Εξώφυλλο

Three dimensional moddeling and geochemical anomaly mapping of the gold-endowed Hattu schist belt, Eastern Finland = Τρισδιάσταστη μπντελοποίηση και χωρική ανάλυση γεωχημικών ανωμαλιών της σχιστολιθικής ζώνης Hattu στην Ανατολική Φιλανδία.

Σπυρίδων Νέστωρ Στρογγύλης

Περίληψη


Defining and mapping the geochemical signature, or hydrothermal footprint, of ore deposits from exploration survey records represents a key criterion in the mineral exploration procedure. In this research work is investigated the distribution of gold geochemical anomalies in the soil, bedrock and drill core sample datasets from the complexly deformed and gold-endowed Archaean Hattu schist belt, in Eastern Finland. This belt is approx. 40 km long and 5 km wide and hosts numerous orogenic-gold type deposits, including one active underground mine and over 20 gold prospects. The belt was initially separated in four continuous domains and further accurate geochemical gold anomaly maps were produced by applying two conceptually different interpolation methods, the Ordinary Kriging and the Inverse Distance Weighting. Several classic statistical and Exploratory Data Analysis methods were applied for the analysis of the distribution of the gold values and for the calculation of the threshold values, censored and outlier values, in each dataset. The available lithological, structural, geophysical datasets were further incorporated and combined with the geochemical interpolation maps to define gold anomaly lineaments in GIS-environment. The produced lineament maps highlight continuous, of several kilometers in length, zones with potential for discovering concealed gold occurrences underneath. The work included in addition the creation of the detailed regional 3-D lithological and structural map of the Hattu schist belt. The projected gold anomaly lineaments in the 3-D maps show that gold distribution in soil and bedrock follows collectively the western margin of tonalitic intrusions within the volcanic-sedimentary sequence aligning well with high-strain shear zones. The dispersion of the gold element in the soil was very narrow, ranging between 30 and 200 meters from the source rock. The 3D integrated geological model of this study provides evidence that the Hattu schist belt can be characterized as a single, crustal scale ore mineralizing system. Application of geochemical anomaly mapping could produce an updated exploration model for the area and dictate guidelines for future exploration for the discovery of new gold deposits.

Μία από τις σημαντικότερες διαδικασίες κατά την αναζήτηση μεταλλικών κοιτασμάτων είναι ο προσδιορισμός και η χαρτογράφηση του γεωχημικού, ή υδροθερμικού, αποτυπώματος από τα δεδομένα των γεωχημικών διασκοπήσεων. Σε αυτή την εργασία διερευνάται η κατανομή των γεωχημικών ανωμαλιών χρυσού βάσει γεωχημικών δειγμάτων από εδάφη, πετρώματα και γεωτρήσεις που συλλέχθηκαν στην Αρχαϊκή σχιστολιθική ζώνη Hattu, στην Ανατολική Φινλανδία. Η ζώνη αυτή εκτείνεται σε μήκος 40 χλμ. με πλάτος 5 χλμ. και φιλοξενεί πολυάριθμες εμφανίσεις μεταλλοφοριών χρυσού ορογενετικού-τύπου, συμπεριλαμβανομένου ενός ενεργού υπόγειου μεταλλείου. Για την εργασία αυτή, η σχιστολιθική ζώνη χωρίστηκε αρχικά σε τέσσερις επιμέρους συνεχείς ζώνες ενώ, δημιουργήθηκαν για κάθε μια από αυτές χάρτες γεωχημικών ανωμαλιών χρυσού με την εφαρμογή δύο διαφορετικών μεθόδων παρεμβολής, το Ordinary Kriging και το Inverse Distance Weighting. Στα γεωχημικά δεδομένα, εφαρμόστηκαν πολλαπλές μέθοδοι στατιστικής για την ανάλυση της κατανομής του χρυσού και για τον υπολογισμό των κατώτατων τιμών ανωμαλίας καθώς και των ακραίων τιμών. Τα διαθέσιμα γεωλογικά, τεκτονικά, γεωφυσικά δεδομένα ενσωματώθηκαν και συνδυάστηκαν με τους γεωχημικούς χάρτες για τον προσδιορισμό συνεχών ζωνών ανωμαλίας χρυσού σε περιβάλλον GIS. Στους χάρτες αυτούς αναγνωρίσθηκαν συνεχείς γραμμικές ζώνες ανωμαλιών που εκτείνονται για αρκετά χιλιόμετρα και οι οποίες υποδηλώνουν την πιθανότητα ύπαρξης μεταλλοφορίας κάτω από το εδαφικό κάλυμμα. Με τη βοήθεια ενός λεπτομερούς τρισδιάστατου λιθολογικού και τεκτονικού μοντέλου για την σχιστολιθική ζώνη έγινε εμφανές ότι η κατανομή του χρυσού ακολουθεί το δυτικό άκρο των τοναλιτικών διεισδύσεων της περιοχής, στα όρια με τη μεταιζηματογενή ακολουθία και των ζωνών διάτμησης. Η διασπορά του στοιχείου του χρυσού στο έδαφος είναι περιορισμένη, κυμαινόμενη μεταξύ 30 και 200 μέτρων. Το τρισδιάστατο γεωλογικό μοντέλο σε συνδυασμό με τον γεωχημικό χάρτη ανωμαλιών χρυσού αυτής της μελέτης παρέχει σημαντικές ενδείξεις πως οι διάσπαρτες εμφανίσεις των μεταλλοφοριών της σχιστολιθικής ζώνης Hattu ανήκουν σε ένα ενιαίο και συνεχές σύστημα μεταλλοφορίας με σημαντικό δυναμικό για την ανακάλυψη νέων κοιτασμάτων χρυσού.


