Εξώφυλλο

Συνθήκες σχηματισμού των υπογενών σπηλαίων στο ελληνικό ορογενές: Ορυκτολογία, γεωχημεία, σταθερά ισότοπα (C, O, S), ρευστά εγκλείσματα = Formation conditions of hypogene caves in the Hellenic orogen: mineralogy, geochemistry, stable isotopes (C, Ο, S), fluid inclusions.

Γεώργιος Θεόδωρος Λαζαρίδης

Περίληψη


Η διατριβή βασίστηκε στην υπαίθρια έρευνα για τον εντοπισμό υπογενών σπηλαίων στην Ελλάδα. Αναλυτικά μελετήθηκαν 33 σπήλαια στις ακόλουθες 21 τοποθεσίες: του Μαύρου Βράχου στο Σιδηρόκαστρο, σπήλαια στο Φαλακρό Όρος, σπήλαια στην περιοχή Λουτρών Ελευθερών, του Θεοχάρη στο Μενοίκιο, Ρετζικίου στη Θεσσαλονίκη, σπήλαια στο Όρος Άθως, Μαρώνειας, Καγιάλι και σπήλαια Κουφόβουνου στον Έβρο, Πετραλώνων και Νυχτερίδων στην περιοχή των Πετραλώνων, Αγίας Παρασκευής Χαλκιδικής, σπηλαιοβάραθρο Αλμωπίας, σπήλαια στο λατομείο Πολυκάρπης, σπήλαια Λέσβου, Ρούτση στη Ραψάνη, βάραθρο του Όρλιακα, σπήλαια Υμηττού, σπήλαια Ικαρίας, σπήλαιο Κρύας Βρύσης στην Καρδίτσα, Κουνουπέλι και Ανυγρίδων Νυμφών στη Δ. Πελοπόννησο. Τα σπήλαια αυτά αρχικά αναγνωρίστηκαν ως υπογενή με γεωμορφολογικά κριτήρια. Στη συνέχεια αναζητήθηκαν σπηλαιοθέματα που να συνδέεονται με τη σπηλαιογένεση, όπως είναι οι κρύσταλλοι και οι μαστοειδείς αποθέσεις. Από αυτές τις αποθέσεις συλλέχθηκαν δείγματα που μελετήθηκαν με διάφορες μεθόδους ως προς την ορυκτολογική, γεωχημική και ισοτοπική σύστασή τους. Επίσης, παρατηρήθηκαν στο ηλεκτρονικό μικροσκόπιο σάρωσης. Επιπλέον, έγινε μελέτη των ρευστών εγκλεισμάτων, ώστε να μετρηθούν οι θερμοκρασίες ομογενοποίησης των κρυστάλλων ασβεστίτη και η προέλευση των ρευστών. 
Από την έρευνα αυτή εντοπίστηκαν τα εξής ορυκτά: ασβεστίτης, αραγωνίτης, γύψος, αλουνίτης, πιγκερινγκίτης, ταμαρουγκίτης, βαρύτης, κίτρινη σανδαράχη, γκαιτίτης, χαλαζίας, οξείδια μαγγανίου, άμορφα πυριτικά και αργιλοπυριτικά ορυκτά. Τα οξείδια και υδροξείδια σιδήρου και μαγγανίου, μελετήθηκαν για πρώτη φορά στα ελληνικά σπήλαια και εντοπίστηκε η μοναδική ως τώρα περίπτωση στην Ελλάδα, απόθεσης που φέρει βιο-υπογραφές μικροοργανισμών στον γκαιτίτη του σπηλαίου του Μαύρου Βράχου. Ο χαλαζίας, βρέθηκε για πρώτη φορά σε ελληνικά σπήλαια. Μελετήθηκαν ειδικότερα ο ασβεστίτης, τα οξείδια και τα θειούχα με διάφορες μεθόδους κυρίως ως προς τη χημική και την ορυκτολογική σύσταση τους, τα σταθερά ισότοπα οξυγόνου, άνθρακα και θείου, καθώς και τα ρευστά εγκλείσματα. Τα δεδομένα που προέκυψαν συνδυάστηκαν με γεωμορφολογικά, τεκτονικά, υδρολογικά και άλλα στοιχεία στις επιμέρους περιοχές-σπήλαια, ώστε να εξαχθούν συμπεράσματα για τη σπηλαιογένεση κάθε σπηλαίου ή ομάδας σπηλαίων. Για κάθε περίπτωση σπηλαίου που μελετήθηκε ερμηνεύεται η σπηλαιογένεση, ταξινομείται το σπήλαιο με βάση τους τύπους υπογενών σπηλαίων και δίνεται όπου είναι δυνατό ένα χρονικό πλαίσιο για το σχηματισμό του. Η σπηλαιογένεση οφείλεται σε διάλυση κυρίως από ανθρακικό οξύ και σε κάποιες περιπτώσεις από θειικό οξύ. Τα ρευστά που δημιούργησαν τα σπήλαια είχαν κυρίως μετεωρική προέλευση. Οι μέσες τιμές που εμφανίζουν οι θερμοκρασίες ομογενοποίησης που μετρήθηκαν στους ασβεστίτες είναι υψηλές και κυμαίνονται από 90°C έως 280°C.  
Με βάση τα αποτελέσματα της έρευνας τα υπογενή σπήλαια της Ελλάδας που μελετήθηκαν ανήκουν σε δύο κατηγορίες: τα ενδογενή υπογενή σπήλαια και αυτά που γίνονται σε ελεύθερους ή εγκλωβισμένους υδροφορείς που επικοινωνούν με τη θάλασσα και η σπηλαιογένεση εξαρτάται από το υδρόθειο. Στην περίπτωση των σπηλαίων της Αγίας Παρασκευής, διαπιστώνεται μια πολύπλοκη σπηλαιογένεση που συνδυάζει και τις δύο κατηγορίες.  
Με βάση τον τύπο των σπηλαίων, βρέθηκε μια στενή σχέση με υδροθερμικά ρευστά και την ύπαρξη εφελκυστικού γεωδυναμικού καθεστώτος, την κατάρρευση του ορογενούς που συνοδεύεται από εκτατικές κινήσεις και ρήγματα που μπορούν να ευνοήσουν την άνοδο ρευστών. Η διείσδυση πλουτωνικών σωμάτων, η δημιουργία λεκανών και κατά συνέπεια συνθηκών για γεωθερμική ανωμαλία και γεωθερμικά πεδία έχουν συνεπιδράσει στην εμφάνιση υπογενούς σπηλαιογένεσης.
 
