Εξώφυλλο

Κινηματική της Παραμόρφωσης και Γεωτεκτονική Τοποθέτηση του συμπλέγματος Μαμωνίων και των Οφιολιθικών Μειγμάτων της ΝΔ Κύπρου = Structural Architecture, Kinematics of Deformation and Geotectonic Evolution of Mamonia Complex and Ophiolite Mẻlanges of SW Cyprus.

Αντριανή Παύλος Βαρνάβα

Περίληψη


Σκοπός της παρούσας διδακτορικής διατριβής είναι η μελέτη των γεωλογικών και τεκτονικών διεργασιών που επηρέασαν το σύμπλεγμα Μαμωνίων στην νότιο-νοτιοδυτική Κύπρο. Το σύμπλεγμα Μαμωνίων χαρακτηρίζεται από πολύπλοκη γεωδυναμική εξέλιξη και μαζί με τα μεταμορφωμένα πετρώματα του Σχηματισμού Αγία Βαρβάρα αποτελούν το έναυσμα για την κατανόηση της γεωδυναμικής εξέλιξης και παλαιογεωγραφίας του ωκεανού της Νεοτηθύος. Το σύμπλεγμα Μαμωνίων διαχωρίζεται σε δύο βασικές τεκτονοστρωματογραφικές ομάδες, την Ομάδα Διαρίζος και την Ομάδα Άγιος Φώτιος. Η Ομάδα Διαρίζος, Ανώτερης Τριαδικής ηλικίας, έχει ιζηματογενή και ηφαιστειακά πετρώματα, ενώ η Ομάδα Άγιος Φώτιος, Άνω Τριαδικής-Μέσο Κρητιδικής ηλικίας αποτελείται από ιζηματογενείς σχηματισμούς. Μεταξύ των υποκείμενων σχηματισμών της Ομάδας Άγιος Φώτιος, Βλάμπουρος και Μαρώνας (Άνω Τριαδικό) και της υπερκείμενης ραδιολαριτικής σειράς του Σχηματισμού Επισκοπή [Μέσο Ιουρασικό (Καλλόβιο-Βαλαζίνιο)] αναγνωρίζεται ένα στρωματογραφικό κενό. Εξετάσαμε ένα δείγμα (cy_114_s9) από την στήλη Επισκοπή στο οποίο διαπιστώθηκε μια σημαντική ηλικία. Από την συνύπαρξη των ακτινοζώων Bernoullius rectispinus leporinus Conti & Marcucci, Hexasaturnalis tetraspinus (Yao) and Theocapsommella cucurbiformis (Baumgartner) το ραδιολαριτικο δείγμα συσχετίστηκε με το Μέσο Βαθώνιο (Unitary Association Zone 6). Επομένως, προτάθηκε για πρώτη φορά η επέκταση του γνωστού ηλικιακού εύρους του Σχηματισμού Επισκοπή στο Βαθώνιο, μειώνοντας έτσι το στρωματογραφικό κενό μεταξύ των υποκείμενων σχηματισμών Βλάμπουρος και Μαρώνας και του υπερκείμενου Σχηματισμού Επισκοπή. Με το γεωθερμόμετρο αμφιβόλων (Τ) εκτιμήθηκαν οι θερμοκρασίες των μεταμορφωμένων πετρωμάτων από 300oC έως 720oC, με μείωση της θερμοκρασίας από τον πυρήνα προς την περιφέρεια των αμφιβόλων. Με το γεωβαρόμετρο πλαγιοκλάστου-αμφιβόλου (P) εκτιμήθηκαν οι πιέσεις από 8 έως 15kbar σε θερμοκρασίες 650oC και από 7 έως 15kbar σε θερμοκρασίες 705oC. Οι συγκεκριμένες τιμές θερμοκρασίας και πίεσης αναγνωρίζονται σε τυπικά πετρώματα μεταμορφικής σόλας και κάπως έτσι τα μεταμορφωμένα πετρώματα του Σχηματισμού Αγία Βαρβάρα χαρακτηρίζονται ως τυπικά πετρώματα αμφιβολιτικής σόλας. Σε ένα συνδυασμό των μεταμορφωμένων συνθηκών με τις υπαίθριες παρατηρήσεις που πραγματοποιήθηκαν στο σύμπλεγμα Μαμωνίων, εξήχθησαν πέντε τεκτονικά γεγονότα που συνέβαλαν στην γεωδυναμική εξέλιξη του. Το τεκτονικό γεγονός D0, ηλικίας Ανώτερο Κρητιδικό [Τουρόνιο-Καμπάνιο/90-83 Ma ή 90-76 Ma ηλικία αμφιβολιτών με βάση τους Spray & Roddick (1981) και Chan et al. (2007), αντίστοιχα] σχετίζεται με την ενδοωκεάνια υποβύθιση και την αμφιβολιτική φάση που παρατηρείται στα μεταμορφωμένα πετρώματα σόλας του Σχηματισμού Αγία Βαρβάρα. Το τεκτονικό γεγονός D1, [Ανώτερο Κρητιδικό (Ανώτερο Καμπάνιο-Μαιστρίχτιο/70-68 Ma)], σχετίζεται με την μεταμορφική εξέλιξη των πετρωμάτων σόλας καθώς και με την κύρια τοποθέτηση (obduction) των οφιολιθικών πετρωμάτων Τρόδους-Ακάμα. Το γεγονός αυτό χαρακτηρίζεται από την μεσαίου βαθμού ανάδρομη πρασινοσχιστολιθική φάση η οποία επηρέασε τα μεταμορφωμένα πετρώματα του Σχηματισμού Αγία Βαρβάρα. Το τεκτονικό γεγονός D2, ηλικίας Ανώτερο Κρητιδικό (Μαιστρίχτιο/65 Ma), συνδέεται με την έντονη λεπίωση των σχηματισμών της νότιο-νοτιοδυτικής Κύπρου προς ΝΔ και με την τοπική αντιθετική φορά λεπίωσης (Back-thrust). Το τεκτονικό γεγονός D3, (Άνω Ολιγόκαινο-Μειόκαινο), συνδέεται με ρηξιγενή εκτατική τεκτονική και χαρακτηρίζεται από πλάγιο-κανονικά ρήγματα μεσαίας γωνίας κλίσης έως τυπικά ρήγματα οριζόντιας μετατόπισης. Το τελευταίο τεκτονικό γεγονός D4 σχετίζεται με το σύγχρονο τεκτονικό καθεστώς. Όπως εκτιμάται από την γεωδαιτική ανάλυση, αλλά και από τις υπαίθριες παρατηρήσεις, το τεκτονικό γεγονός D4 συνδέεται με ταυτόχρονη συμπίεση και έκταση. Η γενική διεύθυνση της συμπίεσης είναι ΒΒΔ-ΝΝΑ, ενώ της έκτασης ΑΒΑ-ΔΝΔ.

The aim of this study is to observe the geological and tectonic processes which affected the Mamonia Complex in south-southwest Cyprus. The Mamonia Complex is characterized by complicated geodynamic evolution, and along with the metamorphic rocks of Ayia Varvara Formation are the triggering of understanding the geodynamic evolution and palaeogeography of the Neotethyan ocean. The Mamonia Complex can be subdivided into two fundamental tectono-sedimentary units, the Dhiarizos Group, and the Ayios Photios Group. Dhiarizos Group (Upper Triassic) consists of sedimentary and volcanic rocks, while the Ayios Photios Group (Upper Triassic-Middle Cretaceous) consists of sedimentary formations. A stratigraphic hiatus is recognized between the underlying Fms of Ayios Photios, Vlambouros and Marona (Upper Triassic), and the overlying radiolitic sequence of Episkopi Fm [Middle Jurassic (Callovian-Vellangian)]. From a sample by Episkopi section a significant age is established. The co-occuerences of species Bernoullius rectispinus leporinus Conti & Marcucci, Hexasaturnalis tetraspinus (Yao) and Theocapsommella cucurbiformis (Baumgartner) characterizes the Unitary Association Zone 6 (U.A.Z. 6) which is correlated with the Middle Vathonian. According to that we here propose extend down to the Bathonian the known age range of the Episkopi Fm, thereby reducing the stratigraphic hiatus between it and the underlying Upper Triassic Vlambouros and Marona Fms. The amphibole geothermometer (T) estimate of temperatures about 300oC until 720oC with a decrease of temperature from the core to rim of amphiboles. The plagioclase-amphibole geobarometer (P) of the metamorphic rocks estimate of about 8 until 15kbar at 650oC and from 7 until 15kbar at 705oC. Based on values of temperature and pressure the metamorphic rocks of Ayia Varvara Fm, in this study, they are characterized as typical rocks of metamorphic sole. A combination of metamorphic conditions with fieldwork observations that carried out in the type area of Mamonia Complex, five tectonics events was extracted which was contributed of its geodynamic evolution. The Upper Ctetaceous [Touronian-Campanian/90-83 Ma ή 90-76 Ma amphibolite ages by Spray & Roddick (1981) and Chan et al. (2007), respectively] tectonic event D0 is related to the intra-oceanic subduction and the amphibolite phase that is observed on the metamorphic sole rocks of Ayia Varvara Fm. The tectonic event D1 [Upper Cretaceous (Upper Campanian-Maastrichtian/70-68 Ma)] is related to the gradual uplift of metamorphic sole rocks of Ayia Varvara Fm as well as the obduction of Trodos-Akama ophiolitic rocks. On this event the metamorphism that affected the metamorphic rocks of Ayia Varvara Fm reaches to medium-grade greenschist facies. The tectonic event D2 [Upper Cretaceous (Maastrichtian/65 Ma)] is related to the intensely imbrication of the formations in south-southwest Cyprus with main kinematic to the SW and the local back-thrusting. The tectonic event D3 (Upper Oligocene-Early Miocene) is related to extensional rifting tectonic and it is characterized by medium dip angles oblique-normal faults to generally strike-slip faults. The last tectonic event D4 is related to the contemporary regime. Based on GNSS analysis as well as the field observations, this event is associated with coeval compression and extension. Compression mainly direction is to NNW-SSE, while that of the extension is to ENE-WSW.