Πλήρες Κείμενο:

PDF

Αναφορές


Agterberg, F.P., 1989. Computer programs for mineral exploration. Science 245(4913): 76-81.

Airo, M.-L. 2007. Application of Aerogeophysical Data for Gold Exploration: Implications for Central Lapland Greenstone Belt. In: Ojala, J. V. (ed.) Gold in the Central Lapland Greenstone Belt, Finland. Geological Survey of Finland, Special Paper 44, 171–192.

Airo, M.-L. & Mertanen, S. 2008. Magnetic signatures related to orogenic gold mineralization, Central Lapland Greenstone Belt, Finland. Journal of Applied Geophysics 64, 14–24.

Aitchison, J., 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London, 416 pp.

Ander, E.L., Johnson, C.C., Cave, M.R., Palumbo-Roe, B., Nathanail, C.P., Lark, R.M., 2013. Methodology for the determination of normal background concentrations of contaminants in English soil. Science of The Total Environment, 454-455, 604–618.

Baker T., 2002. Emplacement depth and CO2–rich fluid inclusions in intrusion-related gold deposits. Econ Geol 97:1109–1115

Bárdossy, A., 1997. Introduction to geostatistics. Institute of Hydraulic Engineering, University of Stuttgart, 28-32.

Biernacik, P., Kazimierski, W., Włodarczyk-Sielicka, M., 2023. Comparative Analysis of Selected Geostatistical Methods for Bottom Surface Modeling. Sensors, 23(8), 3941.

Bornhorst, T. J., Rasilainen, K., & Nurmi, P. A., 1993. Geochemical character of lithologic units in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Nurmi, PA & Sorjonen-Ward, P.(eds.), 133-145.

Bornhorst, T.J., Rasilainen, K., 1993. Mass transfer during hydrothermal alteration associated with Au mineralisation within the Late Archaean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland, Special Paper 17, pp. 273–289

Bounessah, M., Atkin, B.P., 2003. An application of exploratory data analysis (EDA) as a robust non-parametric technique for geochemical mapping in a semi-arid climate. Applied Geochemistry 18(8): 1185–1195.

Burrough, P.A., 1987. Principles of Geographic Information Systems for Land Resource

Assessment. Clarendon Press, Oxford.

Burrough, P.A. and McDonnell, R.A., 1998. Principles of Geographical Information Systems, Oxford, Oxford University Press, 330 pp.

Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco,R. F., Konopka, A.E., 1994. Field‐scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501-1511.

Carranza, E.J.M., 2009, Geochemical Anomaly and Mineral Prospectivity Mapping in GIS, Handbook of Exploration and Environmental Geochemistry, Vol. 11 (M. Hale, Editor). Elsevier, Amsterdam

Chambers, J.M., Cleveland, W.S., Kleiner, B. and Tukey, P.A., 1983 Graphical Methods for Data Analysis. Wadsworth International Group, Belmont, California, Duxbury Press, Boston.

Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical exploration, 51(2), 109-130.

Cowan, E J, Beatson, R K, Ross, H J, Fright, W R, McLennan, T J and Mitchell, T J, 2002. Rapid geological modelling, in Applied Structural Geology for Mineral Exploration and Mining, International Symposium Abstract Volume (ed: S Vearnecombe), Australian Institute of Geoscientists Bulletin, 36:39-41

Cowan, E J, Beatson, R K, Ross, H J, Fright, W R, McLennan, T J, Evans, T R, Carr, J C, Lane, R G, Bright, D V, Gillman, A J, Oshust, P A and Titley, M, 2003. Practical implicit geological modelling, in Proceedings Fifth International Mining Geology Conference, pp 89-99 (The Australasian Institute of Mining and Metallurgy: Melbourne).