This thesis is based on fieldwork research for identifying hypogene caves in Greece. Specifically, 33 caves studied in the following 21 locations: Mavros Vrachos Quarry Cave (MVQ) in Sidirokastro, caves in Falakro Mountain, caves in the Loutra Eleftheron area, Theohari Cave in Menoikio, Retziki Cave in Thessaloniki, caves on Mount Athos, Maroneia Cave, Kagiali Cave, and Koufovouno cavew in Evros, Petralona and Nychteridon caves in the Petralona region, Aghia Paraskevi Caves in Chalkidiki, Almopia Varathron cave, Polycarpi Quarry caves, Lesvos caves, Routsi Cave in Rapsani, Orliakas pothole, Ymittos caves, Ikaria Caves, Kryas Vrysi Cave in Karditsa, and Kounoupeli and Anygridon Nymphon caves in the W. Peloponnese region. These caves were initially identified as hypogene based on geomorphological criteria and were further explored to locate cave formations associated with speleogenesis, such as the speleothems spar and mammillaries. Samples from these deposits were collected and studied using various methods, including mineralogical, geochemical, and isotopic analyses. Scanning electron microscopy was employed to investigate their structure. A fluid inclusions study aimed to measure the homogenization temperatures of calcite crystals and determine the origin of fluids.
The minerals identified in this research include calcite, aragonite, gypsum, alunite, pickeringite, tamarugite, barite, orpiment, goethite, quartz, manganese oxides, amorphous siliceous, and alluminosilicate minerals. Iron and manganese oxides and hydroxides were studied for the first time in Greek caves, with the unique case of a deposit bearing microbial bio-signatures in the goethite of the MVQ. Quartz was discovered for the first time in Greek caves.
Specifically, calcite, Fe and Mn oxides, and sulfates were extensively studied based on their chemical and mineralogical composition, stable isotopes of oxygen, carbon, and sulfur, as well as fluid inclusions. These data, combined with geological, tectonic, hydrological, and other regional information, were used to draw conclusions about the speleogenesis of each cave or cave group. The speleogenesis is attributed mainly to dissolution by carbonic acid and, in some cases, sulfuric acid. The fluids that formed the caves were predominantly meteoric in origin. The peaks of homogenization temperatures measured in calcite crystals were high, ranging from 90°C to 280°C.
Subsequently, all cases were examined and discussed in relation to the geological structure and evolution of the Greek orogeny. Based on the research results, the hypogene caves studied in Greece can be classified into two categories: endogenous hypogene caves and those formed in aquifers communicating laterally with the sea, where speleogenesis depends on the presence of hydrogen sulfide in the fluids. In the case of Agia Paraskevi Caves, a complex speleogenesis combining both categories of sulfuric acid and carbonic acid speleogenesis are observed.
Based on the cave types, a close relationship was found with hydrothermal fluids and the presence of an extensional geodynamic regime, the collapse of the orogeny accompanied by faults that can favor the rise of fluids. The intrusion of plutonic bodies, the formation of basins, and consequently conditions for geothermal anomalies and geothermal fields have interacted in the occurence of hypogene speleogenesis.