Πλήρες Κείμενο:

PDF

Αναφορές


Adamia, S., Chkhotua, T., Kekeha, M., Lordkipanidze, M., & Shavishvili, I. (1981). Tectonics of the Caucasus and adjoining regions: implications for evolution of the Tethys ocean. Journal of Structural Geology, 3(4), 437-447.

Agar, S. M., & Klitgord, K. D. (1993). A mechanism for decoupling within the oceanic lithosphere revealed in the Troodos ophiolite. Nature, 374(6519), 232-238.

Agard, P., Yamato, P., Soret, M., Prigent, C., Guillot, S., Plunder, A., Dubacq, B., Chauvet, A., Monie, P. (2016). Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation. Earth and Planetary Science Letters, 451, 208-220. doi:https://doi.org/10.1016/j.epsl.2016.06.054

Allerton, S., & Vine, F. J. (1987). Spreading structure of the Troodos ophiolite, Cyprus: Some paleomagnetic constraints. Geology, 15(7), 593-597.

Al-Riyami, K., Robertson, A. H.F., Xenophontos, C., Danelian, T., Panayides, I., & Malpas, J. (2000). Tectonic evolution of the Mesozoic Arabian passive continental margin and related ophiolite in Baer-Bassit region (NW Syria). Third international Conference on the Geology of the Eastern Mediterranean, Proceedings, 61-81.

Anonymous. (1972). Penrose field conference on ophiolites. in Geotimes, 24-25.

Bagnall, P. (1960). The geology and mineral resources of the Pano Lefkara-Larnaca area. Geological Survey Department, Cyprus.

Bailey, W. R., Holdsworth, R. E., & Swarbrick, R. E. (2000). Kinematic history of a reactivated oceanic suture: the Mamonia Complex Suture Zone, SW Cyprus. Journal of the Geological Society, 157(6), 1107-1126.

Baroz, F. (1979). Etude Géologique dans le Pentadaktylos et la Mesaoria (Chypre Septentrionale). Docteur d' État thesis-Université de Nancy, France.

Bassoullet, J. P., Boulin, J., Colchen, M., Marcoux, J., Mascle, G., & Montenat, C. (1980a). L’évolution des domaines téthysiens au pourtour du Bouclier indien du Carbonifère au Crétacé. Mém. BRGM, 105, 190-198.

Bassoullet, J. P., Colchen, M., Juteau, T., Marcoux, J., & Mascle, G. (1980b). L'édifice de nappes du Zanskar (Ladakh, Himalaya). Comptes Rendus de l’Academie des Sciences, 290, 389-392.

Baumgartner, P. O. (2013). Mesozoic radiolarites–accumulation as a function of sea surface fertility on Tethyan margins and in ocean basins. Sedimentology, 60(1), 292-318.

Baumgartner, P., Bartolini, A., Carter, E., Conti, M., Cortese, G., Danelian, T., De Wever, P., Dumitrica, P., Dumitrica-Jud, R., Gorican, S., Guex, J., Hull, D. M., Kito, N., Marcucci, M., Matsuoka, A., Murchey, B., O'Dogherty, L., Savary, J., Vishnevskaya, V., Widz, D., Yao, A. (1995b). Middle Jurassic to Early Cretaceous Radiolarian

Biochronology of Tethys based on Unitary Associations. In: Baumgartner et al. (Eds.), Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: Occurrences, Systematics.

Biochronology. Mém. Géol. (Lausanne), 23, 1013–1048.

Baumgartner, P.O., O’Dogherty, L., Gorican, S., Dumitrica-Jud, R., Dumitrica, P., Pillevuit, A., Urquhart, E., Matsuoka, A., Danelian, T., Bartolini, A., Carter, E.S., De Wever, P.,

Kito, N., Marcucci, M., Steiger, T. (1995a). Radiolarian catalogue and systematics of Middle Jurassic to Early Cretaceous Tethyan genera and species. In: Baum gartner et al. (Eds.), Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: Oc currences. Systematics, Biochronology. Mém. Géol. (Lausanne), (23), 37–685.

Béchennec, F., Tegyey, M., Le Métour, J., Lemière, B., Lescuyer, J. L., Rabu, D., & Milési, J. P. (1991). Igneous rocks in the Hawasina nappes and the Hajar supergroup, Oman mountains: their significance in the birth and evolution of the composite extensional margin of Eastern Tethys. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere: Proceedings of the Ophiolite Conference (ed. Director at General of Minerals), 569–611.

Béchennec, F., Le Metour, J., Rabu, D., Beurrier, M., Bourdillon-Jeudy-de-Grissac, C., De Wever, P., Tegyey, M., Villey, M. (1989). Geologie d'une chaine issue de la Tethys; les montagnes d'Oman. Bulletin de la Société géologique de France, 2, 167-188.

Belov, A. A., Gatinsky, Y. G., & Mossakovsky, A. A. (1986). A precis on pre-Alpine tectonic history of Tethyan paleooceans. Tectonophysics, 127(3-4), 197-211.

Belov, A. A., Mossakovsky, A. A., Sokolov, S., & Shwohnan, V. (1982). Development of the Mediterranean-Central Asaia branch of Tethys in the Late PaIeozoic-Early Mesozoic. Problems of Geodynamics of the Caucasus, 21-30.

Biju-Duval, B., Dercourt, J., & Le Piehon, X. (1977). From the Tethys ocean to the Mediterranean seas: a plate tectonic model of the evolution of the western Alpine system. Structural History of the Mediterranean Basins. Technip, 143-164.

Blome, C. D., & Irwin, W. P. (1985). Equivalent radiolarian ages from ophiolitic terranes of Cyprus and Oman. Geology, 13(6), 401-404.

Boccaletti, M. (1979). Mesogea, Mesoparatethys, Mediterranean and Paratethys: their possible relations with Tethys ocean development. Ofioliti, 4(2), 83-96.

Boulin, J. (1988). Hercynian and Eocimmerian events in Afghanistan and adjoining regions. Tectonophysics, 148(3-4), 253-278.

Bragin, N., Bragina, L., Tsiolakis, E., & Symeou, V. (2021). The Upper Cretaceous Mamonia Mélange (Petra tou Romiou, southwestern Cyprus): composition and age.

Cretaceous Research, 125, 104850. doi:https://doi.org/10.1016/j.cretres.2021.104850

Bragin, N. Y., & Krylov, K. A. (1999a). Stratigraphy and formation conditions of the Jurassic siliceous and terrigenous deposits in southwestern Cyprus. Stratigraphy and Geological Correlation, 7(4), 333-342.

Bragin, N. Y., & Krylov, K. A. (1999b). Early Norian Radiolaria from Cyprus. Geodiversitas, 21(4), 539-569.

Bragin, N. Y., & Krylov, K. A. (1996). Stratigraphy and lithology of the Upper Triassic deposits of southwestern Cyprus (Vlambouros Formation). Stratigraphy and geological correlation, 4(2), 132-140.

Bruyninx, C., Altamimi, Z., Caporali, A., Kenyeres, A., Lidberg, M., Stangl, G., & Torres, J. (2010). Guidelines for EUREF densifications. Bull. Geod. Geomat., 69, 137–147.