Cowan, E.J., Spragg, K.J., Everitt, M.R., 2011. Wireframe-free geological modelling—an oxymoron or a value proposition? In Eighth international mining geology conference. Australasian Institute of Mining and Metallurgy, Queenstown, New Zealand, pp. 247-260.

Cox, S. F., Etheridge, M. A., Cas, R. A. F., & Clifford, B. A. (1991). Deformational style of the Castlemaine area, Bendigo‐Ballarat Zone: Implications for evolution of crustal structure in central Victoria. Australian Journal of Earth Sciences, 38(2), 151-170.

Cox, S.F., Knackstedt MA, Braun J (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. Rev Econ Geol 14:1–24

Cressie, N.A.C., 1993. Statistics for spatial data, revised edition. New York: Wiley.

Deutsch, C.V., 2003. Geostatistics. Ed(s): Meyers, R.A., Encyclopedia of Physical Science and Technology (Third Edition), Academic Press, p. 697-707.

Deutsch, J. L., 2015. Experimental Variogram Tolerance Parameters. In J. L. Deutsch (Ed.), Geostatistics Lessons developments. Journal of Geochemical Exploration 21(1): 41-61.

Eilu, P., Sorjonen-Ward, P., Nurmi, P., Niiranen, T., 2003. A review of gold mineralization styles in Finland. Econ. Geol. 98, 1329–1353

Eilu, P., 2015.: Overview on gold deposits in Finland, in: Mineral Deposits of Finland, edited by: Maier, W. D., O’Brien, H., Lahtinen, R., Elsevier, Amsterdam, 377–403.

Eilu, P. (2011). Metallic mineral resources of Fennoscandia. Geological Survey of Finland: Special Paper, 49, 13-21.

Eilu, P., Rasilainen, K., Halkoaho, T., Huovinen, I., Kärkkäinen, N., Kontoniemi, O., Lepisto, K., Niiranen, T. & Sorjonen-Ward, P. 2015. Quantitative assessment of undiscovered resources in orogenic gold deposits in Finland. Geological Survey of Finland, Report of Investigation 216. 318 p.

Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barcelo-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical geology, 35(3), 279-300.

Dong, Y., & Santosh, M. (2016). Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1), 1-40.

Fan, H. R., Hu, F. F., Yang, J. H., Shen, K., & Zhai, M. G. (2005). Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong province. Acta Petrologica Sinica, 21(5), 1317-1328.

Filzmoser, P., Hron, K., Reimann, C., 2009b. Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Science of the Total Environment 407, 6100–6108.

Frimmel, H.E., 2008. Earth’s Continental Crustal Gold Endowment. Earth and Planetary Science Letters, 267, 45-55.

Fusswinkel, T., Wagner, T., Sakellaris, G. 2017. Fluid evolution of the Neoarchean Pampalo orogenic gold deposit (E Finland): Constraints from LA-ICPMS fluid inclusion microanalysis. Chemical Geology 450, pp. 96-121.

Fyfe WS, Price NJ, Thompson AB (1978) Fluids in the Earth’s crust. Elsevier, Amsterdam 383 p

Garrett, R. G. 1991. The Management, Analysis and Display of Exploration Geochemical Data, Exploration Geochemistry Workshop. Geological Survey of Canada Open File 2390, Paper 9, 9-1 to 9-4.

Garrett, R.G., Kane, V.E., Zeigler, R.K., 1980. The management and analysis of regional

geochemical data. Journal of Geochemical Exploration 13(2-3): 115-152

Gebre-Mariam M., Hagemann S.G., Groves D.I., 1995. A classification scheme for epigenetic Archaean lode-gold deposits. Mineral Deposita 30:408–410

Goldfarb R.J., Groves D.I., Gardoll S., 2001. Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18:1–75

Goldfarb, R. J., & Santosh, M. (2014). The dilemma of the Jiaodong gold deposits: Are they unique?. Geoscience Frontiers, 5(2), 139-153.

