Εξώφυλλο

Πιθανολογική εκτίμηση και αποάθροιση της σεισμικής επικινδυνότητας του Ελληνικού χώρου με τη συγκριτική αξιολόγηση αριθμητικών μεθόδων και αναλύσεων με τη χρήση συνθετικών καταλόγων = Probabilistic assessment and deaggregation of seismic hazard of the Greek area with the comparative evaluation of numerical methods and analyzes using synthetic catalogs.

Αθανασία Σταύρος Κερκένου

Περίληψη


Στην παρούσα διατριβή εξετάζονται διάφορες πτυχές της Πιθανολογικής Εκτίμησης της Σεισμικής Επικινδυνότητας (ΠΕΣΕ) για τον ευρύτερο χώρο του Αιγαίου, με αξιοποίηση διαφορετικών μεθοδολογικών εργαλείων, όπως σύγχρονων σχετικών κωδίκων (Openquake) και μίας μεθόδου προσομοίωσης τύπου Monte Carlo (με τη χρήση συνθετικών καταλόγων σεισμικότητας). Γίνεται συγκριτική αξιολόγηση των 5 κυριότερων μοντέλων επιφανειακών σεισμικών πηγών για τον ευρύτερο χώρο του Αιγαίου και 15 πρόσφατων εμπειρικών σχέσεων πρόβλεψης της Ισχυρής Σεισμικής Κίνησης (Ι.Σ.Κ.) ή GMPE. Προτείνεται ένα λογικό δέντρο για την υλοποίηση υπολογισμών ΠΕΣΕ και βάσει αυτού δημιουργείται ένας επικαιροποιημένος χάρτης σεισμικής επικινδυνότητας για τον Ελληνικό χώρο. Από τη σύγκρισή του με τον ΝΕΑΚ2003 παρατηρείται ότι οι τιμές μέγιστης εδαφικής επιτάχυνσης (PGA) του τελευταίου είναι 1.5-2.5 φορές χαμηλότερες. Διενεργείται Ανάλυση Ευαισθησίας τύπου OFAT για τις παραμέτρους PGA και PGV (μέγιστη εδαφική ταχύτητα) σε 42 επιλεγμένες θέσεις του Ελληνικού χώρου, προκειμένου να προσδιοριστούν οι εισαγόμενοι παράγοντες που ασκούν τη μεγαλύτερη επιρροή στα αποτελέσματα της ΠΕΣΕ. Ως εισαγόμενοι παράγοντες θεωρούνται το μοντέλο σεισμικών πηγών (Source model), η εμπειρική σχέση πρόβλεψης της Ι.Σ.Κ. (GMPE), ο αριθμός των θεωρούμενων τυπικών αποκλίσεων σε αυτήν (std), οι σταθερές Gutenberg-Richter (G-R) a και b, το μέγιστο και το ελάχιστο μέγεθος (Mmax και Mmin, αντίστοιχα) και το κυρίαρχο είδος διάρρηξης (SoF). Από τα αποτελέσματα προκύπτει ότι οι εισαγόμενοι παράγοντες που επηρεάζουν στον μέγιστο βαθμό τα αποτελέσματα της ΠΕΣΕ είναι κυρίως το μοντέλο πηγών (ιδίως οι αβεβαιότητες στις παραμέτρους G-R, a και b) και οι εμπειρικές σχέσεις εκτίμησης Ι.Σ.Κ. (GMPE). Το Mmax επηρεάζει σε μεγάλο βαθμό τo PGV, ενώ έχει μικρότερη επίδραση στο PGA. Οι υπόλοιποι παράγοντες κρίνονται ως ήσσονος σημασίας. Για τις υπολογιστικές ανάγκες της παρούσας διατριβής δημιουργήθηκε ένας νέος κώδικας (σε γλώσσα MATLAB) παραγωγής συνθετικών καταλόγων σεισμικότητας και εκτίμησης της ΠΕΣΕ με τη χρήση μιας μεθόδου προσομοίωσης τύπου Monte Carlo. Δημιουργούνται και αξιολογούνται τρεις νέες σχέσεις στατιστικής μετατροπής μεταξύ των διαφόρων ειδών αποστάσεων που απαιτούνται στις GMPE: μετατροπή της επικεντρικής απόστασης (Repi) σε απόσταση Joyner Boore (RJB), της υποκεντρικής απόστασης (Rhypo) στην κοντινότερη από τη διάρρηξη απόσταση (Rrup) και της Repi στην απόσταση μετρημένη κάθετα στην παράταξη (Rx). Τα αποτελέσματα της ΠΕΣΕ με τη χρήση αυτών των στατιστικών σχέσεων είναι σε καλή συμφωνία με αυτά που προκύπτουν όταν οι αποστάσεις υπολογίζονται γεωμετρικά.  Διενεργήθηκε 3D και 4D αποάθροιση της σεισμικής επικινδυνότητας σε 42 θέσεις του Ελληνικού χώρου, μέσω της οποίας προσδιορίζονται τα χαρακτηριστικά του πιο πιθανού σεισμού (π.χ. μέγεθος, συντεταγμένες, απόσταση) που δύναται να προκαλέσει κίνηση η οποία υπερβαίνει το υπολογισμένο επίπεδο σεισμικής επικινδυνότητας ενός σημείου. Αυτή δείχνει ότι οι περισσότερες θέσεις επηρεάζονται κυρίως από σεισμούς που συμβαίνουν εντός της σεισμικής πηγής στην οποία ανήκουν, μεγέθους 5.0-6.0 σε κοντινές αποστάσεις (έως 20 km), και από σεισμούς μεγαλύτερων μεγεθών (Μ>6.0) σε πιο μακρινές αποστάσεις (έως 50 km). Επιπλέον, πολλές θέσεις του Ελληνικού χώρου επηρεάζονται τόσο από κοντινούς σεισμούς (έως 50 km) που γίνονται εντός της πηγής στην οποία ανήκουν, όσο και από πιο μακρινούς σεισμούς (έως 100 km) μεγαλύτερου μεγέθους (Μ>7.0) που συνήθως προέρχονται από τις μεγάλες τεκτονικές δομές της ευρύτερης περιοχής του Αιγαίου, π.χ. ζώνη κατάδυσης του Ν. Αιγαίου (εξωτερικό Ελληνικό τόξο).

In the present thesis, various aspects of the Probabilistic Seismic Hazard Analysis (PSHA) for the broader Aegean area are examined, with the use of different methodological tools, such as modern relevant codes (OpenQuake) and a Monte Carlo simulation approach (with the use of synthetic seismicity catalogs). We perform A comparative evaluation of the 5 main areal seismic source models available for the broader Aegean area and of 15 recent Ground Motion Prediction Equations (GMPE). A logic tree is proposed and used for the creation of an updated seismic hazard map for the broader Aegean area. From its comparison with NEAK2003, we conclude that the latter underestimates the seismic hazard by 1.5-2.5 times. An OFAT Sensitivity Analysis is conducted for Peak Ground Acceleration and Velocity (PGA and PGV, respectively) in 42 selected sites of the Greek area, to identify the controlling factors that mostly affect PSHA results. The controlling factors considered are the seismic source model (Source Model), the GMPE (GMPE), the number of standard deviations considered at their application (std), the Gutenberg-Richter (G-R) constants a and b, the maximum and minimum magnitude considered (Mmax and Mmin, respectively) and the dominant rupture type (SoF). The analysis of the results shows that the controlling factors that mainly affect the PSHA results are the Source model (especially the uncertainties in the G-R parameters, a and b) and the GMPE. Mmax mostly affects PGV, while having minor effect on PGA. The other factors are generally of minor importance. For the computational needs of this thesis, two codes were created, one to produce synthetic seismicity catalogs and one for the PSHA calculations, with the use of the Monte Carlo simulation method. Three new statistical conversion relations between the different types of distances required in GMPE are proposed and evaluated, namely conversion of epicentral distance (Repi) to Joyner Boore distance (RJB), of hypocentral distance (Rhypo) to rupture distance (Rrup) and of Repi to the distance measured perpendicular to the strike of the fault (Rx). PSHA results using these statistical relationships show a good agreement with those evaluated by calculating the distances geometrically. 3D and 4D seismic hazard deaggregation regarding 42 indicative sites of the Greek area is carried out, through which the characteristics of the most possible earthquake (e.g. size, coordinates, distance) that may result in strong ground motion exceeding the calculated level of seismic hazard of a site. The results show that most sites are mainly affected by earthquakes occurring within the seismic source to which they belong, with a magnitude of 5.0-6.0 at close distances (up to 20 km) and by earthquakes of larger magnitudes (Μ>6.0) at farther distances (up to 50 km). In addition, many sites are affected both by nearby earthquakes (up to 50 km) occurring within the source to which they belong and by more distant earthquakes (up to 100 km) of large magnitude (Μ>7.0) that belong to seismotectonic zones that describe well-known tectonic structures of the broader Aegean area, such as the S. Aegean subduction zone (outer Hellenic arc).