Calon, T. J., Aksu, A. E., & Hall, J. (2005). The neogene evolution of the outer Latakia Basin and its extension into the Eastern Mesaoria Basin (Cyprus), Eastern Mediterranean. Marine Geology, 221(1-4), 61-94. doi:https://doi.org/10.1016/j.margeo.2005.03.013

Cann, J. R., Prichard, H. M., Malpas, J. G., & Xenophontos, C. (2001). Oceanic inside corner detachments of the Limassol Forest area, Troodos ophiolite, Cyprus. Journal of the Geological Society, 158(5), 757-767.

Cannat, M., & Mascle, G. (1990). Reunion extraordinaire de la Societe Geologique de France en Himalaya du Ladakh. Bulletin de la Société géologique de France, 4, 553-582.

Cavazza, W., & Wezel, F. C. (2003). The Mediterranean region — A geological primer. Episodes Journal of International Geoscience, 26(3), 160-168.

Çelik, Ö. F., & Delaloye, M. F. (2006). Characteristics of ophiolite-related metamorphic rocks in the Beysehir ophiolitic mélange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. Journal of Asian Earth Sciences, 26(5), 461-476. doi:https://doi.org/10.1016/j.jseaes.2004.10.008

Chan, G. H., Malpas, J., Xenophontos, C., & Lo, C. H. (2007). Timing of subduction zone metamorphism during the formation and emplacement of Troodos and Baer–Bassit ophiolites: insights from 40Ar–39Ar geochronology. Geological Magazine, 144(5), 797-810.

Chengfa, C., Nansheng, C., Coward, M. P., Wanming, D., Dewey, J. F., Gansser, A., Harris, N. B. W, Chengwei, Jin, Kidd, W. S. F., Leeder, M. R., Huan, Li, Jinlu, Lin,

Chengjie, Liu, Houjun, Mei, Molnar, P., Yun, Pan, Yusheng, Pan, Pearce, J. A., Shackleton, R. M., Smith, A. B., Yiyin, Sun, Ward, M., Watts, D. R., Juntao, Xu, Jixiang, Yin, &

Yuquan, Zhang (1986). Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet. Nature, 323(6088), 501-507.

Clube, T. M., & Robertson, A. H. F. (1986). The palaeorotation of the Troodos microplate, Cyprus, in the Late Mesozoic-Early Cenozoic plate tectonic framework of the Eastern Mediterranean. Surveys in Geophysics, 8(4), 375-437.

Colchen, M., Mascle, G., & Van Haver, T. (1986). Some aspects of collision tectonics in the Indus Suture Zone, Ladakh. Geological Society, London, Special Publications, 1, 173-184.

Cooke, A., Masson, L., & Robertson, A. H. F. (2014). Construction of a sheeted dyke complex: evidence from the northern margin of the troodos ophiolite and its southern margin adjacent to the arakapas fault zone. Ofioliti, 39(1), 1-30. doi:https://doi.org/10.4454/ofioliti.v39i1.426

Corfield, R. I., Searle, M. P., & Green, O. R. (1999). Photang thrust sheet: an accretionary complex structurally below the Spontang ophiolite constraining timing and tectonic environment of ophiolite obduction, Ladakh Himalaya, NW India. Journal of the Geological Society, 156(5), 1031-1044.

Curray, J., & Moore, D. (1974). Sedimentary and Tectonic Processes in the Bengal Deep-Sea Fan and Geosyncline. Geology of Continental Margins, 617-627.

CYSTAT. (2016). Ταξινόμηση για τον βαθμό αστικοποίησης στην Κύπρο. Στατιστική Υπηρεσία της Κυπριακής Δημοκρατίας (www.mof.gov.cy). Ανάκτηση 07 24, 2023, από https://web.archive.org/web/20180118184818/http://www.mof.gov.cy/mof/cystat/statistics.nsf/All/F2876E52BD240C56C2257EB4003C3ED4/$file/

DEGREE_URBANISATION-2016.xls?OpenElement

Dach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS Software Version 5.2. Bern, Switzerland: University of Bern, Bern Open Publishing: .

Danelian, T., De Wever, P., & Durand-Delga, M. (2008). Revised radiolarian ages for the sedimentary cover of the Balagne ophiolite (Corsica, France). Implications for the palaeoenvironmental evolution of the Balano-Ligurian margin. Bulletin de la Société géologique de France, 179(3), 289-296.

Danezis, C., Chatzinikos, M., & Kotsakis, C. (2020). Linear and nonlinear deformation effects in the permanent GNSS network of Cyprus. Sensors, 20(6), 1768.

De Wever, P., O’Dogherty, L., & Goričan, Š. (2014). Monsoon as a cause of radiolarite in the Tethyan realm. Comptes Rendus Geoscience, 346(11-12), 287-297.

Delaune-Mayere, M., Marcoux, J., Parrot, J.-F., & Poisson, A. (1977). Modele d'evolution Mesozoique de la paleo-marge Tethysienne an niveau des nappes radiolaritiques et ophiolitiques du Taures Lycien, d'Antalya et du Baer-Bassit. Structural His tory' of the Mediterranean Basins, 79-94.

Delvaux, D., & Sperner, B. (2003). New aspects of tectonic stress inversion with reference to the TENSOR program. Geological Society, London, Special Publications, 212(1), 75-100. doi:https://doi.org/10.1144/GSL.SP.2003.212.01.06

Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V., & San'kov, V. (1997). Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282(1-4), 1-38. doi:https://doi.org/10.1016/S0040-1951(97)00210-2

DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical journal international, 101(2), 425-478.

Dercourt, J., Zonenshain, L., Ricou, L., Kazmin, V., Le Pichon, X., Knipper, A., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Lepvrier, C., Pechersky, D.H., Boulin, J.,

Sibuet, J.-C., Savostin, L.A., Sorokhtin, O., Westphal, M., Bazhenov, M.L., Lauer, J.P., & Biju-Duval, B. (1986). Geological evolution of the Tethys belt from the Atlantic to the

Pamirs since the Lias. Tectonophysics, 123(1-4), 241-315.

Dercourt, J. (1972). The Canadian Cordiliera, the Hellenides and the sea-floor spreading theory. Canadian Journal of Earth Sciences, 9(6), 709-743.

Dewey, J. F., Pitman III, W. C., Ryan, W. B., & Bonnin, J. (1973). Plate tectonics and the evolution of the Alpine system. Geological society of America bulletin, 84(10), 3137-3180.

Dietrich, D., & Spencer, S. (1993). Spreading-induced faulting and fracturing of oceanic crust: examples from the Sheeted Dyke Complex of the Troodos ophiolite, Cyprus. Geological Society, London, Special Publications, 76(1), 121-139.

Dilek, Y., & Flower, M. F. (2003). Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. Geological Society, London, Special Publications, 218(1), 43-68. doi:https://doi.org/10.1144/GSL.SP.2003.218.01.04

Dilek, Y., Thy, P., Moores, E. M., & Ramsden, T. W. (1990). Tectonic evolution of the Troodos ophiolite within the Tethyan framework. Tectonics, 9(4), 811-823.

Ducloz, C. (1965). Revision of the Pliocene and Quaternary stratigraphy of the central Mesaoria. Annual Report of the Geological Department of Cyprus (1964), 31-42.

Ducloz, C. (1972). The geology of the Bellapais-Kyrthrea area of the central Kyrenia Range. Cyprus Geological Survey Bulletin, 6.

Dumitrica, P., & Dumitrica-Jud, R. (2005). Hexasaturnalis nakasekoi nov. sp., a Jurassic saturnalid radiolarian species frequently confounded with Hexasaturnalis suboblongus (Yao). Revue de micropaléontologie, 48(3), 159-168.

Dumont, J. F., Gutnic, M., Marcoux, J., Monod, O., & Poisson, A. (1972). Le Trias des Taurides occidentales (Turquie) Definition du bassin pamphylien: Un nouveau domaine à ophiolithes à la marge externe de la chaîne taurique. Zeitschrift der Deutschen Geologischen Gesellschaft, 385-409.

Ealey, P. J., & Knox, G. J. (1975). The pre-Tertiary rocks of SW Cyprus. Geologie Mijnb, 54, 85-100.

Eaton, S., & Robertson, A. H. F. (1993). The Miocene Pakhna Formation, southern Cyprus and its relationship to the Neogene tectonic evolution of the Eastern Mediterranean. Sedimentary Geology, 86(3-4), 273-296.

Ellion, P. (1983). Etude structurale et sedimentologique du bassin Neogene de Pissouri (Chypre). Ph.D thesis, University of Paris.

Fåhræus, L. E., & Ryley, C. C. (1989). Multielement species of Misikella Kozur and Mock, 1974 and Axiothea n. gen.(Conodonta) from the Mamonia Complex (Upper Triassic), Cyprus. Canadian Journal of Earth Sciences, 26(6), 1255-1263.