Goldfarb R.J., Hart C.J.R, Marsh E.E., 2008. Orogenic gold and evolution of the Cordilleran orogeny. In: Spencer JE, Titley SR (eds) CircumPacific Tectonics, Geologic Evolution, and Ore Deposits, vol 22. Tucson Ariz Geol Soc Digest, Tucson, pp 311–323

Goldfarb R.J., Groves D.I., 2015. Orogenic gold: common vs evolving fluid and metal sources through time. Lithos 223:2–26

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University

Groves D.I., 1993. The crustal continuum model for late-Archaean lode gold deposits of the Yilgarn block, Western Australia. Mineral Deposita 28:366–374

Groves, D. I., Phillips, G. N., Ho, S. E., Houstoun, S. M., & Standing, C. A. (1987). Craton-scale distribution of Archean greenstone gold deposits; predictive capacity of the metamorphic model. Economic Geology, 82(8), 2045-2058.

Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., & Robert, F. (1998). Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore geology reviews, 13(1-5), 7-27.

Groves, D. I., Santosh, M., Deng, J., Wang, Q., Yang, L., & Zhang, L. (2020). A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 55, 275-292.

Groves, D. I., & Santosh, M. (2015). Province-scale commonalities of some world-class gold deposits: implications for mineral exploration. Geoscience Frontiers, 6(3), 389-399.

Groves, D. I., Santosh, M., Goldfarb, R. J., & Zhang, L. (2018). Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geoscience Frontiers, 9(4), 1163-1177.

Groves, D. I., Phillips, G. N., Ho, S. E., & Houstoun, S. M. (1985). The nature, genesis and regional controls of gold mineralization in Archaean greenstone belts of the Western Australian Shield; a brief review. South African Journal of Geology, 88(1), 135-148.

Groves, D.I. & Foster, R.P., 1991. Archaean lode gold deposits. In R.P. Foster (Editor), Gold Metallogeny and Exploration, Blackie and Son Ltd, Glasgow, 432 p

Groves D.I., Santosh M., 2016. The giant Jiaodong gold province: the key to a unified model for orogenic gold deposits? Geosc Front 7:409–418

Grünfeld, K., 2005. Dealing with outliers and censored values in multi-element geochemical data–a visualization approach using XmdvTool. Applied Geochemistry, 20(2), 341–352.

Hardy, R., 1971. Multiquadric equations of topography and other irregular surfaces.

Harris, J.R., Wilkinson, L., Grunsky, E., Heather, K., Ayer, J., 1999. Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt, Ontario. Journal of Geochemical Exploration 67(1-3): 301-334.

Harris, J.R., Wilkinson, L., Bernier, M., 2001. Analysis of geochemical data for mineral exploration using a GIS – a case study from the Swayze greenstone belt, northern Ontario, Canada. In:

McClenaghan, M.B., Borrowsky, P.T., Hall, G.E.M., Cook, S.J. (Eds.), Drift Exploration in Glaciated Terrain, Geological Society, London, Special Publications 2001, 185: 165-200.

Hartikainen, A., Damstén, M., 1991. Applications of till geochemistry to gold exploration in Ilomantsi, Finland. Journal of Geochemical Exploration 39, 323–342.

Hartikainen, A., Nurmi, P.A., 1993. Till geochemistry in gold exploration in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. In: Nurmi, P.A., Sorjonen-Ward, P. (Eds.), Geological Development, Gold Mineralization and Exploration Methods in the Late Archean Hattu Schist Belt, Ilomantsi, Eastern Finland, Geological Survey of Finland, Special Paper 17, 323–352.

Hartikainen, A., Salminen, R., 1982. Tohmajärven karttalehtialueen geokemiallisen kartoituksen tulokset. Summary: The results of the geochemical survey in the Tohmajärvi map-sheet area. Geologian Tutkimuslaitos, Geokemiallisten karttojen selitykset, Lehti 4232. Geological Survey of Finland, Explanatory Notes to Geochemical Maps, Sheet 4232, p. 57.

Hartkamp, A.D., De Beurs, K., Stein, A., White, J.W., 1999. Interpolation Techniques for Climate Variables. NRG-GIS Series 99-01. Mexico, D.F.: CIMMYT.

Haslett, J., Bradley, R., Craig, P., Unwin, A., Wills, G., 1991. Dynamic graphics for exploration spatial data with application to locating global and local anomalies. The American Statistician 45(3): 234-242.

Hauptfleisch, M., Putniņš, T. J., & Lucey, B. (2016). Who sets the price of gold? London or New York. Journal of Futures Markets, 36(6), 564-586.

Hawkes, H.E., and Webb, J.S., 1962 Geochemistry in Mineral Exploration. (pp. 1–415). New York: Harper & Row.

Hedenquist J.W., Lowenstern J.R., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

Heino, T., Hartikainen, A., Koistinen, E., Niskanen, M. 1995. Report on exploration in Ilomantsi in 1992–1995. Geological Survey of Finland. Unpublished report M06/4333/-95/1/10, p. 17.