Πλήρες Κείμενο:

PDF

Αναφορές


Abrahamson, N.A., Silva, W.J., Kamai, R., 2014. Summary of the ASK14 ground motion relation for active crustal regions. Earthq. Spectra 30, 1025–1055.

Adnan, Α., Hendriyawan, Marto, Α., Irsyam, Μ., 2005. Seismic Hazard Assessment for Peninsular Malaysia Using Gumbel Distribution Method. J. Teknol. 42, 57–73.

Aguilar-Meléndez, A., Ordaz, M.G., De la Puente, J., Pujades, L., Barbat, A., Rodríguez-Lozoya, H.E., Monterrubio-Velasco, M., Escalante Martínez, J.E., Campos-Rios, A., 2018. Sensitivity analysis of seismic parameters in the probabilistic seismic hazard assessment (PSHA) for

Barcelona applying the new R-crisis. Comput. y Sist. 22, 1099–1122.

Akinci, A., Galadini, F., Pantosti, D., Petersen, M., Malagnini, L., Perkins, D., 2009. Effect of time dependence on probabilistic seismic hazard maps and deaggregation for the Central Apennines, Italy. Bull. Seismol. Soc. Am. 99, 585–610.

Akkar, S., Sandıkkaya, M.A., Bommer, J.J., 2014a. Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull. Earthq. Eng. 12, 359–387.

Akkar, S., Sandıkkaya, M.A., Şenyurt, M., Sisi, A.A., Ay, B., Traversa, P., Douglas, J., Cotton, F., Luzi, L., Hernandez, B., Godey, S., 2014b. Reference database for seismic ground-motion in Europe (RESORCE). Bull. Earthq. Eng. 12, 311–339.

Algermissen, S.T., Perkins, D.M., Isherwood, W., Cordon, D., Reagor, G., Howard, C., 1976. Seismic risk evaluation of the Balkan region. In: Proc. Sem. Seismic Zoning Maps. pp. 172–240.

Allen, G., Smith, M., Way, E., Square, K., 2004. CEUS Ground Motion Project Final Report. EPRI.

Ambraseys, N.N., 1995. The prediction of earthquake peak ground acceleration in Europe. Earthq. Eng. Struct. Dyn. 24, 467–490.

Ambraseys, N.N., Simpson, K.A., Bommer, J.J., 1996. Prediction of horizontal response spectra in Europe. Earthq. Eng. Struct. Dyn. 25, 371–400.

Ameer, A.S., Sharma, M.L., Wason, H.R., Alsinawi, S.A., 2004. Seismic Hazard Characterization and Risk Evaluation Using Gumbel’s Method of Extremes (G1 and G3) and G-R Formula for Iraq. In: 13th World Conference on Earthquake Engineering. Vancouver.

Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.J., Wooddell, K.E., Graves, R.W., Kottke, A.R., Boore, D.M., Kishida, T., Donahue, J.L., 2014. NGA-West2 Database. Earthq. Spectra 30, 989–1005.

Ansari, A., Firuzi, E., Etemadsaeed, L., 2015. Delineation of seismic sources in probabilistic seismic-hazard analysis using fuzzy cluster analysis and Monte Carlo simulation. Bull. Seismol. Soc. Am. 105, 2174–2191.

Arnold, E.P., 1989. Program SEISRISK III adapted to personal computers. Open-File Report 89-557.

Assatourians, K., Atkinson, G.M., 2013. EqHaz: An open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach. Seismol. Res. Lett. 84, 516–524.

Atkinson, G.M., Goda, K., 2013. Probabilistic seismic hazard analysis of civil infrastructure, Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems. Woodhead Publishing Limited.

Avital, M., Kamai, R., Davis, M., Dor, O., 2018. The effect of alternative seismotectonic models on PSHA results - A sensitivity study for two sites in Israel. Nat. Hazards Earth Syst. Sci. 18, 499–514.

Baker, J.W., 2013. Introduction To Probabilistic Seismic Hazard Analysis. White Pap. Version 2.0.1, 79.

Basili, R., Kastelic, V., Demircioglu, M.B., Garcia Moreno, D., Nemser, E.S., Petricca, P., Sboras, S.P., Besana-Ostman, G.M., Cabral, J., Camelbeeck, T., Caputo, R., Danciu, L., Domac, H., Fonseca, J., Gurcia-Mayordomo, J., Giardini, D., Glavatovic, B., Gulen, L., Ince, Y., Pavlides, S., Sesetyan, K., Tarabusi, G., Tiberti, M.M., Utkucu, M., Valensise, G., Vanneste, K., Vilanova, S., Wössner, J., 2013. European Database of Seismogenic Faults (EDSF) [WWW Document]. URL https://edsf13.ingv.it/

Bastami, M., Kowsari, M., 2014. Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution. Struct. Eng. Mech. 49, 355–372.

Båth, M., 1983. The Seismology of Greece. Tectonophysics 98, 165–208.

Bayrak, Y., Cinar, H., Tsapanos, T., Öztürk, S., Koravos, G., 2009. Earthquake hazard assessment for different regions in and around Turkey based on Gutenberg-Richter parameters by the least square method. J. Appl. Funct. Anal.

Bazzurro, P., Cornell, C.A., 1999. Disaggregation of seismic hazard. Bull. Seismol. Soc. Am. 89, 501–520.

Beauval, C., Scotti, O., 2004. Quantifying sensitivities of PSHA for France to earthquake catalog uncertainties, truncation of ground-motion variability, and magnitude limits. Bull. Seismol. Soc. Am. 94, 1579–1594.

Bender, B., 1986. Modeling source zone boundary uncertainty in seismic hazard analysis. Bull. Seismol. Soc. Am. 76, 329–341.

Bender, B., Campbell, K.W., 1989. A note on the selection of minimum magnitude for use in seismic hazard analysis. Bull. Seismol. Soc. Am. 79, 199–204.

Bender, B., Perkins, D., 1982. SEISRISK II: A computer program for seismic hazard estimation. Open File Report 82-293.

Bender, B., Perkins, M., 1987. SEISRISK III: Α computer program for seismic hazard estimation. U.S. Geological Survey Bulletin No 1772.

Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., Augliera, P., 2014. Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bull. Earthq. Eng. 12, 391–430.

Bindi, D., Pacor, F., Luzi, L., Puglia, R., Massa, M., Ameri, G., Paolucci, R., 2011. Ground motion prediction equations derived from the Italian strong motion database. Bull. Earthq. Eng. 9, 1899–1920.

Bommer, J.J., 2003. Uncertainty about the uncertainty in seismic hazard analysis. Eng. Geol. 70, 165–168.

Bommer, J.J., Crowley, H., 2017. The purpose and definition of the minimum magnitude limit in PSHA calculations. Seismol. Res. Lett. 88, 1097–1106.

Bommer, J.J., Douglas, J., Strasser, F.O., 2003. Style-of-faulting in ground-motion prediction equations. Bull. Earthq. Eng. 1, 171–203.

Bommer, J.J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., Abrahamson, N.A., 2005. On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull. Seismol. Soc. Am. 95, 377–389.

Bommer, J.J., van Elk, J., 2017. Comment on “the maximum possible and the maximum expected earthquake magnitude for production-induced earthquakes at the gas field in groningen, the netherlands” by gert zöller and matthias holschneider. Bull. Seismol. Soc. Am. 107, 1564–1567.