Πλήρες Κείμενο:

PDF

Αναφορές


Al-Malabeh. A.. Kempe. S.. Henschel. H.-V.. Hofmann. H. Tobschall. H. J.. 2008. The Possibly Hypogene Karstic Iron Ore Deposit of Warda near Ajloun (Northern Jordan). its Mineralogy. Geochemistry and Historic Mine. Acta Carsologica. 37. 241-253.

Aloupi, M., Angelidis, M., Gavriil, A., Koulousaris, M., & Varnavas, S. (2009). Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece. Environmental Monitoring and Assessment, 151, 383–396.

Audra, P., Hoblea, F., Bigot, J. Y., & Nobecourt, J. C. (2007). The Role of Condensation Corrosion in Thermal Speleogenesis. Study of a Hypogenic Sulfidic cCve in Aix-les-Bains, France. Acta carsologica, 36(2), 185-194.

Audra. P.. 2017a. Hypogene caves in France. In A. Klimchouk. A. N. Palmer. J. De Waele. A. S. Auler & P. Audra (Eds.). Hypogene Karst Regions and Caves of the World. 61-83. Springer.

Bakalowicz, M. J., Ford, D. C., Miller, T. E., Palmer, A. N., & Palmer, M. V. (1987). Thermal genesis of dissolution caves in the Black Hills, South Dakota. Geological Society of America Bulletin, 99(6), 729-738.

Balsamo, F., Bezerra, F., Klimchouk, A., Cazarin, C., Auler, A., Nogueira, F. & Pontes, C. 2019. Influence of fracture stratigraphy on hypogene cave development and fluid flow anisotropy in layered carbonates, NE Brazil. Marine and Petroleum Geology, 104207.

Bau, M. 1999. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta, 63(1), 67-77.

Bau, M., Schmidt, K., Pack, A., Bendel, V., Kraemer, D., 2018. The European Shale: An improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe. App. Geochem., 90: 142-149.

Boston, P J, Spilde, M N, Northup, D E, Melim, L A, Soroka, D S, Kleina, L G, Lavoie, K H, Hose, L 275 D, Mallory, L A, Dahm, C N, Crossey, L J and Schelble, R T. 2001. Cave biosignatures suites: 276 Microbes, minerals, and Mars. Astrobiol J, 1: 25–55.

Bodnar, R.J., 2003: Introduction to fluid inclusions.- In: Samson, I. et al. (eds.) Fluid inclusions: analysis and interpretation. Short course series, Vol. 32, Mineralogical Association of Canada, pp. 1-8, Québec.

Bottrell, S.H., 1991. Sulphur isotope evidence for the origin of cave evaporites at Ogof y Daren Cilau, south Wales. Mineral. Mag. 55, 209–210.

