Εξώφυλλο

Τεχνολογικές Εφαρμογές Κρίσιμων Μετάλλων, Μετάλλων Υψηλής Τεχνολογίας, και η Ευρωπαϊκή Πολιτική για Ορυκτές Πρώτες Ύλες Καλιαμπός Δημήτριος = Technological Applications of Critical Metals, High Technology Metals, and the European Policy on Mineral Raw Materials.

Δημήτριος Διονύσιος Καλιαμπός

Περίληψη


Η γρήγορη τεχνολογική πρόοδος και η ανάπτυξη στις υψηλής τεχνολογίας βιομηχανίες έχουν οδηγήσει σε αυξημένη ζήτηση για κρίσιμα μέταλλα και μέταλλα υψηλής τεχνολογίας. Αυτά τα μέταλλα είναι απαραίτητα συστατικά στην κατασκευή διάφορων υψηλής τεχνολογίας προϊόντων, συμπεριλαμβανομένων ηλεκτρονικών, ανανεώσιμων πηγών ενέργειας και τεχνολογιών άμυνας. Ωστόσο, η προμήθειά τους είναι περιορισμένη, και πολλά από αυτά τα μέταλλα συγκεντρώνονται γεωγραφικά σε λίγες χώρες, καθιστώντας τα ευάλωτα σε διακοπές προμήθειας και τις αλλαγές των τιμών. Η Ευρωπαϊκή Ένωση (ΕΕ) αναγνωρίζει τη σημασία αυτών των μετάλλων και έχει εφαρμόσει πολιτικές για να διασφαλίσει την ασφαλή και βιώσιμη προμήθειά τους. Η παρούσα πτυχιακή εργασία αναλύει την τρέχουσα κατάσταση των κρίσιμων μετάλλων και μετάλλων υψηλής τεχνολογίας στην Ευρώπη, τη σημασία τους για την οικονομία της ΕΕ, την κατάσταση της αλυσίδας εφοδιασμού τους και τα μέτρα πολιτικής που μπορεί να λάβει η ΕΕ για την βιώσιμη προμήθειά τους.    

The rapid technological advancement and growth in high-tech industries have led to an increased demand for critical metals and high technology metals. These metals are essential components in the manufacturing of various high-tech products, including electronics, renewable energy, and defense technologies. However, their supply is limited, and many of these metals are geographically concentrated in a few countries, making them vulnerable to supply disruptions and price fluctuations. The European Union (EU) recognizes the importance of these metals and has implemented policies to ensure their secure and sustainable supply. This thesis analyzes the current status of critical metals and high technology metals in Europe, their importance to the EU economy, their current condition of their supply chains, and the EU's policy measures for their sustainable supply.

Πλήρες Κείμενο:

PDF

Αναφορές


Alaswad A., Palumbo, A., Dassisti, M., Abdelkareem, M.A., Olabi, A., (2009), ‘Fuel Cell Technologies, Applications, and State of the Art. A Reference Guide’, Encyclopedia of Smart Materials, Elsevier, 2022, pp. 315-333.

Batteries Europe (ETIP), 'Roadmap on new and emerging technologies', 2021a (https://www.divaportal.org/smash/get/diva2:1629368/FULLTEXT01.pdf). Batteries Europe (ETIP), 'Roadmap on raw materials and recycling', 2021b (https://energy.ec.europa.eu/system/files/2021-12/vol-2-009.pdf).

BCG, ‘Additive Manufacturing’, 2018.

BloombergNEF, ‘Equipment Manufacturers’, 2020.

Bobba, Silvia & Carrara, Samuel & Huisman, Jaco & Mathieux, Fabrice & Pavel, Claudiu. (2020). Critical Raw Materials for Strategic Technologies and Sectors in the EU - A Foresight Study. 10.2873/58081.

Bonilla, S.H., H.R.O. Silva, M.T. da Silva, R.F. Gonçalves, and J.B. Sacomano, ‘Industry 4.0 and Sustainability Implications: A Scenario-Based Analysis of the Impacts and Challenges’, Sustainability, Vol. 10, No. 10, 2018.

Carrara, S., Bobba, S., Blagoeva, D., Alves Dias, P., Cavalli, A., Georgitzikis, K., Grohol, M., Itul, A., Kuzov, T., Latunussa, C., Lyons, L., Malano, G., Maury, T., Prior Arce, Á., Somers, J., Telsnig, T., Veeh, C., Wittmer, D., Black, C., Pennington, D., Christou, M., Supply chain analysis and material demand forecast in strategic technologies and sectors in the EU – A foresight study, Publications Office of the European Union, Luxembourg, 2023, doi:10.2760/386650, JRC132889.