Boore, D.M., Stewart, J.P., Seyhan, E., Atkinson, G.M., 2014. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq. Spectra 30, 1057–1085.

Boore, D.M., Stewart, J.P., Skarlatoudis, A.A., Seyhan, E., Margaris, B., Theodoulidis, N., Scordilis, E., Kalogeras, I., Klimis, N., Melis, N.S., 2021. A ground-motion prediction model for shallow crustal earthquakes in greece. Bull. Seismol. Soc. Am. 111, 857–874.

Borgonovo, E., 2017. Sensitivity Analysis: An Introduction for the Management Scientist, International Series in Operations Research & Management Science.

Borgonovo, E., Plischke, E., 2016. Sensitivity analysis: A review of recent advances. Eur. J. Oper. Res. 248, 869–887.

Bourne, S.J., Oates, S.J., Bommer, J.J., Dost, B., Van Elk, J., Doornhof, D., 2015. A monte carlo method for probabilistic hazard assessment of induced seismicity due to conventional natural gas production. Bull. Seismol. Soc. Am. 105, 1721–1738.

Bourne, S.J., Oates, S.J., Van Elk, J., Doornhof, D., 2014. A seismological model for earthquakes induced by fluid extraction from a subsurface reservoir. J. Geophys. Res. Solid Earth 119, 8991–9015.

Budnitz, R.J., Apostolakis, G., Boore, D.M., Cluff, L.S., Coppersmith, K.J., Cornell, C.A., Morris, P.A., 1997. Recommendations for Probabilistic Seismic Hazard Analysis : Guidance on Uncertainty and Use of Experts., NUREG/CR-6372, US Nuclear Regulatory Commission.

Burton, P.W., 1979. Seismic risk in southern Europe through to India examined using Gumbel’s third distribution of extreme values. Geophys. J. R. astr. Soc. 59, 249–280.

Burton, P.W., Bayliss, T.J., 2013. Seismic hazard across Bulgaria and neighbouring areas: Extreme magnitude recurrence and strong ground shaking. Nat. Hazards 68, 1155–1201.

Burton, P.W., Xu, Y., Qin, C., Tselentis, G.A., Sokos, E., 2004. A catalogue of seismicity in Greece and the adjacent areas for the twentieth century. Tectonophysics 390, 117–127.

Burton, P.W., Xu, Y., Tselentis, G.A., Sokos, E., Aspinall, W., 2003. Strong ground acceleration seismic hazard in Greece and neighboring regions. Soil Dyn. Earthq. Eng. 23, 159–181.

Campbell, K.W., Bozorgnia, Y., 2014. NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthq. Spectra 30, 1087–1115.

Caputo, M., Panza, G.F., Postpischl, D., 1970. Deep structure of the Mediterranean basin. J Geophys Res 75, 4919–4923.

Caputo, R., Chatzipetros, A., Pavlides, S., Sboras, S., 2012. The greek database of seismogenic sources (GreDaSS): State-of-the-art for northern greece. Ann. Geophys. 55, 859–894.

Cauzzi, C., Faccioli, E., 2008. Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records. J. Seismol. 12, 453–475.

Cauzzi, C., Faccioli, E., Vanini, M., Bianchini, A., 2015. Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull. Earthq. Eng. 13, 1587–1612.

Chapman, M.C., 1995. A probabilistic approach to ground-motion selection for engineering design. Bull. - Seismol. Soc. Am. 85, 937–942.

Chiou, B.S.J., Youngs, R.R., 2014. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthq. Spectra 30, 1117–1153.

Chousianitis, K., Del Gaudio, V., Pierri, P., Tselentis, G.A., 2018. Regional ground-motion prediction equations for amplitude-, frequency response-, and duration-based parameters for Greece. Earthq. Eng. Struct. Dyn. 47, 2252–2274.

Chovanová, M.Z., 2018. Sensitivity study of the seismic hazard analysis of the locality of Jaslovské Bohunice. Comenius University in Bratislava.

Cito, P., Iervolino, I., 2022. On occurrence disaggregation of probabilistic seismic hazard. Earthq. Eng. Struct. Dyn. 51, 3296–3303.

Cole, S.W., Burton, P.W., 2008. Comparative Analysis Of The Seismic Hazard Of Central China. In: 14th World Conference on Earthquake Engineering (14WCEE). Beijing.

Cole, S.W., Xu, Y., Burton, P.W., 2008. Seismic hazard and risk in Shanghai and estimation of expected building damage. Soil Dyn. Earthq. Eng. 28, 778–794.

Coppersmith, K.J., Youngs, R.R., 1986. Capturing uncertainty in probabilistic seismic hazard assessments within intraplate tectonic environments. In: Proceedings If the 3rd US National Conference on Earthquake Engineering. Vol. 1, p. 301-312.

Cornell, C.A., 1968. Engineering Seismic Risk Analysis. Bull. Seismol. Soc. Am. 58, 1583–1606.

Cornell, C.A., Vanmarcke, E.H., 1969. The Major Influences on Seismic Risk. In: Proc. of the 4th World Conference on Earthquake Engineering. pp. 69–83.

Cramer, C.H., Wheeler, R.L., Mueller, C.S., 2002. Uncertainty analysis for seismic hazard in the southern Illinois basin. Seismol. Res. Lett. 73, 792–805.

Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., Giardini, D., 2021. The 2020 update of the European Seismic Hazard Model: Model Overview 1–121.

Danciu, L., Şeşetyan, K., Demircioglu, M., Gülen, L., Zare, M., Basili, R., Elias, A., Adamia, S., Tsereteli, N., Yalçın, H., Utkucu, M., Khan, M.A., Sayab, M., Hessami, K., Rovida, A.N., Stucchi, M., Burg, J.P., Karakhanian, A., Babayan, H., Avanesyan, M., Mammadli, T., Al-Qaryouti, M.,

Kalafat, D., Varazanashvili, O., Erdik, M., Giardini, D., 2018. The 2014 Earthquake Model of the Middle East: seismogenic sources. Bull. Earthq. Eng. 16, 3465–3496.

Danciu, L., Sokos, E., Tselentis, G., 2007. Deaggregation of the Regional Seismic Hazard : City of Patras, Greece. In: Proceedings of the 1st IASME/WSEAS International Conference on Geology and Seismology (GES’07). pp. 57–63.

Danciu, L., Tselentis, G.A., 2007. Engineering Ground Motion Parameters Attenuation Relationships For Greece. Bull. Seismol. Soc. Am. 97, 162–183.

Derras, B., Bard, P.Y., Cotton, F., 2014. Towards fully data driven ground-motion prediction models for Europe. Bull. Earthq. Eng. 12, 495–516.

Dilek, Y., Pavlides, S., 2006. Postcollisional tectonics and magmatism in the Mediterranean region and Asia. Geological Society of America,

Special Papers, 409.

Douglas, J., 2022. Ground Motion Prediction Equations 1964-2021, Department of Civil and Environmental Engineering University of Strathclyde. Glasgow. United Kingdom. pp. 678.

Drakopoulos, J., Makropoulos, K., 1983. Seismicity and Hazard analysis studies in the area of Greece. Publ. Seism. Lab. Univ. Athens 1, 126.

Dunn, W.L., Shultis, J.K., 2022. Exploring Monte Carlo methods. Elsevier.

Ebel, J.E., Kafka, A.L., 1999. A Monte Carlo approach to seismic hazard analysis. Bull. Seismol. Soc. Am. 89, 854–866.

EPA, U., 2009. Guidance on the Development, Evaluation, and Application of Environmental Models [WWW Document]. URL www.epa.gov/crem

Eschenbach, T.G., 1992. Spiderplots versus Tornado Diagrams for Sensitivity Analysis. Interfaces (Providence). 22, 40–46.

Faccenna, C., Becker, T.W., Auer, L., Billi, A., Boschi, L., Brun, J.P., Capitanio, F.A., Funiciello, F., Horvàth, F., Jolivet, L., Piromallo, C., Royden, L., Rossetti, F., Serpelloni, E., 2014. Reviews of Geophysics Mantle dynamics in the Mediterranean. Rev. Geophys. 52, 283–332.

Fassoulas, C., Kilias, A., Mountrakis, D., 1994. Postnappe stacking extension and exhumation of high-pressure/low-temperature rocks in the island of Crete, Greece. Tectonics 13, 127–138.