Flerit, F., Armijo, R., King, G., & Meyer, B. (2004). The Mechanical Interaction between the Propagating North Anatolian Fault and the Back-Arc Extension in the Aegean. Earth

Planet. Sci. Lett., 224, 347–362. doi:https://doi.org/10.1016/j.epsl.2004.05.028

Follows, E. J. (1992). Patterns of reef sedimentation and diagenesis in the Miocene of Cyprus. Sedimentary Geology, 79(1-4), 225-253.

Follows, E. J., & Robertson, A. H. F. (1990). Sedimentology and structural setting of Miocene reefal limestones in Cyprus. In: Ophiolites: Oceanic Crustal Analogues: Proceedings of the International Symposium, 207-215.

Follows, E. J., Robertson, A. H. F., & Scoffin, T. P. (1996). Tectonic controls on Miocene reefs and related carbonate facies in Cyprus. Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions. SEPM Concepts in Sedimentology and Paleontology, 295-325.

Gass, I. (1980). The Troodos massif: Its role in the unravelling of the ophiolite problem and its significance in the understanding of construSive plate margin processes.

Ophiolites, Proceedings, International Ophiolite Symposium, Cyprus, 1979, 23-35.

Gass, I. G. (1960). The geology and mineral resources of the Dhali area. Cyprus Geol. Surv. Dep. Mem. 4, 1-115.

Gass, I. G. (1968). Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor? Nature, 39-42.

Gass, I. G., MacLeod, F., Murton, B. J., Panayiotou, A., Simonian, K. O., & Xenophontos, C. (1994). The geology of the Southern Troodos transform fault zone. Geological Survey Department of Cyprus, Memoir, 9.

Gass, I., & Smewing, J. (1973). Intrusion, Extrusion and Metamorphism at Constructive Margins: Evidence from the Troodos Massif, Cyprus. Nature, 242(5392), 26-29.

Gatinsky, Y. G. (1986). Geodynamics of Southeast Asia in relation to the evolution of ocean basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 55(2-4), 127-144.

Gnos, E., & Peters, T. (1993). K-Ar ages of the metamorphic sole of the Semail Ophiolite: implications for ophiolite cooling history. Contributions to Mineralogy and Petrology, 113, 325-332. doi:https://doi.org/10. 1007/BF00286925

Greenbaum, D. (1972). Magmatic processes at ocean ridges: evidence from the Troodos massif, Cyprus. Nature Physical Science, 238(80), 18-21.

Guilmette, C., Hébert, R., Dupuis, C., Wang, C., & Li, Z. (2008). Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet. Journal of Asian Earth Sciences, 32(5-6), 423-437. doi:https://doi.org/10.1016/j.jseaes.2007.11.013

Guilmette, C., Hébert, R., Wang, C., & Villeneuve, M. (2009). Geochemistry and geochronology of the metamorphic sole underlying the Xigaze ophiolite, Yarlung Zangbo Suture Zone, south Tibet. Lithos, 112(1-2), 149-162. doi:https://doi.org/10.1016/j.lithos.2009.05.027

Hackl, M., Malservisi, R., & Wdowinski, S. (2009). Strain Rate Patterns from Dense GPS Networks. Nat. Hazards Earth Syst. Sci., 9, 1177–1187. doi:https://doi.org/10.5194/nhess-9-1177-2009

Halamić, J., Goričan, Š., Slovenec, D., & Kolar-Jurkovšek, T. (1999). A Middle Jurassic Radiolarite-Clastic Succession from the Medvednica Mt. (NW Croatia). Geologia Croatica, 52(1), 29-57.

Hammer, S., & Passchier, C. (1991). Shear - Sense Indicators: A Review. Geological Survey of Canada, 90-17.

Hampton, M. (1972). The Role of Subaqueous Debris Row in Generating Turbidity Currents. J. Sed. Petrol., 42, 775-793.

Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., & Smith, D. G. (1989). A Geologic Time Scale. Cambridge Univ. Press.

Harrison, R. W., Newell, W. L., Batıhanlı, H., Panayides, I., McGeehin, J. P., Mahan, S. A., Őzhűr, A., Tsiolakis, E., & Necdet, M. (2004). Tectonic framework and Late

Cenozoic tectonic history of the northern part of Cyprus: implications for earthquake hazards and regional tectonics. Journal of Asian Earth Sciences, 23(2), 191-210.

doi:https://doi.org/10.1016/S1367‐9120(03)00095‐6

Hashimoto, M., & Jackson, D. (1993). Plate Tectonics and Crustal Deformation around the Japanese Islands. J. Geophys. Res., 98, 16149. doi:https://doi.org/10.1029/93JB00444

Hedberg, H. D. (1976). International Stratigraphic Guide. New York: John Wiley & Sons.

Hein, F. (1982). Depositional Mechanisms of Deep Sea Coarse Clastic Sediments, Cap Enrage Formation, Quebec, Cart. J. Earth Sci., 19, 267-287.

Henson, F. R., Browne, R. V., & McGinty, J. (1949). A synopsis of the stratigraphy and geological history of Cyprus. Q. Jl Geological Society London, 1-41.

Hollister, C., Johnson, D., & Lonsdale, P. (1974). Current- Controlled Abyssal Sedimentation, Samoan Passage, Equato rial West Pacific. Geology, 82(3), 275-300.

Hubert, J. (1964). Textural Evidence for Deposition of Many Western North Atlantic Deep-Sea Sands by Oceanobottom Currents Rather than Turbidity Currents. Geology, 72(6), 757-785.

Imprescia, P., Pondrelli, S., Vannucci, G., & Gresta, S. (2012). Regional centroid moment tensor solutions in Cyprus from 1977 to the present and seismotectonic implications. Journal of seismology, 16, 147-167.

Inwood, J., Morris, A., Anderson, M. W., & Robertson, A. H. F. (2009). Neotethyan intraoceanic microplate rotation and variations in spreading axis orientation: Palaeomagnetic evidence from the Hatay ophiolite (southern Turkey). Earth and Planetary Science Letters, 280(1-4), 105-117.

Jamieson, R. A. (1986). P‐T paths from high temperature shear zones beneath ophiolites. Journal of Metamorphic Geology, 4(1), 3-22. doi:https://doi.org/10.1111/j.1525-1314.1986.tb00335.x

Karaoğlan, F., Parlak, O., Klötzli, U., Thoeni, M., & Koller, F. (2013). U–Pb and Sm–Nd geochronology of the Kızıldağ (Hatay, Turkey) ophiolite: implications for the timing and duration of suprasubduction zone type oceanic crust formation in the southern Neotethys. Geological Magazine, 150(2), 283-299.

Kazmin, V. G. (1991). Collision and rifting in the Tethys Ocean: geodynamic implication. Tectonophysics, 196(3-4), 371-384.

Kazmin, V., Riku, L., & Sborshchikov, l. (1987). Structure and Development of Passive Margin of Eastern Tethys. lstoriya okeana Tetis (History of the Tethys Ocean), 39-57.

Kidd, R., & Cann, J. (1974). Chilling statistics indicate an ocean-floor spreading origin for the Troodos complex, Cyprus. Earth Planet. Sci. Lett., 24, 151–155. doi:https://doi.org/10.1016/0012-821X(74)90020-X

Kiessling, W. (1996). Facies characterization of Mid-Mesozoic deep-water sediments by quantitative analysis of siliceous microfaunas. Facies, 35, 237-274.

Kilias, A., Falalakis, G., & Mountrakis, D. (1999). Cretaceous – Tertiary structures and kinematics of the Serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Macedonia, Greece). International Journal of Earth Sciences, 88, 513-531.

Kinnaird, T., & Robertson, A. H. F. (2013). Tectonic and sedimentary response to subduction and incipient continental collision in southern Cyprus, easternmost Mediterranean region. Geological Society, London, Special Publications, 372(1), 585-614.

Kinnaird, T., Robertson, A. H. F., & Morris, A. (2011). Timing of uplift of the Troodos Massif (Cyprus) constrained by sedimentary and magnetic polarity evidence. Journal of the Geological Society, 168, 457-470. doi:10.1144/0016-76492009-150

Kinnaird, T. C. (2008). Tectonic and sedimentary response to oblique and incipient continental-continental collision the easternmost Mediterranean (Cyprus). Ph.D thesis, University of Edinburgh.

Kluyver, H. M. (1969). Report on a regional geological mapping in Paphos District. Bull. Geol. Surv. Dep. Cyprus, 4, 21-36.

Krantz, R. W. (1988). Multiple fault sets and three-dimensional strain: theory and application. Journal of Structural Geology, 10(3), 225-237.

Krijgsman, W., Blanc-Valleron, M. M., Flecker, R., Hilgen, F. J., Kouwenhoven, T. J., Merle, D., Orszag-Sperber, F., & Rouchy, J. M. (2002). The onset of the Messinian salinity crisis in the Eastern Mediterranean (Pissouri Basin, Cyprus). Earth and Planetary Science Letters, 194(3-4), 299-310.