Ciacci, L., T.T. Werner, I. Vassura, and F. Passarini, ‘Backlighting the European Indium Recycling Potentials’, Journal of Industrial Ecology, Vol. 23, No. 2, 2019, pp. 426–437.

E4tech, ’Study on Value Chain and Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cells Technologies’, 2019 (webpage missing).

EC, Digitisation Research and Innovation. Transforming European Industry and Services, 2017.

European Commission (2019), Communication from the Commission to the European Parliament, the European Council, the Council, the European economic and social Committee and the Committee of the Regions. The European Green Deal, COM(2019) 640.

European Commission, The European Green Deal, COM(2019) 640 final, 2019.

European Commission (EC) (2020), Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, Bobba, S., Carrara, S., Huisman, J., et al., Critical raw materials for strategic technologies and sectors in the EU: a foresight study, Publications Office of the European Union, Luxembourg.

European Political Strategy Centre, Rethinking Strategic Autonomy in the Digital Age, 2019.

Fraunhofer ISI, Photovoltaics Report, 2019.

Fuel Cells and Hydrogen Joint Undertaking, Stakeholder Forum marks 10 years of significant progress, Fuel Cells Bulletin, Vol. 2017, No. 12, 2017, pp. 10.

Hao, H., Y. Geng, J.E. Tate, F. Liu, X. Sun, Z. Mu, D. Xun, Z. Liu, and F. Zhao, ‘Securing Platinum-Group Metals for Transport Low-Carbon Transition’, One Earth,

Vol. 1, No. 1, 2019, pp. 117–125.

IEA (2021), The Role of Critical Minerals in Clean Energy Transitions, IEA, Paris https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions, License: CC BY 4.0.

International Energy Agency (IEA) (2022), ´Digitalisation´, Tracking Report. (https://www.iea.org/reports/digitalisation)

International Energy Agency (IEA) (2022), Solar PV Global Supply Chains, Paris.

Jean, J., P.R. Brown, R.L. Jaffe, T. Buonassisi, and V. Bulović, ‘Pathways for Solar Photovoltaics’, Energy and Environmental Science, Vol. 8, No. 4, 2015, pp. 1200–1219.

JRC, Batteries: global demand, supply, and foresight', 2022b (https://rmis.jrc.ec.europa.eu/analysis-of-supply-chain-challenges-49b749).

JRC, Cobalt: Demand-Supply Balances in the Transition to Electric Mobility, Joint Research Centre (JRC). Authors: Alves Dias, P., D. Blagoeva, C.C. Pavel, and N. Arvanitidis. JRC112285, 2018c.

JRC, Cost Development of Low Carbon Energy Technologies - Scenario-Based Cost Trajectories to 2050, authors: Tsiropoulos, I., D. Tarvydas, and A. Zucker,

Edition, EUR 29034 EN, JRC109894, Luxembourg, 2018a.

JRC, Critical Raw Materials and the Circular Economy - Background Report, Authors: Mathieux, F., F. Ardente, S. Bobba, P. Nuss, G.A. Blengini, P. Alves Dias, D.

Blagoeva, et al., JRC-EC (Joint Research Centre - European Commission) Science-for-policy report, EUR 28832 EN, Publications Office of the European Union, Luxembourg, 2017b.

JRC, Materials Impact on the EU’s Competitiveness of the Renewable Energy, Storage and e-Mobility Sectors – Wind Power, Solar Photovoltaic and Battery Technologies, Joint Research Centre (JRC, Authors: Claudiu Pavel, Darina Blagoeva. EUR 28774 EN, Publications Office of the European Union, Luxembourg,

, ISBN 978-92-79-73491, 2017a.

JRC, Raw Materials in the European Defence Industry, Joint Research Centre (JRC), Authors: Pavel, C.C., and E. Tzimas. Pavel, C.C., and E. Tzimas, 2016b.

Joint Research Centre (JRC) (2019), Blagoeva, D., Pavel, C., Wittmer, D., Huisman, J. and Pasimeni, F., Materials dependencies for dual-use technologies relevant for Europe's defence sector: summary report, Publications Office of the European Union, Luxembourg.

Joint Research Centre (JRC) (2022), Telsnig, T., Georgakaki, A., Letout, S., Kuokkanen, A., Mountraki, A., Ince, E., Shtjefni, D., Joanny Ordonez, G., Eulaerts, O. and Grabowska, M., Clean Energy Technology Observatory:203 Wind Energy in the European Union – 2022 Status Report on Technology Development, Trends,

Value Chains and Markets, Publications Office of the European Union, Luxembourg.