Field, E., Jordan, T.H., Cornell, C.A., 2003. OpenSHA: A Developing Community-modeling environment for Seismic Hazard Analysis. Seismol. Res. Lett. 74, 406–419.

Floyd, M.A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., McClusky, S., Nocquet, J.M., Palamartchouk, K., Parsons, B., England, P.C., 2010. A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. J. Geophys. Res. Solid Earth 115, 1–25.

Frankel, A., 1995. Mapping seismic hazard in the central and eastern United States. Seismol. Res. Lett. 66, 8–21.

Frankel, A.D., Petersen, M.D., Mueller, C.S., Haller, K.M., Wheeler, R.L., Leyendecker, E. V, Wesson, R.L., Harmsen, S.C., Cramer, C.H.,

Perkins, D.M., Rukstales, K.S., 2002. Documentation for the 2002 Update of the National Seismic Hazard Maps, Open-file report 02-420, US Geological Survey.

Galanopoulos, A.G., Delibasis, N., 1972. Map of maximum observed intensities in Greece (period 1800-1970). University of Athens.

Gasperini, P., Vannucci, G., 2003. FPSPACK: A package of FORTRAN subroutines to manage earthquake focal mechanism data. Comput. Geosci. 29, 893–901.

Giner, J.J., Molina, S., Jauregui, P., 2002. Advantages of using sensitivity analysis in seismic hazard assessment: A case study of sites in Southern and Eastern Spain. Bull. Seismol. Soc. Am. 92, 543–554.

Green, R.A., Hall, W.J., 1994. AN OVERVIEW OF SELECTED SEISMIC HAZARD ANALYSIS METHODOLOGIES. Civ. Eng. Stud. SRS 592, 95.

Gregor, N., Abrahamson, N.A., Atkinson, G.M., Boore, D.M., Bozorgnia, Y., Campbell, K.W., Chiou, B.S.J., Idriss, I.M., Kamai, R., Seyhan, E., Silva, W., Stewart, J.P., Youngs, R., 2014. Comparison of NGA-West2 GMPEs. Earthq. Spectra 30, 1179–1197.

Grossi, P., 2000. Quantifying the uncertainty in seismic risk and loss estimation. In: EuroConference on Global Change and Catastrophe Risk Management: Earthquake Risks in Europe, IIASA. Laxenburg, p. 247.

Gumbel, E.J., 1958. Statistics of extremes. Dover Publications Edition 2004.

Gutenberg, B., Richter, C.F., 1944. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34, 185–188.

Hagos, L., Arvidsson, R., Roberts, R., 2006. Application of the spatially smoothed seismicity and Monte Carlo methods to estimate the seismic hazard of eritrea and the surrounding region. Nat. Hazards 39, 395–418.

Haight, F.A., 1967. Handbook of the Poisson Distribution. John Wiley & Sons. New York.

Hale, C., Abrahamson, N., Bozorgnia, Y., 2018. Probabilistic Seismic Hazard Analysis Code Verification, PEER Report 2018/03. Pacific Earthquake Engineering Research Center. Headquarters at the University of California, Berkeley.

Han, S.W., Choi, Y.S., 2008. Seismic hazard analysis in low and moderate seismic region-Korean peninsula. Struct. Saf. 30, 543–558.

Hatzfeld, D., Martinod, J., Bastet, G., Gautier, P., 1997. the contribution of gravitational potential energy Karitsa f Kattavia. J. Geophys. Res. 102, 649–659.

Hatzidimitriou, P.M., Papadimitriou, E.E., Mountrakis, D.M., Papazachos, B.C., 1985. The seismic parameter b of the frequency-magnitude relation and its association with the geological zones in the area of Greece. Tectonophysics 120, 141–151.

Hayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M., Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. Science (80-. ). 362, 58–61.

Hosseinpour, V., Saeidi, A., Nollet, M.J., Nastev, M., 2021. Seismic loss estimation software: A comprehensive review of risk assessment steps, software development and limitations. Eng. Struct. 232.

Howard, R.A., 1988. Decision Analysis : Practice and Promise. Manage. Sci. 34, 679–695.

Iervolino, I., 2016. Soil-invariant seismic hazard and disaggregation. Bull. Seismol. Soc. Am. 106, 1900–1907.

Iervolino, I., Chioccarelli, E., Convertito, V., 2011. Engineering design earthquakes from multimodal hazard disaggregation. Soil Dyn. Earthq. Eng. 31, 1212–1231.

Ishikawa, Y., 1988. Hazard-consistent magnitude and distance for extended seismic risk analysis. In: Proceeding of the 9th World Conference on Earthquake Engineering. pp. 89–94.

Ishikawa, Y., 1991. Probability-based determination of specific scenario earthquakes. In: Proceedings of the 4th International Conference on Seismic Zonation (4ICSZ). pp. 3–10.

Ishikawa, Y., 1994. Scenario earthquakes vs probabilistic seismic hazard analysis. In: Proceedings of the 6th International Conference on Structural Safety and Reliability. pp. 2139–2146.

Jackson, J., McKenzie, D., 1988. The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophys. J. 93, 45–73.

Jimenez, M.J., Giardini, D., Grünthal, G., SESAME, W.G., 2001. Unified seismic hazard modelling throughout the Mediterranean region. Boll. di Geofis. Teor. ed Appl. 42, 3–18.

Johnson, C.E., Koyanagi, R.Y., 1988. A Monte-Carlo approach applied to the estimation of seismic hazard for the state of Hawaii. Seismol. Res. Lett. 59, 1–18.

Jolivet, L., Brun, J.P., 2010. Cenozoic geodynamic evolution of the Aegean. Int. J. Earth Sci. 99, 109–138.

Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denèle, Y., Brun, J.P., Philippon, M., Paul, A., Salaün, G., Karabulut, H., Piromallo, C., Monié, P., Gueydan, F., Okay, A.I., Oberhänsli, R., Pourteau, A., Augier, R., Gadenne, L., Driussi, O., 2013. Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics 597–598, 1–33.

Joyner W.B., Boore D.M., 1981. Peak horizontal acceleration and velocity from strong-motion reccords including records from the 1979 Imperial Valley, Califonia, Earthquake. Bull. Seismol. Soc. Am. 71, 2011–2038.

Kagan, Y.Y., 1993. Statistics of characteristic earthquakes. Bull. - Seismol. Soc. Am. 83, 7–24.

Kagan, Y.Y., 2002. Seismic moment distribution revisited: II. Moment conservation principle. Geophys. J. Int. 149, 731–754.

Kahle, H.G., Müller, M. V., Geiger, A., Danuser, G., Mueller, S., Veis, G., Billiris, H., Paradissis, D., 1995. The strain field in northwestern Greece and the Ionian Islands: results inferred from GPS measurements. Tectonophysics 249, 41–52.

Kaklamanos, J., Baise, L.G., Boore, D.M., 2011. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthq. Spectra 27, 1219–1235.

Kameda, H., Ishikawa, Y., Li, W., 1994a. Probability based determination of scenario earthquakes. In: Seismic Risk Assessment of Urban Facilities in a Sedimentary Region. pp. 67–85.

Kameda, H., Loh, C.H., Nakajima, M., 1994b. A comparative study in Japan and Taiwan by means of probabilistic scenario earthquakes. In: Proc. of 4th KAIST-NTU-KU Tri-Lateral Seminar/Workshop on Civil Engineering. pp. 27–37.

Karakostas, V.G., Papadimitriou, E.E., Karakaisis, G.F., Papazachos, C.B., Scordilis, E.M., Vargemezis, G., Aidona, E., 2003. The 2001 Skyros, Northern Aegean, Greece, earthquake sequence: Off - fault aftershocks, tectonic implications, and seismicity triggering. Geophys. Res. Lett. 30,

-1-12–4.

Kastelic, V., Carafa, M.M.C., Visini, F., 2016. Neotectonic deformation models for probabilistic seismic hazard: A study in the External Dinarides. Geophys. J. Int. 205, 1694–1709.