Lanphere, M. A., & Dalrymple, G. B. (1978). The use of 40Ar/39Ar data in evaluation of disturbed K-Ar systems. US Geological Survey Open-File Report, 13, 241-243.

Lapierre, H., Bosch, D., Narros, A., Mascle, G. H., Tardy, M., & Demant, A. (2007). The Mamonia Complex (SW Cyprus) revisited: remnant of Late Triassic intra-oceanic volcanism along the Tethyan southwestern passive margin. Geological Magazine, 144(1), 1-19.

Lapierre, H., & Rocci, G. (1976). Le volcanisme alcalin du sud-ouest de Chypre et le problème de l'ouverture des régions téthysiennes au Trias. Tectonophysics, 30(3-4), 299-313.

Lapierre, H. (1975). Les formations sedimentaires et eruptives des Nappes de Mamonia et leurs relations avec le massif du Troodos (Chypre occidentale). Mere. Soc. Geol. Fr, l-132.

Lapierre, H., & Rocci, G. (1969). Un bel exemple d’association cogénétique laves-radiolarites-calcaires: la formation triasique de Pétra tou Romiou (Chypre). CR Acad Sci D, 268, 2637-2640.

Lapierre, H. (1968b). Découverte d'une série volcanosédimentaire probablement d'âge crétacé supérieur au Sud-Ouest de l'iîle de Chypre. Comptes Rendus de l'Académie des Sciences (Paris) Comptes Rendus, 20, 1817-1820.

Lapierre, H. (1968a). Nouvelle observations sur la serie sedimentaire Mamonia (Chypre). C.r. Acad. Sci., 267, 3-32.

Lázaro, C., Blanco-Quintero, I. F., Rojas-Agramonte, Y., Proenza, J. A., Núñez-Cambra, K., & García-Casco, A. (2013). First description of a metamorphic sole related to

ophiolite obduction in the northern Caribbean: geochemistry and petrology of the Güira de Jauco Amphibolite complex (eastern Cuba) and tectonic implications. Lithos, 179, 193-210. doi:https://doi.org/10.1016/j.lithos.2013.08.019.

Lazos, I., Papanikolaou, I., Sboras, S., Foumelis, M., & Pikridas, C. (2022b). Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece-Correlation with Active Faults. Applied Sciences, 12, 9391. doi:https://doi.org/10.3390/app12189391

Lazos, I., Sboras, S., Chousianitis, K., Kondopoulou, D., Pikridas, C., Bitharis, S., & Pavlides, S. (2022a). Temporal Evolution of Crustal Rotation in the Aegean Region Based on Primary Geodetically-Derived Results and Palaeomagnetism. Acta Geod. Geophys., 57, 317–334. doi:https://doi.org/10.1007/s40328-022-00379-3

Lazos, I., Pikridas, C., Chatzipetros, A., & Pavlides, S. (2020). Determination of Local Active Tectonics Regime in Central and Northern Greece, Using Primary Geodetic Data. Appl. Geomat., 13 (Suppl 1), 3–17. doi:https://doi.org/10.1007/s12518-020-00310-x

Lazos, I., Stergiou, C., Chatzipetros, A., Pikridas, C., Bitharis, S., & Melfos, V. (2018). Active Tectonics (Extensional Regime and Rotations) and Tertiary Mineralization Occurrences within Central Macedonia, Greece. In Proceedings of the 9th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), 145–148.

Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W., & Youzhi, G. (1997). Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35(1), 219-246.

Liao, Y., Wei, C., & Rehman, H. U. (2021). Titanium in calcium amphibole: Behavior and thermometry. American Mineralogist, 106(2), 180-191.

Lister, G. S., & Snoke, A. W. (1984). SC mylonites. Journal of Structural Geology, 6(6), 617-638.

Livermore, R., Smith, A., & Vine, F. (1986). Late Paleozoic to early Mesozoic evolution of Pangaea. Nature, 322, 162-165.

Lord, A. R., Panayides, I., Urquhart, E., Xenophontos, C., & Malpas, J. (2000). A biochronostratigraphical framework for the Late Cretaceous–Recent circum-Troodos sedimentary sequence, Cyprus. In Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean, 289-297.

Lytwyn, J. N., & Casey, J. F. (1993). The geochemistry and petrogenesis of volcanics and sheeted dikes from the Hatay (Kizildag) ophiolite, southern Turkey: Possible formation with the Troodos ophiolite, Cyprus, along fore-arc spreading centers. Tectonophysics, 223(3-4), 237-272.

MacLeod, C. J., & Murton, B. J. (1995). On the sense of slip of the Southern Troodos transform fault zone, Cyprus. Geology, 23(3), 257-260.

MacLeod, C. J. (1990). Role of the Southern Troodos Transform fault in the rotation of the Cyprus microplate: evidence from the Eastern Limassol Forest Complex. In Ophiolites. Proceedings of the International Ophiolite Symposium, 1987, 75-85.

Maffione, M., van Hinsbergen, D. J., de Gelder, G. I., van der Goes, F. C., & Morris, A. (2017). Kinematics of Late Cretaceous subduction initiation in the Neo‐Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria. Journal of Geophysical Research: Solid Earth, 122(5), 3953-3976.

Malpas, J., & Xenophontos, C. (1999). Geological Map of the Ayia Varvara - Pentalia Area. A joint project between the Geological Survey Department, Nicosia, Cyprus and the Department of Earth Sciences, The University of Hong Kong. Ministry of Agriculture, Natural Resources and Environment Republic of Cyprus.

Malpas, J., Calon, T., & Squires, G. (1993). The development of a late Cretaceous microplate suture zone in SW Cyprus. Geological Society, London, Special Publications, 1, 177-195.

Malpas, J., Xenophontos, C., & Williams, D. (1992). The Ayia Varvara Formation of SW Cyprus: a product of complex collisional tectonics. Tectonophysics, 212(3-4), 193-211.

Malpas, J. (1979). The dynamothermal aureole of the Bay of Islands ophiolite suite. Canadian Journal of Earth Sciences, 16(11), 2086-2101.

Marcoux, J. (1976). Les séries des nappes à radiolaritiques et ophiolites d'Antalya (Turquie). Homologies et signification probable: Société Géologique de France Bulletin, 18, 315-316.

Marcoux, J. (1970). Age carnien de termes effusifs du cortége ophiolitique des nappes d'Antalya (Taurus lycien oriental, Turquie). Comptes Rendus de l’Academie des

Sciences, 227–241.

Marko, F., Sigdel, A., Bielik, M., Bezák, V., Mojzeš, A., Madarás, J., Papčo, J., Siman, P., Acharya, S., & Fekete, K. (2020). A comparison of Cenozoic Neo-Alpine tectonic evolution of the Western Carpathian and Himalayan orogenic belts (Slovakia-Nepal). Mineralia Slovaca, 52(2), 63-82.

Martin, A. J. (2019). Tellurium and selenium in mafic volcanogenic massive sulfide hydrothermal systems: evidence from the Troodos ophiolite, Cyprus. Doctoral dissertation: Cardiff University.

McCallum, J. E., & Robertson, A. H. F (1995). Sedimentology of two fan-delta systems in the Pliocene-Pleistocene of the Mesaoria Basin, Cyprus. Sedimentary Geology, 98(1-4), 215-244.

McCallum, J. E., Scrutton, R. A., Robertson, A. H. F., & Ferrari, W. (1993). Seismostratigraphy and Neogene-Recent depositional history of the south central continental margin of Cyprus. Marine and petroleum geology. Marine and petroleum geology, 10(5), 426-438.

McCallum, J. E., & Robertson, A. H. F. (1990). Pulsed uplift of the Troodos Massif: evidence from the Plio-Pleistocene Mesaoria basin. Ophiolites: Crustal Analogues. Proceedings of the International Symposium 'Troodos 1987', 217-229.

McCay, G. A., Robertson, A. H. F., Kroon, D., Raffi, I., Ellam, R. M., & Necdet, M. (2013). Stratigraphy of Cretaceous to Lower Pliocene sediments in the northern part of Cyprus based on comparative 87Sr/86Sr isotopic, nannofossil and planktonic foraminiferal dating. Geological Magazine, 150(2), 333-359. doi:10.1017/S0016756812000465

McCay, G., & Robertson, A. H. F. (2012). Late Eocene-Neogene sedimentary geology of the Girne (Kyrenia) Range, northern Cyprus: A case history of sedimentation related to progressive and diachronous continental collision. Sedimentary Geology, 265–266, 30–55. doi:10.1016/j.sedgeo.2012.03.001

McPhee, P. J., & van Hinsbergen, D. J. (2019). Tectonic reconstruction of Cyprus reveals Late Miocene continental collision of Africa and Anatolia. Gondwana Research, 158-173.