Hengl, T., 2007. A Practical Guide to Geostatistical Mapping of Environmental Variables. JRC Scientific and Technical Reports. Office for Official Publication of the European Communities, Luxembourg.

Hölttä, P., Heilimo, E., Huhma. H., Juopperi, H., Kontinen, A., Konnunaho, H., Lauri, L., Mikkola, P., Paavola, J. & Sorjonen-Ward, P. 2012. Archaean complexes of the Karelia Province in Finland. Geological Survey of Finland, Special Paper 54, 9−20

Hölttä, P., Lehtonen, E., Lahaye, Y. & Sorjonen-Ward, P. 2017. Metamorphic evolution of the Ilomantsi greenstone belt in the Archaean Karelia Province, eastern Finland. In: Halla, J., Whitehouse, M., Ahmad, T. & Bagai, Z. (eds) Crust–Mantle Interactions and Granitoid diversification: Insights from Archaean Cratons. Geological Society Special Publications 449, 231-250

Huhma, H., O’Brien, H., Lahaye, Y., & Mänttäri, I. (2011). Isotope geology and Fennoscandian lithosphere evolution. Geological Survey of Finland, Special Paper, 49, 35-48.

Huhma, H., Mänttäri, I., Peltonen, P., Kontinen, A., Halkoaho, T., Hanski, E., et al., 2012. The age of the Archaean greenstone belts in Finland. Geological Survey of Finland, Special Paper 54, 74–175.

Hughes M.J., Phillips G.N., Gregory L.M., 1997. Mineralogical domains in the Victorian gold province, Maldon, and Carlin-style potential. Australas Instit Min Metall, Ann Conf Melbourne, pp 215–227

Isaaks, E.H., Srivastava, R.M., 1989. An introduction to applied geostatistics. Oxford University Press, Oxford

Jessell, M., Aillères, L., De Kemp, E., Lindsay, M., Wellmann, F., Hillier, M., Laurent, G., Carmichael, T., & Martin, R., 2014. Next Generation Three-Dimensional Geologic Modeling and Inversion. In Society of Economic Geologists Special Publication 18: Building Exploration Capability for the 21st Century. Vol. 18, pp. 261-272.

Johnston, K., Ver Hoef, J.M., Krivoruchko, K., Lucas, N., 2003. The principles of geostatistical analysis, Using ArcGIS geostatistical Anal., ESRI, Redlands, CA pp. 4980.

Joseph, I., Bhaumik, B.K., 1997. Improved estimation of the Box-Cox transform parameter and its application to hydrogeochemical data. Mathematical Geology 29(8): 963-976.

Journal of Geophysical Research 76, 1905–1915.

Kalliomäki, H., Wagner, T., Fusswinkel, T., & Schultze, D. (2019). Textural evolution and trace element chemistry of hydrothermal calcites from Archean gold deposits in the Hattu schist belt, eastern Finland: indicators of the ore-forming environment. Ore Geology Reviews, 112, 103006.

Käpyaho, A., Hölttä, P., Whitehouse, M.J., 2007. U-Pb zircon geochronology of selected Archaean migmatites in eastern Finland. Bulletin of the Geoogical Society of Finland 78, 121–141.

Käpyaho, A., Molnár, F., Sakellaris, G., 2013. Mineralogical characteristics of a metasedimentary hosted Hosko gold deposit from the Archean Hattu schist belt, eastern Finland. In: Mineral Deposit Research for a High-Tech World. Proceedings of the 12th Biennial SGA Meeting, August 12–15, Uppsala, pp. 1120–1123, Sweden

Kerrich, R. (1983). Geochemistry of gold deposits in the Abitibi greenstone belt. Can. Inst. Mining Metall. Spec., 27, 75.

Kerry, R., & Oliver, M. A. (2007a). Determining the effect of asymmetric data on the variogram. I. Underlying asymmetry. Computers & Geosciences, 33, 1212–1232.

Kojonen, K., Johanson, B., O’-Brien, H.E., Pakkanen, L., 1993. Mineralogy of gold occurrences in the late Archaean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland, Special Paper 17, 233–271.

Kontak D.J., & Kerrich R., (1995), Geological and geochemical studies of a metaturbidite-hosted lode gold deposit—the Beaver Dam deposit, Nova Scotia—II. Isotopic studies. Econ Geol 90:885–901.

Khoshnaw F.M., 2012. Petroleum and Mineral Resources. WIT press, Southampton.