Bottrell, S.H., Crowley, S., Self, C., 2001. Invasion of a karst aquifer by hydrothermal fluids: evidence from stable isotopic compositions of cave mineralization. Geofluids 1: 103–121.

Brown, P.E., 1989: FLINCOR: A microcomputer program for the reduction and investigation of fluid inclusion data.- American Mineralogist, 74, 11, 1390-1393.

Brun, J. P., Sokoutis, D. (2007). Kinematics of the southern Rhodope core complex (North Greece). International Journal of Earth Sciences, 96(6), 1079-1099.

Burg, J.-P. (2012). Rhodope: from Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame. Journal of Virtual

Explorer 42, paper 1, 44 p.

Γιαννόπουλος, Β. (2000). Συμβολή στη μελέτη σύγχρονων και παλαιών περιβαλλόντων των πλέον σημαντικών ελληνικών σπηλαίων (Doctoral dissertation, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Σχολή Θετικών Επιστημών. Τμήμα Γεωλογίας και Γεωπεριβάλλοντος. Τομέας Ιστορικής Γεωλογίας και Παλαιοντολογίας), σελ. 439.

Caddeo, G. A., Railsback, L. B., De Waele, J., & Frau, F. (2015). Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: the interplay of substrate, water supply, degassing, and evaporation. Sedimentary Geology, 318, 130-141.

Coiffait. P.E.. Quinif. Y.. 1978. Fracturation et karstification d’un massif: l’exemple de l’Azerou el Kebir (Algérie du nord). International Journal of Speleology. 10:245–252.

Columbu, A., Audra, P., Gázquez, F., D'Angeli, I. M., Bigot, J. Y., Koltai, G., Chiesa, R., Yu, T.-L., Hu, H.-M., Shen, C.-C., Carbone, C., Heresanu, V., Nobécourt, J.-C. & De Waele, J., 2021. Hypogenic speleogenesis, late stage epigenic overprinting and condensation-corrosion in a complex cave system in relation to landscape evolution (Toirano, Liguria, Italy). Geomorphology, 376, 107561.

Columbu, A., Audra, P., Gázquez, F., D'Angeli, I. M., Bigot, J. Y., Koltai, G., Chiesa, R., Yu, T.-L., Hu, H.-M., Shen, C.-C., Carbone, C., Heresanu, V., Nobécourt, J.-C. & De Waele, J., 2021. Hypogenic speleogenesis, late stage epigenic overprinting and condensation-corrosion in a complex cave system in relation to landscape evolution (Toirano, Liguria, Italy). Geomorphology, 376, 107561.

Dandurand, G., Duranthon, F., Jarry, M., Stratford, D. J., & Bruxelles, L. (2019). Biogenic corrosion caused by bats in Drotsky's Cave (the Gcwihaba Hills, NW Botswana). Geomorphology, 327, 284-296.

D'Angeli, I. M., Parise, M., Vattano, M., Madonia, G., Galdenzi, S., & De Waele, J. (2019). Sulfuric acid caves of Italy: A review. Geomorphology, 333, 105-122.

Davis, D. G. (2000). Extraordinary features of Lechuguilla Cave, Guadalupe Mountains, New Mexico. Journal of Cave and Karst Studies, 62(2), 147-157.

De Waele, J., Audra, P., Madonia, G., Vattano, M., Plan, L., d'Angeli, I. M., . . . Nobécourt, J.-C. (2016). Sulfuric acid speleogenesis (SAS) close to the water table: examples from southern France, Austria, and Sicily. Geomorphology, 253, 452-467.

De Waele, J., Audra, P., Madonia, G., Vattano, M., Plan, L., d'Angeli, I. M., ... & Nobécourt, J. C. (2016). Sulfuric acid speleogenesis (SAS) close to the water table:

examples from southern France, Austria, and Sicily. Geomorphology, 253, 452-467.

Decker, D. D., Polyak, V. J., & Asmerom, Y., 2016. – Depth and timing of calcite spar and ‘spar cave’ genesis: Implications for landscape evolution studies. Caves

and karst across time. GSA Special Publication, 516, 103-111.