Moix, P., Beccaletto, L., Kozur, H. W., Hochard, C., Rosselet, F., & Stampfli, G. M. (2008). A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics, 451(1-4), 7-39. doi:https://doi.org/10.1016/j.tecto.2007.11.044

Molina, J. F., Moreno, J. A., Castro, A., Rodríguez, C., & Fershtater, G. B. (2015). Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitionin. Lithos, 232, 286-305.

Moores, E. M., Robinson, P. T., Malpas, J., & Xenophonotos, C. (1984). Model for the origin of the Troodos massif, Cyprus, and other mideast ophiolites. Geology, 12(8), 500-503.

Moores, E. M., & Vine, F. J. (1971). The Troodos Massif, Cyprus and other ophiolites as oceanic crust: evaluation and implications. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 268(1192), 443-467.

Morag, N., Haviv, I., & Katzir, Y. (2016). From ocean depths to mountain tops: Uplift of the Troodos ophiolite (Cyprus) constrained by low-temperature thermochronology and geomorphic analysis. Tectonics, 35, 622–637. doi:https://doi.org/10.1002/2015TC004069

Morel, S. W. (1964). The geology of Parekklisha area. Unpublished Cyprus Geological Surv. Dept. report.

Morris, A., & Maffione, M. (2016). Is the Troodos ophiolite (Cyprus) a complete, transform fault–bounded Neotethyan ridge segment? Geology, 44(3), 199-202.

Morris, A., Anderson, M., Inwood, J., & Robertson, A. H. F. (2006). Palaeomagnetic insights into the evolution of Neotethyan oceanic crust in the Eastern Mediterranean. Geological Society, London, Special Publications, 260(1), 351–372. doi:10.1144/GSL.SP.2006.260.01.15

Morris, A., Anderson, M. W., Robertson, A. H. F., & Al-Riyami, K. (2002). Extreme tectonic rotations within an eastern Mediterranean ophiolite (Baër–Bassit, Syria). Earth and Planetary Science Letters, 202(2), 247-261.

Morris, A., Creer, K. M., & Robertson, A. H. F. (1990). Palaeomagnetic evidence for clockwise rotations related to dextral shear along the Southern Troodos Transform Fault, Cyprus. Earth and Planetary Science Letters, 99(3), 250-262.

Mountrakis, D. (2006). Tertiary and Quaternary tectonics of Greece. Geological Society of America, Sp. paper 409, 125-136.

Mountrakis, D. (1986). The Pelagonian zone in Greece: a polyphase-deformed fragment of the Cimmerian continent and its role in the geotectonic evolution of the eastern Mediterranean. The Journal of Geology, 94(3), 335-347.

Mukasa, S. B., & Ludden, J. N. (1987). Uranium-lead isotopic ages of plagiogranites from the Troodos ophiolite, Cyprus, and their tectonic significance. Geology, 15(9), 825-828.

Murton, B. J. (1990). Was the Southern Troodos Transform Fault a victim of microplate rotation? In Ophiolites, Proceedings of the International Ophiolite Symposium 1987, 87-98.

O’Dogherty, L., Goričan, Š., & Gawlick, H. J. (2017). Middle and Late Jurassic radiolarians from the Neotethys suture in the Eastern Alps. Journal of Paleontology, 91(1), 25-72.

O’Dogherty, L., Bill, M., Gorican, S., Dumitrica, P., & Masson, H. (2006). Bathonian radiolarians from an ophiolitic mélange of the Alpine Tethys (Gets nappe, Swiss-French Alps). Micropaleontology, 51(6), 425-485.

Oral, M. B., Reilinger, R. E., Toksoz, M. N., King, R., Barka, A. A., Kiniki, J., & Lenk, D. (1995). Global Positioning System offers evidence of plate motions in eastern Mediterranean. EOS, 76, 9-11.

Orszag-Sperber, F., & Rouchy, J. M. (2000). The Messinian–Zanclean transition in the Pissouri area (Cyprus): a well documented section in the Eastern Mediterranean. In Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean, 243-255.

Orszag-Sperber, F., Rouchy, J. M., & Elion, P. (1989). The sedimentary expression of regional tectonic events during the Miocene-Pliocene transition in the southern Cyprus basins. Geological Magazine, 126(3), 291-299.

Palamakumbura, R. N., Robertson, A. H. F., Kinnaird, T. C., van Calsteren, P., Kroon, D., & Tait, J. A. (2016). Quantitative dating of Pleistocene deposits of the Kyrenia Range, northern Cyprus: implications for timing, rates of uplift and driving mechanisms. Journal of the Geological Society, 173(6), 933-948.

Pamić, J., Tomljenović, B., & Balen, D. (2002). Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: an overview. Lithos, 65(1-2), 113-142. doi:https://doi.org/10.1016/S0024-4937(02)00162-7.

Pamić, J., Scavnicar, S., & Medjimorec, S. (1973). Mineral assemblages of amphibolites associated with Alpine-type ultramafics in the Dinaride Ophiolite Zone (Yugoslavia). Journal of Petrology, 14(1), 133-133. doi:https://doi.org/10.1093/petrology/14.1.133

Pantazis, T. (1967). The geology and mineral resources of the Pharmakas-Kalavasos Area. Mem. geol. Surv. Dep. Cyprus, 8.

Papazachos, B. C., & Papaioannou, C. A. (1999). Lithospheric boundaries and plate motions in the Cyprus area. Lithospheric boundaries and plate motions in the Cyprus area, 308(1-2), 193-204.

Papazachos, B., Papadimitriou, E., Kiratzi, A., Papazachos, C., & Louvari, E. (1998). Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication. Bolletino Di Geofisica Teorica Ed Applicata, 39(3), 199-218.

Parlak, O., Rızaoğlu, T., Bağcı, U., Karaoğlan, F., & Höck, V. (2009). Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics, 473(1-2), 173-187.

Passchier, C. W., & Trouw, R. A. (2005). Microtectonics. Springer Science & Business Media.

Passchier, C. W., & Simpson, C. (1986). Porphyroclast systems as kinematic indicators. Journal of Structural Geology, 8(8), 831-843.

Payne, A. S., Robertson, A. H. F., Panayides, I., Xenophontos, C., & Malpas, J. (2000). Structural evolution and regional significance of the Polis graben system, western Cyprus. In Third international conference on the geology of the Eastern Mediterranean, Proceedings, 45–59.

Payne, A. S., & Robertson, A. H. F. (1995). Neogene supra-subduction zone extension in the Polis graben system, west Cyprus. Journal of the Geological Society, 152(4), 613-628.

Pearce, J. A., & Robinson, P. T. (2010). The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research, 18(1), 60-81.

Poole, A. J., Robertson, A. H. F., Panayides, I., Xenophontos, C., & Malpas, J. (2000). Quaternary marine terraces and aeolianites in coastal south and west Cyprus: implications for regional uplift and sea-level change. In Third International Conference on the Geology of the Eastern Mediterranean, Proceedings, 105-123.

Poole, A., & Robertson, A. H. F. (1998). Pleistocene fanglomerate deposition related to uplift of the Troodos Ophiolite, Cyprus. In Proceedings of the Ocean Drilling Program, Scientific Results, 160, 544-568.

Poole, A. J., & Robertson, A. H. F. (1991). Quaternary uplift and sea-level change at an active plate boundary, Cyprus. Journal of the Geological Society, 148(5), 909-921.

Poole, A. J., Shimmield, G. B., & Robertson, A. H. F. (1990). Late Quaternary uplift of the Troodos ophiolite, Cyprus: uranium-series dating of Pleistocene coral. Geology, 18(9), 894-897.

Pratt-Sitaula, B. (2017). GPS Strain & Earthquakes: Explanation of Strain Calculator Output . UNAVCO - Original document by Vince Cronin (Baylor University).

Prawirodirdjo, L., Bock, Y., Genrich, J., Puntodewo, S., Rais, J., Subarya, C., & Sutisna, S. (2000). One Century of Tectonic Deformation along the Sumatran Fault from Triangulation and Global Positioning System Surveys. J. Geophys. Res. Solid Earth, 105, 28343–28361.

Ramsay, J. G., & Lisle, R. J. (2000). Techniques of modern structural geology, Vol. 3: Applications of continuum mechanics in structural geology. London: Academic Press.

Ramsay, J., & Huber, M. (1987). The techniques of modern structural geology, Vol. 2: Folds and fractures. London: Academic Press.

Ramsay, J., & Huber, M. (1983). The techniques of modern structural geology, Vol. 1: Strain Analysis. London: Academic Press.

Ring, U., & Pantazides, H. (2019). The uplift of the Troodos massif, Cyprus. Tectonics, 38(8), 3124-3139.