Kotz, S., Johnson, N.L., 1985. Encyclopedia of Statistical Sciences, Volume 3, John Wiley & Sons, New York.

Koutsopoulos, K., 2017. Geographic Information Systems & Spatial Analysis

Krige, D. G., 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119-139.

Kürzl, H., 1988. Exploratory data analysis: recent advances for the interpretation of geochemical data. Journal of Geochemical Exploration 30(1-3): 309-322.

Lahtinen, R., Hölttä, P., Kontinen, A., Niiranen, T., Nironen, M., Saalmann, K., SorjonenWard, P., 2011. Tectonic and metallogenic evolution of the Fennoscandian Shield: key questions with emphasis on Finland. Geol. Surv. Finland Spec. Pap. 49, 23–33.

Levinson, A.A., 1974. Introduction to Exploration Geochemistry, Applied Publishing Ltd., Calgary.

Li, J., Heap, A.D., 2008. A Review of Spatial Interpolation Methods for Environmental

Mc Keag S.A, Craw D., 1989. Contrasting fluids in gold-bearing quartz vein systems formed progressively in a rising metamorphic beltOtago Schist, New Zealand. Econ Geol 84:22–33

Matheron, G., 1963. Les variables régionalisées et leur estimation. Paris: Masson.

Matheron, G., 1965. Principles of geostatistics. Economic geology, 58(8), 1246-1266.

Meyer, M., & Saager, R. (1985). The gold content of some Archaean rocks and their possible relationship to epigenetic gold-quartz vein deposits. Mineralium deposita, 20, 284-289.

Miesch, A. T., 1977, Log transformations in geochemistry: Mathematical Geology v. 9(2), p. 191–194.

Molnár, F., O’Brien, H.E., Lahaye, Y., Käpyaho, A., Sorjonen-Ward, P., Hyodo, H., Sakellaris, G., 2016. Signatures of Overprinting Mineralization Processes in the Orogenic Gold Deposit of the Pampalo Mine, Hattu Schist Belt, Eastern Finland. Society of Economic Geologists, Inc. Economic Geology, v. 111, pp. 1659–1703.

Moon, C. J., Whateley, M. K., & Evans, A. M. (2006). Introduction to mineral exploration (No. Ed. 2). Blackwell publishing.

Mutanen, T., & Huhma, H. (2003). The 3.5 Ga Siurua trondhjemite gneiss in the Archaean Pudasjarvi granulite belt, northern Finland. Bulletin-geological society of Finland, 75(1/2), 51-68.

Myers, D. E., 1989. To be or not to be... stationary? That is the question. Mathematical Geology, 21, 347-362.

Nazarpour A, Rashidnejad Omran N, Rostami Paydar Gh, Sadeghi B, Matroud F, Mehrabinejad A (2015) Application of classical statistics, logratio transformation andmultifractal approaches to delineate geochemical anomalies in the Zarshuran gold district, NW Iran. Chemie der Erde 75: 117-132.

Nenonen, J., & Huhta, P. (1993). Quaternary glacial history of the Hattu schist belt and adjacent parts of the Ilomantsi district, eastern Finland. Geological Survey of Finland Special Paper, 17, 185-191.

Nesbitt B.E., 1991. Phanerozoic gold deposits in tectonically active continental margins. In: Foster RP (ed) Gold metallogeny and exploration. Blackie and Son, Glasgow, pp 104–132

Nurmi, P.A., 1993. Genetic aspects of mesothermal gold mineralisation and implications for exploration in the late Archaean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland, Special Paper 17, pp. 373–386

Nurmi, P. A., & Sorjonen-Ward, P., (Editors), 1993. Geological development, gold mineralization and exploration methods in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland, Special Paper 17, 386 pages, 196 figures, 60 tables, 5 appendices, and one appended map

Nurmi, P.A., Lestinen, P. & Niskavaara, H., 1991. Geochemical characteristics of mesothermal gold deposits in the Fennoscandian shield, and a comparison with selected Canadian and Australian deposits. Geol. Surv. Finland, Bull. 351, 101 p.

O’Brien, H.E., Nurmi, P.A., Karhu, J.A., 1993. Oxygen, hydrogen and strontium isotope compositions of gold mineralization in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland, Special Paper, 17, 291–306.

Ojala, V.J., Pekkarinen, L.J., Piirainen, T., Tuukki, P., 1990. The Archaean gold mineralization in Rämepuro, Ilomantsi greenstone belt, eastern Finland. Terra Nova 2, 240–244.

Oliver, M. A., and Webster, R., 1987. The elucidation of soil pattern in the Wyre Forest of the West Midlands, England. II. Spatial distribution. Journal of Soil Science, 38, 293–307.

