Sari Kovats, Gerd Jendritzky, Bettina Menne, Jürgen Baumüller, Arieh Bitan, Julio Díaz Jiménez, et al. 2004. “Health and Global Environmental Change Heat-Waves: Risks and Responses.” http://www.euro.who.int/globalchange.

Kottek, Markus, Jürgen Grieser, Christoph Beck, Bruno Rudolf, and Franz Rubel. 2006. “World Map of the Köppen-Geiger Climate Classification Updated.” Meteorologische Zeitschrift 15 (3): 259–63. https://doi.org/10.1127/0941-2948/2006/0130.

Laaidi, Karine, Abdelkrim Zeghnoun, Bénédicte Dousset, Philippe Bretin, Stéphanie Vandentorren, Emmanuel Giraudet, and Pascal Beaudeau. 2012. “The Impact of Heat Islands on Mortality in Paris during the August 2003 Heat Wave.” Environmental Health Perspectives 120 (2): 254–59. https://doi.org/10.1289/ehp.1103532.

Lelieveld, J., P. Hadjinicolaou, E. Kostopoulou, J. Chenoweth, M. El Maayar, C. Giannakopoulos, C. Hannides, et al. 2012. “Climate Change and Impacts in the Eastern Mediterranean and the Middle East.” Climatic Change 114 (3–4): 667–87. https://doi.org/10.1007/s10584-012-0418-4.

Linares, C., and J. Diaz. 2008. “Impact of High Temperatures on Hospital Admissions: Comparative Analysis with Previous Studies about Mortality (Madrid).” The European Journal of Public Health 18 (3): 317–22. https://doi.org/10.1093/eurpub/ckm108.

Linares, Cristina, Julio Díaz, Maya Negev, Gerardo Sánchez Martínez, Roberto Debono, and Shlomit Paz. 2020. “Impacts of Climate Change on the Public Health of the Mediterranean Basin Population - Current Situation, Projections, Preparedness and Adaptation.” Environmental Research 182 (March):

https://doi.org/10.1016/j.envres.2019.109107.

Lionello, Piero, and Luca Scarascia. 2018. “The Relation between Climate Change in the Mediterranean Region and Global Warming.” Regional Environmental Change 18 (5): 1481–93. https://doi.org/10.1007/s10113-018-1290-1.

Lubczyńska, Małgorzata J, Costas A Christophi, and Jos Lelieveld. 2015. “Heat-Related Cardiovascular Mortality Risk in Cyprus: A Case-Crossover Study Using a Distributed Lag Non-Linear Model.” Environmental Health 14 (1): 39. https://doi.org/10.1186/s12940-015-0025-8.

Lukić, Milica, Dejan Filipović, Milica Pecelj, Ljiljana Crnogorac, Bogdan Lukić, Lazar Divjak, Ana Lukić, and Ana Vučićević. 2021. “Assessment of Outdoor Thermal Comfort in Serbia’s Urban Environments during Different Seasons.” Atmosphere 12 (8): 1084. https://doi.org/10.3390/atmos12081084.

Meehl, Gerald A., and Claudia Tebaldi. 2004. “More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century.” Science 305 (5686): 994–97. https://doi.org/10.1126/science.1098704.

Nairn, John, and Robert Fawcett. 2014. “The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity.” International Journal of Environmental Research and Public Health 12 (1): 227–53. https://doi.org/10.3390/ijerph120100227.

Nitschke, Monika, Graeme R Tucker, Alana L Hansen, Susan Williams, Ying Zhang, and Peng Bi. 2011. “Impact of Two Recent Extreme Heat Episodes on Morbidity and Mortality in Adelaide, South Australia: A Case-Series Analysis.” Environmental Health 10 (1): 42. https://doi.org/10.1186/1476-069X-10-42.

Pantavou, Katerina, George Giallouros, Spyridon Lykoudis, Georgios Markozannes, Effrosini Constantinou, Anastasia Panagi, Mary Economou, et al. 2020. “Impact of Heat Exposure on Health during a Warm Period in Cyprus.” Euro-Mediterranean Journal for Environmental Integration 5 (2): 27. https://doi.org/10.1007/s41207-020-00164-0.

Pantavou, Katerina, George Giallouros, Kostas Philippopoulos, Daniele Piovani, Constantinos Cartalis, Stefanos Bonovas, and Georgios K. Nikolopoulos. 2021a. “Thermal Conditions and Hospital Admissions: Analysis of Longitudinal Data from Cyprus (2009–2018).” International Journal of Environmental Research and Public Health 18 (24): 13361. https://doi.org/10.3390/ijerph182413361.