Di Benedetto, F., Costagliola, P., Benvenuti, M., Lattanzi, P., Romanelli, M., & Tanelli, G. (2006). Arsenic incorporation in natural calcite lattice: Evidence from electron spin echo spectroscopy. Earth and Planetary Science Letters, 246(3-4), 458-465.

Dotsika, E., Poutoukis, D., Michelot, J.L. & W. Kloppmann, 2006: Stable isotope and chloride, boron study for tracing sources of boron contamination in groundwater: boron contents in fresh and thermal water in different areas in Greece. Water, Air, and Soil Pollution, 174, 19–32.

Dublyansky, Y. V. (2013). 6.6 Karstification by Geothermal Waters. In J. Schroder & A. Frumkin (Eds.), Treatise on geomorphology (Vol. 6, pp. 57-71). San Diego, CA.

Dublyansky, Y. V., & Spötl, C. 2015. Condensation-corrosion speleogenesis above a carbonate-saturated aquifer: Devils Hole Ridge, Nevada. Geomorphology, 229, 17-29.

Etiope, G., Papatheodorou, G., Christodoulou, D., Favali, P., & Ferentinos, G. (2006). Gas hazard induced by methane and hydrogen sulfide seepage in the NW Peloponnesus petroliferous basin (Greece). TAO: Terrestrial, Atmospheric and Oceanic Sciences, 16(4), 897.

Fairchild, I. J., & Hartland, A. 2010. Trace element variations in stalagmites: controls by climate and by karst system processes. EMU Notes in Mineralogy, 10(7), 259-287.

Fairchild, I. J., Spötl, C., Frisia, S., Borsato, A., Susini, J., Wynn, P. M., & Cauzid, J. 2010. Petrology and geochemistry of annually laminated stalagmites from an Alpine cave (Obir, Austria): seasonal cave physiology. Geological Society, London, Special Publications, 336(1), 295-321.

Forti, P. 1996. Speleothems and cave minerals in gypsum caves. International Journal of Speleology, 25(3), 7.

Forti, P. 1993. I quarzi dendritici suI gesso. Ipogea 1988-1993, p. 16-17.

Forti, P., 1994. The role of sulfate-sulfite reactions in gypsum speleogenesis: 1st contribute. Abstract of Papers "Breakthroughs in Karst Geomicrobiology and Redox Geochemistly, Colorado Spring, p.21-22.

Friedman I. & O'Neil J. R. 1977. Data of geochemistry: Compilation of stable isotope fractionation factors of geochemical interest (Vol. 440): US Government Printing Office.

Galdenzi, S., & Menichetti, M. (1995). Occurrence of hypogenic caves in a karst region: examples from central Italy. Environmental Geology, 26(1), 39-47.

Galdenzi, S., Maruoka, T., 2003. Gypsum deposits in the Frasassi caves, Central Italy. J. Cave Karst Stud. 65, 111–125.

Galdenzi. S., Menichetti. M.. 2017. Hypogenic Caves in the Apennine Mountains (Italy). In Hypogene Karst Regions and Caves of the World, Klimchouk. A.. Palmer. A. N.. Waele. J. D.. Auler. A. S.. Audra. P.. Eds.. International Publishing. 127-142. Springer.

Gamaletsos, P., Godelitsas, A., Dotsika, E., Tzamos, E., Göttlicher, J., & Filippidis, A. (2013). Geological sources of As in the environment of Greece: a review. Threats to the quality of groundwater resources: prevention and control, 77-113.

Gázquez, F., Calaforra, J.M., Forti, P., 2011. Black Mn-Fe cr usts as markers of abrupt palaeoenvironmental changes in El Soplao Cave (Cantabria, Spain), International Journal of Speleology 40, 163–169.

Gázquez, F., Calaforra, J.M., Forti, P., Rull, F., Martínez-Frías, J., 2012b. Gypsum-carbonate speleothems from Cueva de las Espadas (Naica mine, Mexico): mineralogy and palaeohydrogeological implications, International Journal of Speleology 41, 211–220.

Gázquez. F., Calaforra. J.-M., Rull. F., 2012. Boxwork and ferromanganese coatings in hypogenic caves: an example from Sima de la Higuera Cave (Murcia. SE Spain). Geomorphology. 177. 158-166.