Oliver, M.A., Webster, R., 2015. Basic Steps in Geostatistics: The Variogram and Kriging. Springer International Publishing AG. on Mining Innovation. Santiago, Chile

Pekkarinen, L.J., 1988. The Hattuvaara gold occurrence, Ilomantsi; a case history. Annales Universitatis, Turkuensis, Series 24C–67, pp. 79–87

Phillips G.N., 2013. Australian and global setting for gold in 2013, in Proceedings world gold 2013, Brisbane, Australia, 26–29 September 2013. Aust Inst Min Metall. 15–21.

Phillips G.N., Groves D.I., Martyn J.E., 1984. An epigenetic origin for banded iron-formation- hosted gold deposits. Econ Geol 79:162–171

Rasilainen, K., 1996. Geochemical alteration of gold occurrences of the late Archean Hattu schist belt, Ilomantsi, eastern Finland: Geological Survey of Finland, Bulletin388, 80p.

Rasilainen, K., Nurmi, P. A., Bornhorst, T. J., 1993. Rock geochemical implications for gold exploration in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland, Special Paper, 17, 355-362.

Rawlins, B.G., Lister, T.R., Mackenzie, A.C., 2002. Trace metal pollution of soils in northern England. Environ. Geol.46, 612–620.

Reimann, C., 2005. Geochemical mapping: technique or art? Geochemistry: Exploration,

Environment, Analysis 5(4): 359-370.

Reimann, C., de Caritat, P., 2017. Establishing geochemical background variation and

threshold values for 59 elements in Australian surface soil. Science of the Total Environment. 578, 633–648.

Reimann, C., Filzmoser, P., Garrett, R.G., 2005. Background and threshold: critical comparison of methods of determination. Science of the Total Environment 346(1-3): 1-16.

Reimann, C., & Garrett, R. G. (2005). Geochemical background—concept and reality. Science of the total environment, 350(1-3), 12-27.

Ridley JR, Diamond LW (2000) Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev Econ Geol 13:141–162

Robinson, T.P., Metternicht, G., 2006. Testing the Performance of Spatial Interpolation Techniques for Mapping Soil Properties. Computers and Electronics in Agriculture. 50, 97–108.

Rose, A.W., Hawkes, H.E., Webb, J.S., 1979. Geochemistry in Mineral Exploration, 2nd ed., Academic Press, London.

Sakellaris (2016), Unpublished report

Salminen, R., Hartikainen, A., 1985. Glacial transport of till and its influence on the interpretation of geochemical results in North Karelia, Finland. Geological Survey of Finland 48 Bulletin 335.

Shepard, D., 1964. A two-dimensional interpolation function for irregularly data spaced. ACM National Conference, 517–524.

Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, ACM, New York, pp 517–524

Schodde R.C., 2021. Trends in Gold Exploration with a special focus on quantifying discovery performance. Centre for Exploration Targeting, UWA. May 2021. www.minexconsulting.com

Shuguang, Z., Kefa, Z., Yao, C., Jinlin, W., & Jianli, D. (2015). Exploratory data analysis and singularity mapping in geochemical anomaly identification in Karamay, Xinjiang, China. Journal of Geochemical Exploration, 154, 171-179.

Sinclair, A. J. (1974). Selection of threshold values in geochemical data using probability graphs. Journal of geochemical exploration, 3(2), 129-149. Society. American Bulletin 15: 483-506.

Singer, D.A., 1993. Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Nonrenewable Resources 2(2): 69-81.

Sorjonen-Ward, P., 1993, An overview of structural evolution and lithic units within and intruding the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland, Special Paper 17, 9–102.

Sorjonen-Ward, P. B., Hartikainen, A., Nurmi, P. A., Rasilainen, K., Schaubs, P., Zhang, Y., & Liikanen, J. (2015). Exploration targeting and geological context of gold mineralization in the Neoarchean Ilomantsi greenstone belt in eastern Finland. Mineral Deposits of Finland, 435-466.

Sorjonen-Ward, P., Luukkonen, E.J., 2005. Archean rocks. In: Lehtinen, M., Nurmi, P.A., Rämö, O.T. (Eds.), Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield. Elsevier B.V., Amsterdam, pp. 19–99.

Stewart, I. C., & Miller, D. T. (2018). Directional tilt derivatives to enhance structural trends in aeromagnetic grids. Journal of Applied Geophysics, 159, 553-563.