Kaviris, G., Zymvragakis, A., Bonatis, P., Kapetanidis, V., Spingos, I., Mavroulis, S., Kotsi, E., Lekkas, E., Voulgaris, N., 2023. A Logic-Tree Approach for Probabilistic Seismic Hazard Assessment in the Administrative Region of Attica (Greece). Appl. Sci. 13, 7553.

Kaviris, G., Zymvragakis, A., Bonatis, P., Kapetanidis, V., Voulgaris, N., 2022a. Probabilistic and Scenario-Based Seismic Hazard Assessment on the Western Gulf of Corinth (Central Greece). Appl. Sci. 12, 11152.

Kaviris, G., Zymvragakis, A., Bonatis, P., Sakkas, G., Kouskouna, V., Voulgaris, N., 2022b. Probabilistic Seismic Hazard Assessment for the Broader Messinia (SW Greece) Region. Pure Appl. Geophys. 179, 551–567.

Kerkenou, A., Papazachos, C., Margaris, B., Papaioannou, C., 2022. Seismic hazard deaggregation with the use of random catalogues: An application for the broader Aegean area. In: Proceedings of the 16th International Congress of the Geological Society of Greece. pp. 193–194.

Kerkenou, A., Papazachos, C.B., Margaris, B.N., Papaioannou, C.A., 2021. Application of One Factor analysis in Probabilistic Seismic Hazard Assessment (PSHA): An example from the broader Aegean area. In: Proc. of the Virtual 37th General Assembly of the European Seismological Commission (ESC2021). p. 269.

Kiratzi, A., Louvari, E., 2003. Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: A new database. J. Geodyn. 36, 251–274.

Kiratzi, A.A., 2002. Stress tensor inversions along the westernmost North Anatolian Fault Zone and its continuation into the North Aegean Sea. Geophys. J. Int. 151, 360–376.

Kkallas, C., Papazachos, C.B., Boore, D., Ventouzi, C., Margaris, B.N., 2018. Historical intermediate-depth earthquakes in the southern Aegean Sea Benioff zone: modeling their anomalous macroseismic patterns with stochastic ground-motion simulations. Bull. Earthq. Eng. 16, 5121–5150.

Knapmeyer, M., 1999. Geometry of the Aegean Benioff zones. Ann. di Geofis. 42, 27–38.

Kotha, S.R., Weatherill, G., Bindi, D., Cotton, F., 2020. A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe, Bulletin of Earthquake Engineering. Springer Netherlands.

Koutrakis, S.I., Karakaisis, G.F., Hatzidimitriou, P.M., Koliopoulos, P.K., Margaris, V.N., 2002. Seismic hazard in Greece based on different strong ground motion parameters. J. Earthq. Eng. 6, 75–109.

Kowsari, M., Halldorsson, B., Snæbjörnsson, J.Þ., 2017. On the Probabilistic Seismic Hazard Estimate for Húsavík, North Iceland on the basis of Monte Carlo Methods. 16th World Conf. Earthq. Eng. Paper no. 2823.

Kramer, S., 1996. Geotechnical Earthquake Engineering. Pearson Education India.

Kulkarni, R.B., Youngs, R.R., Coppersmith, K.J., 1984. Assessment of confidence intervals for results of seismic hazard analysis. In: Proceedings of the 8th World Conference on Earthquake Engineering. p. Vol. 1, pp. 263–270.

Le Pichon, X., Angelier, J., 1979. The hellenic arc and trench system: A key to the neotectonic evolution of the eastern mediterranean area. Tectonophysics 60, 1–42.

Le Pichon, X., Kreemer, C., 2010. The miocene-to-present kinematic evolution of the eastern mediterranean and middle east and its implications for dynamics. Annu. Rev. Earth Planet. Sci. 38, 323–351.

Lomnitz-Adler, J., Lomnitz, C., 1979. A modified form of the Gutenberg-Richter Magnitude-Frequency relation. Bull. Seismol. Soc. Am. 69, 1209–1214.

Lyubushin, A.A., Tsapanos, T.M., Pisarenko, V.F., Koravos, G.C., 2002. Seismic hazard for selected sites in Greece: A Bayesian estimate of seismic peak ground acceleration. Nat. Hazards 25, 83–98.

Makropoulos, K.C., 1978. Statistics of large earthquake magnitude and an evaluation of Greek seismicity. Ph.D. Thesis. University of Edinburgh, 193pp.

Makropoulos, K.C., Burton, P.W., 1985. Seismic hazard in Greece. II. Ground acceleration. Tectonophysics 117.

Margaris, B., Papazachos, B., Papaioannou, C., Theodulidis, N., Kalogeras, I., Skarlatoudis, A., 2001. Empirical attenuation relationships of the horizontal strong motion from the surface earthquakes of the Greek region. In: Proc. of the 2nd National Conference of Anti-Seismic Engineering and Technical Seismology. pp. 27–36.

McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M.N., Veis, G., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. Solid Earth 105, 5695–5719.

McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., Tealeb, A., 2003. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys. J. Int. 155, 126–138.

McGuire, R.K., 1976. FORTRAN computer program for seismic risk analysis. No. 76-67. US Geol. Surv.

McGuire, R.K., 1995. Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bull. - Seismol. Soc. Am. 85, 1275–1284.

McGuire, R.K., Shedlock, K.M., 1981. Statistical uncertainties in seismic hazard evaluations in the United States. Bull. Seismol. Soc. Am. 71, 1287–1308.

McKenzie, D., 1972. Active Tectonics of the Mediterranean Region. Geophys. J. R. Astron. Soc. 30, 109–185.

Meier, T., Becker, D., Endrun, B., Rische, M., Bohnhoff, M., Stöckhert, B., Harjes, H.P., 2007. A model for the hellenic subduction zone in the area of Crete based on seismological investigations. Geol. Soc. Spec. Publ. 291, 183–199.

Meier, T., Rische, M., Endrun, B., Vafidis, A., Harjes, H.P., 2004. Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tectonophysics 383, 149–169.

Meijer, P.T., Wortel, M.J.R., 1997. Present-day dynamics of the Aegean region: A model analysis of the horizontal pattern of stress and deformation. Tectonics 16, 879–895.

Meletti, C., D’Amico, V., Martinelli, F., 2009. SHARE D3.3 - Homogeneous determination of maximum magnitude. Brusseles.

Menant, A., Jolivet, L., Vrielynck, B., 2016. Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late Cretaceous. Tectonophysics 675, 103–140.

Mercier, J.L., Sorel, D., Vergely, P., Simeakis, K., 1989. Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Res. 2, 49–71.

Merz, H.A., Cornell, C.A., 1973. Seismic risk analysis based on a quadratic magnitude-frequency law. Bull. Seismol. Soc. Am. 63, 1999–2006.

Moratto, L., Orlecka-Sikora, B., Costa, G., Suhadolc, P., Papaioannou, C., Papazachos, C.B., 2007. A deterministic seismic hazard analysis for shallow earthquakes in Greece. Tectonophysics 442, 66–82.

Mosca, I., Sargeant, S., Baptie, B., Musson, R.M.W., Pharaoh, T.C., 2022. The 2020 national seismic hazard model for the United Kingdom, Bulletin of Earthquake Engineering. Springer Netherlands.

Mountrakis, D., Kilias, A., Pavlaki, A., Fassoulas, C., Thomaidou, E., Papazachos, C., Papaioannou, C., Roumelioti, Z., Benetatos, C., Vamvakaris, D., 2012. Neotectonic study of the Western Crete and implications for seismic hazard assessment. J. Virtual Explor. 42.

Musson, R.M.W., 1999a. Determination of design earthquakes in seismic hazard analysis through monte carlo simulation. J. Earthq. Eng. 3, 463–474.

Musson, R.M.W., 1999b. Probabilistic seismic hazard maps for the North Balkan region. Ann. di Geofis.

Musson, R.M.W., 2000. The use of Monte Carlo simulations for seismic hazard assessment in the U.K. Ann. di Geofis.

Musson, R.M.W., 2012. PSHA validated by quasi observational means. Seismol. Res. Lett. 83, 130–134.

Nocquet, J.M., 2012. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics 579, 220–242.

NRC, 1988. Probabilistic seismic hazard analysis. Rept. of the Panel on Seismic Hazard Analysis. National Academy Press. Washington. D.C., 97.