Georgiadis, G., Tranos, M. & Mountrakis, D.M., 2007. Late-And Post-Alpine Tectonic Evolution of the Southern Part of the Athos Peninsula, Northern Greece. Bulletin of the Geological Society of Greece vol. XXXX, Proceedings of the 11th International Congress, Athens, May, 2007, p. 309 – 320.

German, C. R., Elderfield, H., (1990). Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography, 5.5: 823-833.

Goldstein, R.H. & T.J. Reynolds, (1994). Systematics of fluid inclusions in diagenetic minerals.- SEPM Short Course 31, SEPM Society for Sedimentary Geology, pp.199, Tulsa.

Golfinopoulos, S. K., Varnavas, S. P., & Alexakis, D. E. (2021). The status of arsenic pollution in the Greek and Cyprus environment: An overview. Water, 13(2), 224.

Hill C.A. & Forti P., (1997). Cave minerals of the world (2nd ed.). National Speleological Society, Huntsville, Alabama, 463 p.

Hill, C.A., (1987). Geology of Carlsbad cavern and other caves in the Guadalupe Mountains, New Mexico and Texas. New Mex. Bur. Min. Mineral Resour. Mem. 117, 1–150.

Hill, C. (1995). Sulfur redox reactions: hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst in the Delaware Basin, New Mexico and Texas. Environmental Geology, 25(1), 16-23.

Hose, L. D., Palmer, A. N., Palmer, M. V., Northup, D. E., Boston, P. J., & DuChene, H. R. (2000). Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chemical Geology, 169(3-4), 399-423.

Ηλιόπουλος, Ι. (2006). Πετρογένεση των μεταμορφωμένων πετρωμάτων της νήσου Ικαρίας. Διδακτορική Διατριβή, Τμήμα Γεωλογίας, Πανεπιστήμιο Πατρών, σ. 439.

Θωμαΐδου, Ε. (2009). Η γεωλογική δομή της νήσου Λέσβου (Doctoral dissertation, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Σχολή Θετικών Επιστημών. Τμήμα Γεωλογίας. Τομέας Γεωλογίας), σ. 200.

Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denèle, 54 ΒΑΣΙΛΗΣ ΜΕΛΦΟΣ - ΠΑΝΑΓΙΩΤΗΣ

ΒΟΥΔΟΥΡΗΣ Y., Brun, J.-P., Philippon, M., Paul, A., Salaün, G., Karabulut, H., Piromallo, C., Monié, P., Gueydan, F., Okay, A.I., Oberhänsli, R., Pourteau, A.,

Augier, R., Gadenne, L., Driussi, O. (2013). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 1-33.

Katrivanos, E., Kilias, A., & Mountrakis, D. (2016). Deformation history and correlation of Paikon and Tzena terranes (Axios Zone, Central Macedonia, Greece). Bulletin of the Geological Society of Greece, 50(1), 34-45.

Katsoyiannis, I. A., Hug, S. J., Ammann, A., Zikoudi, A., & Hatziliontos, C. (2007). Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment. Science of the Total Environment, 383, 128–140.

Katsoyiannis, I. A., Mitrakas, M., & Zouboulis, A. I. (2015). Arsenic occurrence in Europe: Emphasis in Greece and description of the applied full-scale treatment plants. Desalination and Water Treatment, 54(8), 2100-2107.

Kauffman, G., Kockel, F., Mollat, H., (1976). Notes on the stratigraphic and paleogeographic position of the Svoula Formation in the Innermost Zone of the Hellenides (Northern Greece). Bull. Soc. Geol. France, 7, t. XVIII, no 2. 225-230.

Kelepertsis, A., Alexakis, D., & Skordas, K. (2006). Arsenic, antimony and other toxic elements in the drinking water of Eastern Thessaly in Greece and its possible effects on human health. Environmental Geology, 50, 76–84.

Kempe. S.. 1971. Speläogenetisch wirksames CO2 durch Verwitterung von Siderit? - Mitteilungen des Verbandes der deutschen Höhlen- und Karstforscher. 18. 38.