———. 2021b. “Thermal Conditions and Hospital Admissions: Analysis of Longitudinal Data from Cyprus (2009–2018).” International Journal of Environmental Research and Public Health 18 (24): 13361. https://doi.org/10.3390/ijerph182413361.

Perkins, Sarah E. 2015. “A Review on the Scientific Understanding of Heatwaves—Their Measurement, Driving Mechanisms, and Changes at the Global

Scale.” Atmospheric Research 164–165 (October): 242–67. https://doi.org/10.1016/J.ATMOSRES.2015.05.014.

Price, Colin, Silas Michaelides, Stylianos Pashiardis, and Pinhas Alpert. 1999. “Long Term Changes in Diurnal Temperature Range in Cyprus.” Atmospheric

Research 51 (2): 85–98. https://doi.org/10.1016/S0169-8095(99)00022-8.

Psistaki, K., I.M. Dokas, and A.K. Paschalidou. 2023. “Analysis of the Heat- and Cold-Related Cardiovascular Mortality in an Urban Mediterranean Environment through Various Thermal Indices.” Environmental Research 216 (January): 114831. https://doi.org/10.1016/j.envres.2022.114831.

Pyrgou, Andri, and Mattheos Santamouris. 2020. “Probability Risk of Heat- and Cold-Related Mortality to Temperature, Gender, and Age Using GAM Regression Analysis.” Climate 8 (3): 40. https://doi.org/10.3390/cli8030040.

Retalis, A., D. Paronis, S. Michaelides, F. Tymvios, D. Charalambous, D. G. Hadjimitsis, and A. Agapiou. 2013. “Study of the August 2010 Heat Event in Cyprus.” In , 265–70. https://doi.org/10.1007/978-3-642-29172-2_38.

Robinson, Peter J. 2001. “On the Definition of a Heat Wave.” Journal of Applied Meteorology and Climatology 40 (4): 762–75. https://doi.org/https://doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2.

Shaposhnikov, Dmitry, Boris Revich, Tom Bellander, Getahun Bero Bedada, Matteo Bottai, Tatyana Kharkova, Ekaterina Kvasha, Tomas Lind, and Göran Pershagen. 2015. “Long-Term Impact of Moscow Heat Wave and Wildfires on Mortality.” Epidemiology. Lippincott Williams and Wilkins. https://doi.org/10.1097/EDE.0000000000000251.

Shen, Beibei, Shuaifeng Song, Lijuan Zhang, Ziqing Wang, Chong Ren, and Yongsheng Li. 2022. “Temperature Trends in Some Major Countries from the 1980s to 2019.” Journal of Geographical Sciences 32 (1): 79–100. https://doi.org/10.1007/s11442-022-1937-1.

Steadman, R. G. 1979. “The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science.” Journal of Applied Meteorology 18 (7): 861–73. https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2.

Steadman, Robert G. 1984. “A Universal Scale of Apparent Temperature.” Journal of Climate and Applied Meteorology 23 (12): 1674–87. https://doi.org/10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2.

Tolika, Konstantia. 2019. “Assessing Heat Waves over Greece Using the Excess Heat Factor (EHF).” Climate 7 (1): 9. https://doi.org/10.3390/cli7010009.

Tsangari, Haritini, Anastasia Paschalidou, Sotiris Vardoulakis, Clare Heaviside, Zoi Konsoula, Stephanie Christou, Kyriakos E. Georgiou, et al. 2016. “Human

Mortality in Cyprus: The Role of Temperature and Particulate Air Pollution.” Regional Environmental Change 16 (7): 1905–13. https://doi.org/10.1007/s10113-015-0793-2.

Vernon, H. M., and C. G. Warner. 1932. “The Influence of the Humidity of the Air on Capacity for Work at High Temperatures.” Journal of Hygiene 32 (3): 431–62. https://doi.org/10.1017/S0022172400018167.

Wood, Simon N. 2017. Generalized Additive Models. Chapman and Hall/CRC. https://doi.org/10.1201/9781315370279.

Xu, Zhiwei, and Shilu Tong. 2017a. “Decompose the Association between Heatwave and Mortality: Which Type of Heatwave Is More Detrimental?” Environmental Research 156 (July): 770–74. https://doi.org/10.1016/j.envres.2017.05.005.