Stoch, B., Anthonissen, C. J., McCall, M. J., Basson, I. J., Deacon, J., Cloete, E., Botha, J., Britz, Strydom, M., Nel, D., Bester, M., 2018. 3D implicit modeling of the Sishen Mine: new resolution of the geometry and origin of Fe mineralization. Mineralium Deposita, 53(6), 835-853.

Tarantola A, Mullis J, Venneemann T, Dubessy J, de Capitani C (2007) Oxidation of methane at the CH4/H2O-(CO2) transition zone in the external part of the Central Alps, Switzerland: evidence from stable isotope investigations. Chem Geol 237:329–357

Tukey, J.W., 1977. Exploratory Data Analysis, Addison-Wesley, Reading.

Vaasjoki, M., Korsman, K. and Koistonen, T. 2005. Overview. In: Lehtinen, M., Nurmi, P.A., Rämö, O.T. (Editors), Precambrian Geology of Finland - Key to the Evolution of the Fennoscandian Shield. Elsevier B.V., Amsterdam, pp. 1-18.

Vaasjoki, M., Sorjonen-Ward, P., Lavikainen, S., 1993. U-Pb age determinations and sulfide Pb-Pb characteristics from the late Archaean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland, Special Paper 17, 103–131.

Vielreicher N.M., Groves D.I., Snee L.W., Fletcher I.R., Mc Naughton N.J., 2010. Broad synchroneity of three gold mineralization styles in the Kalgoorlie gold field–SHRIMP, U-Pb, and 40Ar/39Ar geochronological evidence. Econ Geol 105:187–227

Vollgger, S. A., Cruden, A. R., Ailleres, L., & Cowan, E. J., 2015. Regional dome evolution and its control on ore-grade distribution: Insights from 3D implicit modelling of the Navachab gold deposit, Namibia. Ore Geology Reviews, 69, 268-284.

Vural, A., Evaluation of soil geochemistry data of Canca area (Gümüşhane, Turkey) by means of Inverse Distance Weighting (IDW) and kriging methods-preliminary findings. Bulletin of the Mineral Research and Exploration 2019. 158: 195-216.

Webster, R., and Oliver, M. A., 1992. Sample adequately to estimate variograms of soil properties. Journal of Soil Science, 40, 493–496.

Weihed, P., Arndt N., Billström, K., Duchesne, J.-C., Eilu, P., Martinsson, O., Papunen, H. and Lahtinen R., 2005. Precambrian geodynamics and ore formation: the Fennoscandian Shield. Ore Geology Reviews 27, 273-322.

Wilde A.R., Bierlein F.P., Pawlitschek M., 2004. Lithogeochemistry of orogenic gold deposits in Victoria, SE Australia: A preliminary assessment for undercover exploration. Journal of Geochemical Exploration, 84, 35–50

Wyman D.A., Cassidy K.F., Hollings P., 2016. Orogenic gold and the mineral systems approach: resolving fact, fiction and fantasy. Ore Geol Rev 78:322–335

Xie, Y., Chen, T. B., Lei, M., Yang, J., Guo, Q. J., Song, B., & Zhou, X. Y., 2011. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere, 82(3), 468-476.

Xu, H., and Zhang, C., 2023. Development and applications of GIS-based spatial analysis in environmental geochemistry in the big data era. Environmental Geochemistry and Health, 45(4), 1079-1090.

Xuejing, X., and Xueqiu, W., 1991. Geochemical exploration for gold: a new approach to an old problem. Journal of Geochemical Exploration, 40(1-3), 25-48.

Yang L.Q., Deng J., Wang Z.L., Zhang L., Guo L.N., Song M.C., Zheng X.L., 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrol Sin 30:2447–2467 (in Chinese with English abstract)

Yousefi, M., & Carranza, E. J. M. (2015). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69-81.

Yusta, I., Velasco, F., Herrero, J.-M., 1998. Anomaly threshold estimation and data normalization using EDA statistics: application to lithogeochemical exploration in Lower Cretaceous Zn±Pb carbonate-hosted deposits, Northern Spain. Applied Geochemistry 13(4): 421-439.

Zhang, C., Tang, Y., Xu, X., & Kiely, G., 2011. Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil organic carbon contents in Ireland. Applied Geochemistry, 26, 1239–1248.

Zhang, C., Zuo, R., Xiong, Y., Shi, X., & Donnelly, C. (2021). GIS, geostatistics, and machine learning in medical geology. Practical Applications of Medical Geology, 215-234.

Zhu, Y. S., 1997. Prospectivity mapping methods. Beijing: Geological Publish House.

Zuo, R., Xia, Q., & Wang, H. (2013). Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Applied geochemistry, 28, 202-211.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.