Kempe. S., Bauer. I., Glaser. S.. 2017. Hypogene Caves in Germany. Geological and Geochemical Background. In Hypogene Karst Regions and Caves of the World. Klimchouk. A.. Palmer. A. N.. Waele. J. D.. Auler. A. S.. Audra. P.. Eds.. 329-347. Springer.

Kesler, E.S., 2005. Fluids in Planetary Systems:ore-Forming Fluids. Elements, 1(1): 13–18.

Kilias, A. (2021). The Hellenides: A multiphase deformed orogenic belt, its structural architecture, kinematics and geotectonic setting during the Alpine orogeny: Compression vs Extension, the dynamic peer for the orogen making. A synthesis. J. Geol. Geosci, 5, 1-56.

Kilias, A. A., Tranos, M. D., & Chaves, F. M. A. (2002). Extensional collapse of the Hellenides: a review.: a review. Revista de la Sociedad Geológica de España, 15(3), 129-139.

Klimchouk, A. (2009). Morphogenesis of hypogenic caves. Geomorphology, 106(1), 100-117.

Klimchouk, A. 2017. Types and Settings of Hypogene Karst. In: Hypogene Karst Regions and Caves of the World, eds. 1-39. (Springer).

Klimchouk, A., Auler, A. S., Bezerra, F. H., Cazarin, C. L., Balsamo, F., & Dublyansky, Y. (2016). Hypogenic origin, geologic controls and functional organization of a giant cave system in Precambrian carbonates, Brazil. Geomorphology, 253, 385-405.

Klimchouk, A., Palmer, A. N., De Waele, J., Auler, A. S., & Audra, P. (Eds.). 2017. Hypogene karst regions and caves of the world. Springer.

Klimchouk, A. B., Eftimi, R., & Andreychouk, V. N. (2022). Hypogene karst in the External Albanides and its pronounced geomorphological effect. Paper presented at the 18th International Congress of Speleology, France Savoie Mont-Blanc.

Kockel F., Mollat H. (1978a). Geologic map of Greece. Thessaloniki sheet scale 1:50 000. Publication Department of Geological Maps of I.G.M.R.

Kockel F., Mollat H. (1978b). Geologic map of Greece. Thermi sheet scale 1:50 000. Publication Department of Geological Maps of I.G.M.R.

Kouras, A., Katsoyiannis, I., & Voutsa, D. (2007). Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece. Journal of Hazardous Materials, 147, 890–899.

Kouris. Ch.. 1980. Geologic map of Greece. Mesi-Xylagani sheet. scale 1:50.000. Inst Geol Miner. Expl. Athens. I.G.M.E. 1987. Geological map of Greece 1:50.000. Achladokhorion sheet.

Kuhn, T., Bau, M., Blum, N., Halbach, P., 1998. Origin of negative Ce anomalies in mixed hydrothermal–hydrogenetic Fe–Mn crusts from the Central Indian Ridge. Earth Planet. Sci. Lett., 163.1-4: 207-220.

Lambrakis, N., & Kallergis, G. (2005). Contribution to the study of Greek thermal springs: hydrogeological and hydrochemical characteristics and origin of thermal

waters. Hydrogeology Journal, 13(3), 506-521.

Lazaridis, G., 2005. Speleological research in the loutra arideas area (Macedonia, Greece). In: Neue Forschungen zum Höhlenbären in Europa. - Naturhistorische Gesellschaft Nürnber e. V., 45: 57-64, Nürnberg.

Λαζαρίδης, Θ. Γ., 2005. Παρατηρήσεις επί των δίσκων του σπηλαίου του Κύκλωπα Πολύφημου στη Μαρώνεια (νομός Ροδόπης) Δελτίον της Ελληνικής Γεωλογικής Εταιρίας, 37, 168-178.

Lazaridis, G., 2006a. Almopia Speleopark (Pella, Macedonia, Greece): Morphology-Speleogenesis of the caves. Scientific annals, School of geology, Aristotle University of Thessaloniki, Special Volume 98, p. 33-40, Thessaloniki.