Robertson, A. H. F., McCay, G., Tasli, K., & Yildiz, A. (2013). Eocene development of the northerly active continental margin of the Southern Neotethys in the Kyrenia Range,

north Cyprus. Geological Magazine, 151(04), 692–731. doi:10.1017/S0016756813000563

Robertson, A. H. F., Tasli, K., & and İnan, N. (2012). Evidence from the Kyrenia Range, Cyprus, of the northerly active margin of the Southern Neotethys during Late Cretaceous–Early Cenozoic time. Geological Magazine, 149(02), 264–290. doi:10.1017/S0016756811000677

Robertson, A. H. F., Eaton, S., Follows, E. J., & Payne, A. S. (1995). Depositional processes and basin analysis of Messinian evaporites in Cyprus. Terra Nova, 7(2), 233-253.

Robertson, A. H. F., & Xenophontos, C. (1993). Development of concepts concerning the Troodos ophiolite and adjacent units in Cyprus. Geological Society, London, Special Publications, 76(1), 85-119.

Robertson, A. H. F., Clift, P. D., Degnan, P. J., & Jones, G. (1991). Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4), 289-343.

Robertson, A. H. F., Eaton, S., Follows, E. J., & McCallum, J. E. (1991). The role of local tectonics versus global sea‐level change in the Neogene evolution of the Cyprus active margin. Sedimentation, tectonics and eustasy: Sea‐level changes at active margins, Vol. 12, 331-369.

Robertson, A. H. F., Waldron, J. W., Savascin, M. Y., & Eronat, A. H. (1990). Geochemistry and tectonic setting of Late Triassic and late Jurassic–Early Cretaceous basaltic extrusives from the Antalya Complex, SW Turkey. Proceedings of International Earth Science Congress on Aegean Regions, 279-299.

Robertson, A. H. F., (1990). Tectono-Sedimentary Evolution of the Eastern Mediterranean Neotethys: Summaries, Questions and Answers. Int. Earth Sci. Congr. on Aegean Region, 2, 236-278.

Robertson, A. H. F, (1990c). Tectonic evolution of Cyprus. (I. J. (Editors), Επιμ.) Ophiolites, Oceanic Crustal Analogues, Proc. Symp. Troodos, 1987, Geol. Surv. Dep., Cyprus, 235-252.

Robertson, A. H. F., & Woodcock, N. H. (1986). The role of the Kyrenia Range Lineament, Cyprus, in the geological evolution of the eastern Mediterranean area. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 317(1539), 141-177.

Robertson, A. H. F., & Dixon, J. E. (1984). Introduction: aspects of the geological evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17(1), 1-74.

Robertson, A. H. F., & Woodcock, N. H. (1981). Gödene Zone, Antalya Complex: volcanism and sedimentation along a Mesozoic continental margin, SW Turkey. Geologische

Rundschau, 70, 1177-1214.

Robertson, A. H. F., & Woodcock, N. H. (1979). Mamonia Complex, southwest Cyprus: evolution and emplacement of a Mesozoic continental margin. Geological Society of America Bulletin, 90(7), 651-665.

Robertson, A. H. F., (1977b). The Kannaviou Formation, Cyprus: volcaniclastic sedimentation of a probable late Cretaceous volcanic arc. Journal of the Geological Society, 134(3), 269-292.

Robertson, A. H. F., (1977a). The Moni Melange, Cyprus: an olistostrome formed at a destructive plate margin. Journal of Geological Society of London, 447-466.

Robertson, A. H. F., (1977). Tertiary uplift history of the Troodos massif, Cyprus. Geological Society of America Bulletin, 88(12), 1763-1772.

Robertson, A. H. F, (1976). Pelagic chalks and calciturbidites from the lower Tertiary of the Troodos Massif, Cyprus. Journal of Sedimentary Research, 46(4), 1007-1016.

Robertson, A. H. F., & Hudson, J. D. (1975). Pelagic sediments in the Cretaceous and Tertiary history of the Troodos Massif, Cyprus. Pelagic Sediments: on Land and under the Sea. International Association of Sedimentologists, 403-436.

Robinson, P. T., Malpas, J., Xenophontos, C., Dilek, Y., & Newcomb, S. (2003). The Troodos Massif of Cyprus: its role in the evolution of the ophiolite concept. Special Papers-Geological Society of America, 295-308.

Sagiya, T., Nishimura, T., Iio, Y., & Tada, T. (2002). Crustal Deformation around the Northern and Central Itoigawa-Shizuoka Tectonic Line. Earth Planets Space, 54, 1059–1063. doi:https://doi.org/10.1186/BF03353302

Searle, M. P. (1983). Stratigraphy, structure and evolution of the Tibetan–Tethys zone in Zanskar and the Indus suture zone in the Ladakh Himalaya. Earth and Environmental

Science Transactions of The Royal Society of Edinburgh, 73(4), 205-219.

Searle, M. P., & Malpas, J. (1982). Petrochemistry and origin of sub-ophiolitic metamorphic and related rocks in the Oman Mountains. Journal of the Geological Society, 139(3), 235-248.

Searle, M. P., & Malpas, J. (1980). Structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 71(4), 247-262.

Šegvić, B., Slovenec, D., Altherr, R., Babajić, E., Mählmann, R. F., & Lugović, B. (2019). Petrogenesis of high-grade metamorphic soles from the Central Dinaric Ophiolite belt and their significance for the Neotethyan evolution in the Dinarides. Ofioliti, 44(1), 1-30. doi:https://doi.org/10.4454/ofioliti.v44i1.514

Šegvić, B., Lugović, B., Slovenec, D., & Meyer, H. P. (2016). Mineralogy, petrology and geochemistry of amphibolites from the Kalnik Mt.(Sava Unit, North Croatia): Implications for the evolution of north-westernmost part of the Dinaric-Vardar branch of Mesozoic Tethys. Ofioliti, 41(1), 35-58. doi:10.4454/ofioliti.v41i1.441

Şengör, A. C. (1984). The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society of America Special Paper, 195, 82.

Şengör, A. M., Yılmaz, Y., & Sungurlu, O. (1984). Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Palaeo-Tethys. Geological

Society, London, Special Publications, 17(1), 77-112.

Şengör, A. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.

Şengör, A. C. (1979). Mid-Mesozoic closure of Permo–Triassic Tethys and its implications. Nature, 279, 590-593.

Shen, Z., Jackson, D., & Ge, B. (1996). Crustal Deformation across and beyond the Los Angeles Basin from Geodetic Measurements. J. Geophys. Res. B Solid Earth, 101, 27957–27980. doi:https://doi.org/10.1029/96JB02544

Simonian, K., & Gass, I. (1978). Arakapas fault belt, Cyprus: A fossil transform fault. Geological Society of America Bulletin, 89(8), 1220-1230.

Simpson, C., & Schmid, S. M. (1983). An evaluation of criteria to deduce the sense of movement in sheared rocks. Geological Society of America Bulletin, 94(11),. 1281-1288.

Smewing, J. D., Simonian, K. O., & Gass, I. G. (1975). Metabasalts from the Troodos Massif, Cyprus: genetic implication deduced from petrography and trace element geochemistry. Contributions to Mineralogy and Petrology, 49-64.

Smith, A. G., & Woodcock, N. H. (1982). Tectonic syntheses of the Alpine‐Mediterranean region: A review. Alpine‐Mediterranean Geodynamics, 7, 15-38.

Smith, A. G., & Woodcock, N. H. (1976). Emplacement model for some “Tethyan” ophiolites. Geology, 4(11), 653-656.

Smith, A. G., Hynes, A. J., Menzies, M., Nisbet, E. G., Price, I., Welland, M. H., & Ferrier, E. J. (1975). The stratigraphy of the Othris Mountains, Eastern Central Greece: a deformed Mesozoic continental margin sequence. Eclogae geol. Helv., 68(3), 463-481.

Smith, A. G. (1971). Alpine deformation and the oceanic areas of the Tethys, Mediterranean, and Atlantic. Geological Society of America Bulletin, 82(8), 2039-2070.

Spray, J. G. (1984). Possible causes and consequences of upper mantle decoupling and ophiolite displacement. Geological Society, London, Special Publications, 13, 255–268. doi:https://doi.org/10.1144/gsl.sp.1984.013.01.21

Spray, J. G., & Roddick, J. C. (1981). Evidence for Upper Cretaceous transform fault metamorphism in West Cyprus. Earth and Planetary Science Letters, 55(2), 273-291.