Ordaz, M., 1991. CRISIS. Brief description of program CRISIS. Institute of Solid Earth Physics. University of Bergen. Norway, Internal Report, pp. 16.

Ordaz, M., Aguilar, A., Arboleda, J., 1999. CRISIS99. Program for computing seismic hazard. UNAM.

Ordaz, M., Aguilar, A., Arboleda, J., 2007. CRISIS2007. Program for computing seismic hazard. UNAM.

Ordaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., D’Amico, V., 2015. CRISIS2015. Program for computing seismic hazard.

Ordaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., D’Amico, V., 2017. R-CRISIS. Program and platform for computing seismic hazard.

Ordaz, M., Martinelli, F., D’Amico, V., Meletti, C., 2013. CRISIS2008: A flexible tool to perform probabilistic seismic hazard assessment. Seismol. Res. Lett. 84, 495–504.

Ordaz, M., Salgado-Gálvez, M.A., Giraldo, S., 2021. R-CRISIS: 35 years of continuous developments and improvements for probabilistic seismic hazard analysis. Bull. Earthq. Eng. 19, 2797–2816.

Pagani, M., Marcellini, A., 2007. Seismic-hazard disaggregation: A fully probabilistic methodology. Bull. Seismol. Soc. Am. 97, 1688–1701.

Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., Vigano, D., 2014. Openquake engine: An open hazard (and risk) software for the global earthquake model. Seismol. Res. Lett. 85, 692–702.

Papadopoulos, G.A., Kijko, A., 1991. Maximum likelihood estimation of earthquake hazard parameters in the Aegean area from mixed data. Tectonophysics 185, 277–294.

Papaioannou, C., Karakaisis, G., Latoussakis, I., Makropoulos, K., Stavrakakis, G., Tselentis, G.A., Gkazetas, G., Fardis, M., Mountrakis, D.,

Kostikas, C., 2006. Introduction on the Seismological Data and Their Elaboration for the Compilation of the new Seismic Hazard Zoning map of

Greece. In: Proc. of the 5th Panhellenic Assembly of Geotechnical and Geoenvironmental Engineering, TEE. pp. 1–8.

Papaioannou, C.A., 1984. Attenuation of seismic intensities and seismic hazard in the area of Greece. Ph.D. Thesis. Aristotle University of Thessaloniki. 200pp.

Papaioannou, C.A., 1986. Seismic hazard assessment and long term earthquake prediction in southern Balkan region. In: 2nd Int. Reg. Sem. on Earthq. Prognostics. Berlin, pp. 223–241.

Papaioannou, C.A., 1988. Seismic hazard assessment for the area of Greece. In: Proc. Symp. New Development Seismol. Geophys. Of the Area of Greece. pp. 277–291.

Papaioannou, C.A., Hatzidimitriou, P.M., Papazachos, B.C., Theodulidis, N.P., 1985. Seismic hazard assessment for southern Balkan region based on seismic sources. In: Proc. of the 3rd Int. Symp. Analysis of Seismicity and Seismic Risk. pp. 349–400.

Papaioannou, C.A., Papazachos, B.C., 2000. Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bull. Seismol. Soc. Am. 90, 22–33.

Papazachos, B.C., 1990. Seismicity of the Aegean and surrounding area. Tectonophysics 178, 287–308.

Papazachos, B.C., Comninakis, P.E., 1969. Geophysical features of the Greek island arc and eastern Mediterranean ridge. In: CR Seances Conf. Reunie Madrid. pp. 74–75.

Papazachos, B.C., Comninakis, P.E., 1971. Geophysical and tectonic features of the Aegean Arc. J. Geophys. Res. 76, 8517–8533.

Papazachos, B.C., Dimitriadis, S.T., Panagiotopoulos, D.G., Papazachos, C.B., Papadimitriou, E.E., 2005. Deep structure and active tectonics of the southern Aegean volcanic arc. Dev. Volcanol. 7, 47–64.

Papazachos, B.C., Karakostas, V.G., Papazachos, C.B., Scordilis, E.M., 2000. The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophysics 319, 275–300.

Papazachos, B.C., Kiratzi, A.A., Hatzidimitriou, P.M., Theodulidis, N.P., 1985. Regionalization of seismic hazard in Greece. In: Proc. of the 12th Reg. Sem. on Earthq. Eng. EAEE_EPPO. p. 12.

Papazachos, B.C., Mountrakis, D.M., Papazachos, C.B., Tranos, M.D., Karakaisis, G.F., Savvaidis, A.S., 2001. The faults which have caused the known major earthquakes in Greece and surrounding region between the 5th century BC and today. In: Proc. of the 2nd National Conference

of Anti-Seismic Engineering and Technical Seismology. Vol. 1726. pp. 17–26.

Papazachos, B.C., Papaioannou, C.A., 1999. Lithospheric boundaries and plate motions in the Cyprus area. Tectonophysics 308, 193–204.

Papazachos, B.C., Papaioannou, C.A., Margaris, B.N., Theodulidis, N.P., 1993. Regionalization of seismic hazard in Greece based on seismic sources. Nat. Hazards 8, 1–18.

Papazachos, B.C., Papazachou, C., 2003. The earthquakes of Greece. Ziti, pp.273 (in Greek).

Papazachos, C.B., 1999. Seismological and GPS evidence for the Aegean-Anatolia interaction. Geophys. Res. Lett. 26, 2653–2656.

Papazachos, C.B., 2019. Deep structure and active tectonics of the South Aegean volcanic arc. Elements 15, 153–158.

Papazachos, C.B., Kiratzi, A., 1996. A detailed study of the active crustal deformation in the Aegean and surrounding area. Tectonophysics 253, 129–153.

Papoulia, J., Stavrakakis, G., Papanikolaou, D., 2001. Bayesian estimation of strong earthquakes in the Inner Messiniakos fault zone, southern Greece, based on seismological and geological data. J. Seismol. 5, 233–242.

Papoulia, J.E., 1992. An application of Cornell’s classical approach to seismic hazard analysis of Volos, central Greece. Bull. Geol. Soc. Greece 27, 223–232.

Papoulia, J.E., Slejko, D., 1993. Hazard assessment of two Greek regions with different seismotectonic knowledge. In: 11 Conv. Ann. Del. Gruppo Naz. Geof. Della Terra Solida. pp. 7–18.

Papoulia, J.E., Stavrakakis, G.N., 1990. Attenuation laws and seismic hazard assessment. Nat. Hazards 3, 49–58.

Papoulia, J.E., Stavrakakis, G.N., Kavadas, S., 1996. A linear and Bayesian source model for seismic hazard estimation along subduction zones. Bull. Geol. Soc. Greece 6, 186–192.

Pavlides, S., Tsapanos, T., Zouros, N., Sboras, S., Koravos, G., Chatzipetros, A., 2009. Using active fault data for assessing seismic hazard: a case study from NE Aegean sea, Greece. In: Proc. of the 17th International Conference on Soil Mechanics & Geotechnical Engineering. pp. 1–14.

Pavlou, K., Kaviris, G., Chousianitis, K., Drakatos, G., Kouskouna, V., Makropoulos, K., 2013. Seismic hazard assessment in Polyphyto Dam area (NW Greece) and its relation with the “unexpected” earthquake of 13 May 1995 (M s = 6.5, NW Greece). Nat. Hazards Earth Syst. Sci. 13, 141–149.

Pavlou, K., Κaviris, G., Kouskouna, V., Sakkas, G., Zymvragakis, A., Sakkas, V., Drakatos, G., 2021. Minor seismic hazard changes in the broader area of Pournari artificial lake after the first filling (W. Greece). Results Geophys. Sci. 7, 100025.

Porter, K., 2016. A Beginner’s Guide To Fragility, Vulnerability, and Risk. Encycl. Earthq. Eng. 1–29.

Porter, K.A., Beck, J.L., Shaikhutdinov, R. V., 2002. Sensitivity of building loss estimates to major uncertain variables. Earthq. Spectra 18, 719–743.

Porter, K.A., Field, E.H., Milner, K., 2012. Trimming the UCERF2 Hazard logic tree. Seismol. Res. Lett. 83, 815–828.