———. 2017b. “Decompose the Association between Heatwave and Mortality: Which Type of Heatwave Is More Detrimental?” Environmental Research 156 (July): 770–74. https://doi.org/10.1016/j.envres.2017.05.005.

Yang, Jun, Chun-Quan Ou, Yan Ding, Ying-Xue Zhou, and Ping-Yan Chen. 2012. “Daily Temperature and Mortality: A Study of Distributed Lag Non-Linear Effect and Effect Modification in Guangzhou.” Environmental Health 11 (1): 63. https://doi.org/10.1186/1476-069X-11-63.

Yang, Zhanmei, and Jingyong Zhang. 2020. “Dataset of High Temperature Extremes over the Major Land Areas of the Belt and Road for 1979-2018.” Big Earth Data 4 (2): 128–41. https://doi.org/10.1080/20964471.2020.1718993.

Zittis, G., M. Almazroui, P. Alpert, P. Ciais, W. Cramer, Y. Dahdal, M. Fnais, et al. 2022. “Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East.” Reviews of Geophysics 60 (3). https://doi.org/10.1029/2021RG000762.

Zuo, Jian, Stephen Pullen, Jasmine Palmer, Helen Bennetts, Nicholas Chileshe, and Tony Ma. 2015. “Impacts of Heat Waves and Corresponding Measures: A Review.” Journal of Cleaner Production. Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2014.12.078.

Διαδικτυακές Πηγές:

Introduction to Generalized Additive Models · Generalized Additive Models in R.” n.d. Accessed December 2, 2023. https://noamross.github.io/gams-in-r-course/chapter1

“Cyprus Maps & Facts - World Atlas.” n.d. Accessed November 28, 2023. https://www.worldatlas.com/maps/cyprus

Climate Change, Impacts and Vulnerability in Europe 2012. EEA Report No 12/2012 (EEA, 2012) n.d. Accessed November 28, 2023 https://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012

“ERA5-Land Hourly Data from 1950 to Present.” n.d. Accessed November 29, 2023. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview

“Eric R. Scott - Distributed Lag Non-Linear Models.” n.d. Accessed December 2, 2023. https://ericrscott.com/posts/2021-01-13-dlnm/

“European Heatwave: What’s Causing It and Is Climate Change to Blame? | PreventionWeb.” n.d. Accessed November 26, 2023. https://

www.preventionweb.net/news/european-heatwave-whats-causing-it-and-climate-change-blame

“Heatwave.” n.d. Accessed November 26, 2023. https://wmo.int/topics/heatwave

“Mapsland | Maps of the World | Cyprus.” n.d. Accessed November 28, 2023. https://www.mapsland.com/asia/cyprus/large-topographical-map-of-cyprus

“The Heatwave of 2003 - Met Office.” n.d. Accessed November 26, 2023. https://www.metoffice.g“Thermal Comfort Indices Derived from ERA5 Reanalysis.” n.d. Accessed November 29, 2023. https://cds.climate.copernicus.eu/cdsapp#!/dataset/derived-utcihistorical?tab=overview

“UTCI - Universal Thermal Climate Index.” n.d. Accessed November 30, 2023. http://www.utci.org/index.php

“World Map, a Map of the World with Country Names Labeled.” n.d. Accessed November 28, 2023. https://www.mapsofworld.com/

“Αρχική Σελίδα | Τμήμα Μετεωρολογίας.” n.d. Accessed November 27, 2023. https://www.moa.gov.cy/moa/dm/dm.nsf/home/home?openform

“Κλιματολογικές Πληροφορίες.” n.d. Accessed November 28, 2023. https://www.dom.org.cy/CLIMATOLOGY/Greek/

“Στατιστική Υπηρεσία - Αρχική.” n.d. Accessed November 28, 2023. https://www.cystat.gov.cy/el/default

“Τμήμα Μετεωρολογίας - Υπουργείο Γεωργίας, Αγροτικής Ανάπτυξης Και Περιβάλλοντος.” n.d. Accessed November 28, 2023. https://moa.gov.cy/tomeis-drasis/tmima-meteorologias/time-meteorologias/

ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ - Μονάδα Παρακολούθησης Υγείας.” n.d. Accessed November 29, 2023. https://www.moh.gov.cy/moh/moh.nsf/page70_gr/page70_gr?OpenDocument


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.