Stampfli, G. M., & Hochard, C. (2009). Plate tectonics of the Alpine realm. Geological Society London Special Publications, 327(1), 89-111. doi:http://dx.doi.org/10.1144/SP327.6

Stampfli, G. M., & Kozur, H. W. (2006). Europe from the Variscan to the Alpine cycles. European Lithosphere Dynamics. Geological Society, London, Memoirs, 32, 57–82. doi:0435-4052/06/$15.00

Stampfli, G. M., & Borel, G. D. (2004). The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In The

TRANSMED Atlas. The Mediterranean region from crust to mantle: Geological and geophysical framework of the Mediterranean and the surrounding areas, 53-80.

Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary science letters, 196(1-2), 17-33. doi:https://doi.org/10.1016/S0012-821X(01)00588-X

Stampfli, G. M., Borel, G. D., Cavazza, W., Mosar, J., & Ziegler, P. A. (2001). Palaeotectonic and palaeogeographic evolution of the western Tethys and PeriTethyan domain (IGCP Project 369). European Geophysical Society, Kathlenburg-Lindau.

Stöcklin, J. (1974). Possible ancient continental margins in Iran. The geology of continental margins, 873-887.

Stöcklin, J. (1968). Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists Bulletin, 52(7), 1229–1258. doi:https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D

Stow, D. A., Braakenburg, N. E., & Xenophontos, C. (1995). The Pissouri Basin fan‐delta complex, southwestern Cyprus. Sedimentary Geology, 98(1-4), 245–262. doi:https://doi.org/10.1016/0037‐0738(95)00035‐7

Swarbrick, R. E. (1993). Sinistral strike-slip and transpressional tectonics in an ancient oceanic setting: the Mamonia Complex, southwest Cyprus. Journal of the Geological Society, 150(2), 381-392.

Swarbrick, R. E. (1980). The Mamonia Complex of SW Cyprus: A Mesozoic continental margin and its relationship with the Troodos Complex. Ophiolites Proc. Int. Ophiolite

Symp., 86-92.

Swarbrick, R. E., & Naylor, M. A. (1980). The Kathikas melange, SW Cyprus: late Cretaceous submarine debris flows. Sedimentology, 27(1), 63-78.

Swarbrick, R. E., & Robertson, A. H. F (1980). Revised stratigraphy of the Mesozoic rocks of southern Cyprus. Geological Magazine, 117(6), 547-563.

Thy, P., & Moores, E. M. (1988). Crustal accretion and tectonic setting of the Troodos ophiolite, Cyprus. Tectonophysics, 147(3-4), 221-245.

Torley, J. M., & Robertson, A. H. F. (2018). New evidence and interpretation of facies, provenance and geochemistry of late Triassic-early Cretaceous Tethyan deep-water passive margin-related sedimentary rocks (Ayios Photios Group), SW Cyprus in the context of eastern Mediterranean geodynamics. Sedimentary Geology, 377, 82-110.

Trouw, R., Passchier, C., & Wiersma, D. (2010). Atlas of mylonites – and related microstructures. New York: Springer.

Turner, W. (1973). The Cyprian Gravity Nappe and the autochthonous basement of Cyprus. In Gravity and Tectonic, 287-301.

Varga, R. (1991). Modes of extension at oceanic spreading centers: evidence from the Solea graben, Troodos ophiolite, Cyprus. Journal of Structural Geology, 13(5), 517–537. doi:https://doi.org/10.1016/0191-8141(91)90041-G

Varga, R. J., & Moores, E. M. (1985). Spreading structure of the Troodos ophiolite, Cyprus. Geology, 13(12), 846-850.

Varnava, A., Chatzipetros, A., Katrivanos, E., Papadopoulou, L., & Kilias, A. (2022). Preliminary results on the geological and structural setting of the Mamonia Complex in SW Cyprus. 16th International Congress of the Geological Society of Greece, Bulletin of of the Geological Society of Greece, Special. Publication No. 10(Ext. Abs. GSG2022-335), 123-124.

Varnava, A., Danelian, T., Regnier, S., & Devaere, L. (2021). Radiolarian evidence for Middle Bathonian radiolarites in the Episkopi Formation (Ayios Photios Group, Mamonia

Complex, SW Cyprus). Revue de Micropaléontologie, 73, 100549.

Varnava, A., Kilias, A., Chatzipetros, A., & Pavlides, S. (2019). Tectonic Analysis of the broader area of the Arakapas and Gerasa fault zones in SW Cyprus. IESCA Conference, Izmir 2019.

Varnava, A., Kilias, A., Chatzipetros, A., & Pavlides, S. (2018). Tectonic analysis of the Arakapas and Gerasas faults belts in SW Cyprus. 9th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology.

Vergely, P. (1984). Tectonique des ophiolites dans les Hellénides internes (déformations, métamorphismes et phénomènes sédimentaires): conséquences sur l'évolution des régions téthysiennes occidentales. Paris: Ph.D. Thesis, Université Paris-Sud. Centre d'Orsay.

Wakabayashi, J., & Dilek, Y. (2000). Spatial and temporal relationships between ophiolites and their metamorphic soles: A test of models of forearc ophiolite genesis. Special Papers-Geological Society of America, 53–64. doi:https://doi.org/10.1130/0-8137-2349-3.53

White, S. H., Bretan, P. G., & Rutter, E. H. (1986). Fault-zone reactivation: kinematics and mechanisms. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 317(1539), 81-97.

Whitechurch, H., Juteau, T., & Montigny, R. (1984). Role of the Eastern Mediterranean ophiolites (Turkey, Syria, Cyprus) in the history of the Neo-Tethys. Geological Society, London, Special Publications, 17(1), 301-317.

Williams, H., & Smyth, W. R. (1973). Metamorphic aureoles beneath ophiolite suites and alpine peridotites; tectonic implications with west Newfoundland examples. American Journal of Science, 273(7), 594-621.

Wilson, R. A. (1959). The geology and mineral resources of the Xeros-Troodos Area. Mem. Geol. Surv. Cyprus, 1.

Wilson, R. A., & Ingham, F. T. (1959). The geology of the Xeros-Troodos area. Geological Survey Department - Authority of the Government of Cyprus, 1-135.

Woodcock, N. H., & Robertson, A. H. F. (1980). Tectonics and sedimentation as a guide to emplacement of part of the Antalya Complex, SW Turkey. Proc. 6th Colloq. Aegean Geology, Izmir, 1977.

Yuan, X., Fu, J., Sun, H., & Toth, C. (2009). The Application of GPS Precise Point Positioning Technology in Aerial Triangulation. ISPRS J. Photogramm. Remote Sens., 64, 541–550. doi:https://doi.org/10.1016/j.isprsjprs.2009.03.006

Zimmerman, J. (1972). Emplacement of the Vourinos ophiolitic complex, Northern Greece. Geological Society of America, Mem., 132, 225-239.

Zonenshain, L., Kuzmin, M., & Kononov, M. (1987). Absolute reconstructions of continent positions in the Paleozoic and Mesozoic. Geotektonika, 3, 16-27.

Ελληνική Βιβλιογραφία

Βαρνάβα, Α. (2016). Τεκτονική ανάλυση της ευρύτερης περιοχής των ρηγμάτων της Γεράσας και Αρακαπά στην νοτιοδυτική Κύπρο. Μεταπτυχιακή Διατριβή Ειδίκευσης, Τομέας Τεκτονικής και Στρωματογραφίας - Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Κατριβάνος, Ε. Δ. (2017). Η γεωλογική δομή, η κινηματική της παραμόρφωσης και η γεωτεκτονική εξέλιξη των ορεινών όγκων Πάικου και Τζένας (Κεντρική Μακεδονία). Διδακτορική Διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Λόζιος, Σ. (2003). Εισαγωγή στην Μικροτετκονική. Αθήνα: Τμήμα Γεωλογίας Ε.Κ.Π.Α.

Μουντράκης, Δ. (2010). Γεωλογία και γεωτεκτονική εξέλιξη της Ελλάδας. Θεσσαλονίκη: University Studio Press.

Μουντράκης, Δ. (1983). Η γεωλογική δομή της Βόρειας Πελαγονικής Ζώνης και η γεωτεκτονική εξέλιξη των Εσωτερικών Ελληνίδων. Πραγματεία για Υφηγεσία.

Παπανικολάου, Δ. (2015). Γεωλογία της Ελλάδας. Αθήνα: Εκδόσεις Πατάκη.

Τμήμα Γεωλογικής Επισκόπησης. (2019). Σχηματική απεικόνιση της δημιουργίας του Οφιόλιθου του Τρόοδους (Α) και της γεωλογικής εξέλιξης της Κύπρου (Β-Ε). Λευκωσία:

Υπουργείο Γεωργίας, Αγροτικής Ανάπτυξης και Περιβάλλοντος, Κυπριακή Δημοκρατία. Διαθέσιμο στο: https://www.moa.gov.cy/moa/gsd/gsd.nsf/page46_gr/page46_gr?OpenDocument.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.