Powers, P.M., 2017. National Seismic [WWW Document]. Natl. Seism. Hazard Model Proj. Comput. code. URL https://github.com/usgs/nshmp-haz

Rabinowitz, N., Steinberg, D.M., Leonard, G., 1998. Logic trees, sensitivity analyses, and data reduction in probabilistic seismic hazard assessment. Earthq. Spectra 14, 189–201.

Rafi, Z., Hyder, A., 2006. Seismic Hazard Analysis and Zonation for the northern Areas of Pakistan and Kashmir, Report Met. Depart.

Rao, M.N., Rao, P.P., Kaila, K.L., 1997. The first and third asymptotic distributions of extremes as applied to the seismic source regions of India and adjacent areas. Geophys. J. Int. 128, 639–646.

Rehman, K., Burton, P.W., Weatherill, G.A., 2018. Application of Gumbel I and Monte Carlo methods to assess seismic hazard in and around

Pakistan. J. Seismol. 22, 575–588.

Reiter, L., 1990. Earthquake Hazard Analysis - Issues and Insights. Columbia University Press, New York.

Robinson, D., Dhu, T., Row, P., 2007. EQRM: An open-source event-based earthquake risk modeling program. In: AGU Fall Meeting Abstracts.

Robinson, D., Fulford, G., Dhu, T., 2005. EQRM: Geoscience Australia’s Earthquake Risk Model., Technical Manual: Version 3.0.

Roumelioti, Z., Benetatos, C., Kiratzi, A., Dreger, D., 2008. Near-Real Time Moment Tensors for Earthquakes in Greece provided by the Dept of Geophysics , Aristotle University of Thessaloniki ( AUTH – solutions ). Aristotle Univ. Thessaloniki, 1–14.

Roumelioti, Z., Kiratzi, A., Margaris, B., Chatzipetros, A., 2017. Simulation of strong ground motion on near-fault rock outcrop for engineering purposes: the case of the city of Xanthi (northern Greece). Bull. Earthq. Eng. 15, 25–49.

Sakkas, G., Kouskouna, V., Makropoulos, K., 2010. Seismic hazard analysis in the Ionian Islands using macroseismic intensities. Hell. J. Geosci. 45, 239.

Scherbaum, F., Bommer, J.J., Bungum, H., Cotton, F., Abrahamson, N.A., 2005. Composite ground-motion models and logic trees: Methodology, sensitivities, and uncertainties. Bull. Seismol. Soc. Am. 95, 1575–1593.

Scherbaum, F., Schmedes, J., Cotton, F., 2004. On the conversion of source-to-site distance measures for extended earthquake source models. Bull. Seismol. Soc. Am. 94, 1053–1069.

Schwartz, D.P., Coppersmith, K.J., 1984. Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. J. Geophys. Res. 89, 5681–5698.

Shapira, A., 1983. Potential earthquake risk estimations by application of a simulation process. Tectonophysics 95, 75–89.

Shen-Chyun Wu, Cornell, C.A., Winterstein, S.R., 1995. A hybrid recurrence model and its implication on seismic hazard results. Bull. - Seismol. Soc. Am. 85, 1–16.

Silacheva, N. V., Kulbayeva, U.K., Kravchenko, N.A., 2018. Probabilistic seismic hazard assessment of Kazakhstan and Almaty city in peak ground accelerations. Geod. Geodyn. 9, 131–141.

Silva, V., Crowley, H., Pagani, M., Monelli, D., Pinho, R., 2014. Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment. Nat. Hazards 72, 1409–1427.

Skarlatoudis, A.A., Papazachos, C.B., Margaris, B.N., Theodulidis, N., Papaioannou, C., Kalogeras, I., Scordilis, E.M., Karakostas, V., 2003. Empirical peak ground-motion predictive relations for shallow earthquakes in Greece. Bull. Seismol. Soc. Am. 93, 2591–2603.

Skarlatoudis, A.A., Papazachos, C.B., Margaris, B.N., Theodulidis, N., Papaioannou, C., Kalogeras, I., Scordilis, E.M., Karakostas, V., 2007. Erratum: Empirical peak ground-motion predictive relations for shallow earthquakes in Greece (Bulletin of the Seismological Society of America). Bull. Seismol. Soc. Am. 97, 2219–2221.

Slejko, D., Rebez, A., Santulin, M., Garcia-Pelaez, J., Sandron, D., Tamaro, A., Civile, D., Volpi, V., Caputo, R., Ceramicola, S., Chatzipetros, A., Daja, S., Fabris, P., Geletti, R., Karvelis, P., Moratto, L., Papazachos, C., Pavlides, S., Rapti, D., Rossi, G., Saraò, A., Sboras, S., Vuan, A.,

Zecchin, M., Zgur, F., Zuliani, D., 2021. Seismic hazard for the Trans Adriatic Pipeline (TAP). Part 1: probabilistic seismic hazard analysis along the pipeline. Bull. Earthq. Eng. 19, 3349–3388.

Sokolov, V., Wenzel, F., 2011. Influence of ground-motion correlation on probabilistic assessments of seismic hazard and loss: Sensitivity analysis. Bull. Earthq. Eng. 9, 1339–1360.

Sokolov, V.Y., Wenzel, F., Mohindra, R., 2009. Probabilistic seismic hazard assessment for Romania and sensitivity analysis: A case of joint consideration of intermediate-depth (Vrancea) and shallow (crustal) seismicity. Soil Dyn. Earthq. Eng. 29, 364–381.

Sotiriadis, D., Margaris, B., 2023. Evaluation of the predictive performance of regional and global ground motion predictive equations against Greek strong motion data. Soil Dyn. Earthq. Eng. 165, 107656.

Sotiriadis, D., Margaris, B., Klimis, N., Dokas, I.M., 2023. Seismic Hazard in Greece: A Comparative Study for the Region of East Macedonia and Thrace. GeoHazards 4, 239–266.

Stavrakakis, G.N., 1984. Contribution of the Bayesian statistics in the seismic hazard assessment of Crete and the surroundings and strong ground motion modelling. Ph.D. thesis. Univ. of Athens.

Stavrakakis, G.N., Drakopoulos, J., 1995. Bayesian probabilities of earthquake occurrences in Greece and surrounding areas. Pure Appl. Geophys. PAGEOPH 144, 307–319.

Stavrakakis, G.N., Tselentis, G.A., 1987. Bayesian probabilistic prediction of strong earthquakes in the main seismogenic zones of Greece. Bolletino Di Geofis. Teor. Ed Appl. 113, 51–63.

Stepp, J.C., Silva, W.J., McGuire, R.K., Sewell, R.W., 1993. Determination of earthquake design loads for a high level nuclear waste repository facility. In: No. CONF-9310102-VOL. 2.

Sucuoğlu, H., Akkar, S., Halûk, S., Sinan, A., 2014. Basic Earthquake Engineering, Springer.

Taymaz, T., Jackson, J., McKenzie, D., 1991. Active tectonics of the north and central Aegean Sea. Geophys. J. Int. 106, 433–490.

Taymaz, T., Jackson, J., Westaway, R., 1990. Earthquake mechanisms in the Hellenic Trench near Crete. Geophys. J. Int. 102, 695–731.

Taymaz, T., Yilmaz, Y., Dilek, Y., 2007. The geodynamics of the Aegean and Anatolia: introduction. Geological Society, London, Special Publications 291:1-16.

Theodulidis, N., 1988. Response spectra for the earthquakes of the Greek region. In: Proc. of the 1st Symp. for the New Developments in Seismology and Geophysics of the Greek Region. pp. 225–240.

Theodulidis, N.P., Papazachos, B.C., 1992a. Dependence of strong ground motion on magnitude-distance, site geology and macroseismic intensity for shallow earthquakes in Greece: I, Peak horizontal acceleration, velocity and displacement. Soil Dyn. Earthq. Eng. 11, 387–402.

Theodulidis, N.P., Papazachos, B.C., 1992b. Dependence of strong ground motion on magnitude-distance, site geology and macroseismic intensity for shallow earthquakes in Greece: II, Horizontal pseudovelocity. Soil Dyn. Earthq. Eng. 13, 317–343.

Trevlopoulos, K., Guéguen, P., Helmstetter, A., Cotton, F., 2020. Earthquake risk in reinforced concrete buildings during aftershock sequences based on period elongation and operational earthquake forecasting. Struct. Saf. 84, 101922.