Joint Research Centre (JRC), ‘Batteries: global demand, supply, and foresight’, 2022b (https://rmis.jrc.ec.europa.eu/analysis-of-supply-chain-challenges-49b749).

Kaya, E.E.; Kaya, O.; Stopic, S.; Gürmen, S.; Friedrich, B. NdFeB magnets recycling process: An alternative method to produce mixed rare earth oxide from scrap NdFeB magnets. Metals 2021, 11, 716.

Ku, A.Y., ‘Anticipating Critical Materials Implications from the Internet of Things (IOT): Potential Stress on Future Supply Chains from Emerging Data Storage Technologies’, Sustainable Materials and Technologies, Vol. 15, No. October 2017, 2018, pp. 27–32.

Leader, A., G. Gaustad, and C. Babbitt, ‘The Effect of Critical Material Prices on the Competitiveness of Clean Energy Technologies’, Materials for Renewable and Sustainable Energy, Vol. 8, No. 2, 2019, pp. 1–17.

Leena Grandell, Antti Lehtilä, Mari Kivinen, Tiina Koljonen, Susanna Kihlman, Laura S. Lauri, Role of critical metals in the future markets of clean energy technologies, Renewable Energy, Volume 95, 2016, Pages 53-62 ISSN 0960-1481, https://doi.org/10.1016/j.renene.2016.03.102. (https://www.sciencedirect.com/science/article/pii/S0960148116302816)

Lucas, J.; Lucas, P.; le Mercier, T.; Rollat, A.; Davenport, W. Rare earth production, use and price. In Rare Earths; Elsevier: Amsterdam, The Netherlands, 2015; pp. 15–29.

Marscheider-Weidemann, F., S. Langkau, T. Hummen, L. Erdmann, and L. Tercero Espinoza, Raw Materials for Emerging Technologies 2016, Fraunhofer-Institut für System- und Innovationsforschung ISI, 2016.

Monnet, A., and A. Ait Abderrahim, Report on Major Trends Affecting Future Demand for Critical Raw Materials. SCRREEN Project D.2.2, 2018.

Negreiro M., Madiega, T., ‘European Parliament Briefing: Digital transformation’, 2019. (https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/633171/EPRS_BRI(2019)633171_EN.pdf)

Önal, M.A.R.; Aktan, E.; Borra, C.R.; Blanpain, B.; Van Gerven, T.; Guo, M. Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery. Hydrometallurgy 2016, 167, 115–123.

Patil, A.B.; Paetzel, V.; Struis, R.P.W.J.; Ludwig, C. Separation and Recycling Potential of Rare Earth Elements from Energy Systems: Feed and Economic Viability Review. Separations 2022, 9, 56.

Polverini, D., F. Ardente, I. Sanchez, F. Mathieux, P. Tecchio, and L. Beslay, ‘Resource Efficiency, Privacy and Security by Design: A First Experience on Enterprise Servers and Data Storage Products Triggered by a Policy Process’, Computers and Security, Vol. 76, 2018, pp. 295–310.

PwC, Copernicus ex-ante benefits assessment, Executive Summary. 2017b. Retrieved from: https://www.copernicus.eu/sites/default/files/documents/Copernicus-Ex-Ante-Executive-Summary.pdf

PwC, Innovation for the Earth Harnessing Technological Breakthroughs for People and the Planet, 2017a.

Research and Markets, ‘Global and China Polysilicon Industry Report 2019-2023’, 2019.

Reuters Business News, ‘Platinum’s Days as Fuel Cell Car Component May Be Numbered’, 2018.

Reinsel, D., J. Gantz, and J. Rydning, ‘Data Age 2025: The Digitization of the World From Edge to Core’, International Data Corporation, No. November, 2018, p. 28.

Roskill, Lithium-Ion Batteries Market Development & Raw Materials, Second Edition, 2018.

Ryan, J., and C. Martin, ‘Solar Companies Are Scrambling to Find a Critical Raw Material’, Bloomberg, 2017.

Tercero, L., Report on the Future Use of Critical Raw Materials. SCRREEN Project D.2.3, 2019.

Widmer, J.D.; Martin, R.; Kimiabeigi, M. Electric vehicle traction motors without rare earth magnets. Sustain. Mater. Technol. 2015, 3, 7–13.

Widmer, R., and P. Wäger, ‘ICT Hardware - Materials: Scarce Metals as Raw Materials for ICTs: Do We Care Enough?’, 2013.

Yang, Y.; Walton, A.; Sheridan, R.; Güth, K.; Gauß, R.; Gutfleisch, O.; Buchert, M.; Steenari, B.M.; Van Gerven, T.; Jones, P.T.; et al. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. J. Sustain. Metall. 2017, 3, 122–149.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.