Tsapanos, T.M., Burton, P.W., 1991. Seismic hazard evaluation for specific seismic regions of the world. Tectonophysics 194, 153–169.

Tsapanos, T.M., Mäntyniemi, P., Kijko, A., 2004. A probabilistic seismic hazard assessment for Greece and the surrounding region including site-specific considerations. Ann. Geophys. 47, 1678–1688.

Tsapanos, T.M., Papadopoulos, G.A., Galanis, O.C., 2003. Time independent seismic hazard analysis of Greece deduced from Bayesian statistics. Nat. Hazards Earth Syst. Sci. 3, 129–134.

Tselentis, G.A., Danciu, L., 2010a. Probabilistic seismic hazard assessment in Greece - Part 3: Deaggregation. Nat. Hazards Earth Syst. Sci. 10, 51–59.

Tselentis, G.A., Danciu, L., 2010b. Probabilistic seismic hazard assessment in Greece - Part 1: Engineering ground motion parameters. Nat. Hazards Earth Syst. Sci. 10, 25–39.

Tselentis, G.A., Danciu, L., Sokos, E., 2010. Probabilistic seismic hazard assessment in Greece - Part 2: Acceleration response spectra and elastic input energy spectra. Nat. Hazards Earth Syst. Sci. 10, 41–49.

Utsu, T., 1999. Representation and analysis of the earthquake size distribution: A historical review and some new approaches. Pure Appl. Geophys. 155, 509–535.

Vamvakaris, D.A., Papazachos, C.B., Papaioannou, C.A., Scordilis, E.M., Karakaisis, G.F., 2016a. A detailed seismic zonation model for shallow earthquakes in the broader Aegean area. Nat. Hazards Earth Syst. Sci. 16, 55–84.

Vamvakaris, D.A., Papazachos, C.B., Papaioannou, C.A., Scordilis, E.M., Karakaisis, G.F., 2016b. Seismic Hazard Assessment in the Broader Aegean Area Using Time-Independent Seismicity Models Based on Synthetic Earthquake Catalogs. Bull. Geol. Soc. Greece L, 1463–1472.

Van Hinsbergen, D.J.J., Schmid, S.M., 2012. Map view restoration of Aegean-West Anatolian accretion and extension since the Eocene. Tectonics 31.

Vavlas, N., Kiratzi, A., Margaris, B., Karakaisis, G., 2019. Probabilistic seismic hazard assessment (PSHA) for Lesvos island using the logic tree approach. Bull. Geol. Soc. Greece 55, 109–136.

Wang, J., Gao, M.T., 1996. Parameter sensitivity analyses in seismic hazard. Acta Seismol. Sin. English Ed. 9, 629–634.

Weatherill, G., Burton, P.W., 2010. An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation. Tectonophysics 492, 253–278.

Wells, D.L., Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. - Seismol. Soc. Am. 84, 974–1002.

Wesnousky, S.G., 1994. The Gutenberg-Richter or characteristic earthquake distribution, which is it? Bull. Seismol. Soc. Am. 84, 1940–1959.

Wiemer, S., Giardini, D., Fäh, D., Deichmann, N., Sellami, S., 2009. Probabilistic seismic hazard assessment of Switzerland: Best estimates and uncertainties. J. Seismol. 13, 449–478.

Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M.B., Hiemer, S., Meletti, C., Musson, R.W., Rovida, A.N., Sesetyan, K., Stucchi, M., Anastasiadis, A., Akkar, S., Engin Bal, I., Barba, S., Bard, P.Y., Beauval, C., Bolliger, M., Bosse, C., Bonjour, C., Bungum, H., Carafa, M., Cameelbeeck, T., Carvalho, A., Campos-Costa, A., Coelho, E., Colombi, M.,

D’amico, V., Devoti, R., Drouet, S., Douglas, J., Edwards, B., Erdik, M., Fäh, D., Fonseca, J., Fotopoulou, S., Glavatovic, B., Gómez Capera, A.A., Hauser, J., Husson, F., Kastelic, V., Kästli, P., Karatzetzou, A., Kaviris, G., Keller, N., Kierulf, H.P., Kouskouna, V., Krishnamurty, R., Lang, D., Lemoine, A., Lindholm, C., Makropoulos, K., Manakou, M., Marmureanu, G., Martinelli, F., Garcia Mayordomo, J., Mihaljevic, J., Monelli, D., Garcia-Moreno, D., Nemser, E., Pagani, M., Pinho, R., Pisani, A.R., Pitilakis, D., Pitilakis, K., Poggi, V., Radulian, M., Riga, E., Sandikkaya, M.A., Segou, M., Siegert, R., Silva, V., Stromeyer, D., Sousa, L., Sørensen, M.B., Tellez-Arenas, A., Vanneste, K., Wahlstöm, R., Weatherill, G., Viganò, D., Vilanova, S., Yenier, E., Zulfikar, C., Adams, J., Bommer, J.J., Bonilla, F., Faccioli, E., Gülen, L., Koller, M., Pinto, A., Pinto, P.,

Papaioannou, C., Peruzza, L., Scherbaum, F., Scotti, O., Stirling, M., Theodoulidis, N., Wenk, T., Zschau, J., 2015. The 2013 European Seismic Hazard Model: key components and results. Bull. Earthq. Eng. 13, 3553–3596.

Woo, G., 1985. PRISK manual. Principia Mechanica LTD., LONDON.

Youngs, R.R., Coppersmith, K.J., 1985. Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 23, 125.

Zabukovec, B., 2000. OHAZ - A computer program for spatially smoothed seismicity approach. In: Seismicity Modelling in Seismic Hazard Mapping. Workshop Proccedings. Slovenia, pp. 135.

Zahran, H.M., Sokolov, V., Youssef, S.E.H., Alraddadi, W.W., 2015. Preliminary probabilistic seismic hazard assessment for the Kingdom of Saudi Arabia based on combined areal source model: Monte Carlo approach and sensitivity analyses. Soil Dyn. Earthq. Eng. 77, 453–468.

Βαμβακάρης, Δ.Α., 2010. Συμβολή στη μελέτη της χρονικά μεταβαλλόμενης σεισμικότητας και σεισμικής επικινδυνότητας. Διδακτορική Διατριβή. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 498 σελ.

Γκανάς, Α., Οικονόμου, Ι.Α., Τσιμή, Χ., 2013. NOAfaults: A digital database for active faults in Greece. Δελτίον της Ελληνικής Γεωλογικής Εταιρίας 47, 518–530.

Κόραβος, Γ.Χ., 2010. Εκτίμηση της σεισμικής επικινδυνότητας στην Ελλάδα και στις γύρω περιοχές με τη χρήση ενός μοντέλου σεισμών σχεδιασμού. Διδακτορική Διατριβή. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 352 σελ.

Μάργαρης, Β., 1994. Αζιμουθιακή εξάρτηση των σεισμικών κυμάτων στον Ελληνικό χώρο και επίδρασή της στη σεισμική επικινδυνότητα. Διδακτορική Διατριβή. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 324 σελ.

Παπαζάχος, Β., Μακρόπουλος, Κ., Λατουσάκης, Γ., Θεοδουλίδης, Ν., 1989. Τελική έκθεση για το πρόγραμμα του ΟΑΣΠ “ΕΚΠΟΝΗΣΗ ΧΑΡΤΗ ΣΕΙΣΜΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΤΗΣ ΕΛΛΑΔΑΣ”, Σελ.22 και 28 σχήμ.

Παπαϊωάννου, Χ., 2001. Συλλογή και Επεξεργασία Σεισμολογικών Δεδομένων και Σύνταξη Νέου Χάρτη Ζωνών Σεισμικής Επικινδυνότητας της Ελλάδας Συμβατού με τον Ισχύοντα Ελληνικό Αντισεισμικό Κανονισμό και τον Ευρωκώδικα 8. Τελική Έκθεση. ΙΤΣΑΚ. σελ.68.

Ρουσόπουλος, Α., 1956. Αντισεισμικαί Κατασκευαί. Β. Παπαχρυσάνθεμου, Έκδοσις 2α, Αθήναι, σελ. 431.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.