Lazaridis, G., 2006b. Speleology-speleogenesis. In: A guide to Speleopark of Almopia. Geology-Paleontology-Speleology. Tsoukala, E. (ed). pp. 42-60, Aridea.

Lazaridis, G., 2017. Hypogene Speleogenesis in Greece. In A. Klimchouk, A. N. Palmer, J. De Waele, A. S. Auler & P. Audra (Eds.), Hypogene Karst Regions and Caves of the World, pp. 225-239. (Springer).

Lazaridis, G., (2022). Definition and process-based classification of caves. Acta Carsologica, 51(1), 65-77.

Lazaridis, G., & Melfos, V., 2021. Morphological features and formation conditions of The Almopia Speleopark caves (Loutra Almopias, N. Greece). Acta Carsologica, 50(1), 37-48.

Lazaridis G., Papadopoulou, L. Melfos, V. and Voudouris P., (accepted[a]). Description of manganese events in hydrothermal hypogene speleogenesis. Journal of Cave and Karst Studies.

Lazaridis G., Papadopoulou, L. Melfos, V. and Voudouris P., (accepted[b]). Investigating the formation of quartz speleothems within the karstic Theochari Cave (Greece). Journal of Cave and Karst Science.

Lazaridis, G., Papadopoulou, L., Melfos V. and Voudouris, P., 2023. Iron-oxide crusts in 2 hypogene caves of Greece. Journal of Cave and Karst Studies, 85(2), 51-61.

Lazaridis, G., Melfos V. & L., Papadopoulou, 2011. The first cave occurrence of orpiment (As2S3) from the sulphuric acid caves of Aghia Paraskevi. International Journal of Speleology, 40(2), p. 133-139.

Lazaridis, G., Zhalov Α., Makrostergios L., Genkov A., Gyorev V., Stoichkov K., Radulescu A., Agapov I., Kaminskiy S., 2014a. Hydrothermal caves in Athos Mt. (Agion Oros). Proceedings of the speleological conference in Sofia, March, 28-30, p.

Lazaridis, G., Zhalov Α., Makrostergios L., Genkov A., Gyorev V., Stoichkov K., Radulescu A., Agapov I., Kaminskiy S., 2014b. Hydrothermal caves in Athos Mt. (Agion Oros). Euro-Speleo Magazine, 2. (in English, Greek, Française, Bulgarian and Russian).

Lazaridis, G., Kalogeropoulos, I. and Gkeme A., 2014c. Hypogene morphology of caves in Evros, Greece (Didimoteicho, Koufovouno, Strimni, Avantas and Samothraki Island). In Proceedings of the Balkan Speleological Conference “Sofia 2014“, p 41-46.

Lazaridis, G., I. Kalogeropoulos, I. & D. Dimitraki D., 2014d. Caves in eastern Almopia (n. Greece) and hypogene speleogenesis. Proceedings of the V International Scientific Correspondence Conference. Speleology and Spelestology. To the centenary of A.V. Ryumin`s birth, 101-106, Nabereznye Chelny.

Lohnert E.P. & Papakonstantinou A., 1988 – Relationship between karst and porous aquifers on Chalkidiki peninsula Greece. Proceedings of the IAH 21st Congress, Guilin, 21: 321-326.

Luiszer. F. G. 1994. Speleogenesis of cave of the winds. Manitou Springs. Colorado. In Breakthroughs in karst geomicrobiology and redox geochemistry. Sasowsky. I. D.. Palmer. M. V.. Eds. Karst Water Institute. 91-109.

Macalady, J. L., Lyon, E. H., Koffman, B., Albertson, L. K., Meyer, K., Galdenzi, S., & Mariani, S. (2006). Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Applied and Environmental Microbiology, 72(8), 5596-5609.

Mádl-Szonyi. J., Eross. A., Tóth. 2017. Fluid Flow Systems and Hypogene Karst of the Transdanubian Range. Hungary-With Special Emphasis on Buda Thermal Karst. In Hypogene Karst Regions and Caves of the World , Klimchouk. A.. Palmer. A. N.. Waele. J. D.. Auler. A. S.. Audra. P.. Eds., Springer International Publishing. 267-278.

Malinin S.D., (1979). Fizicheskaja khimija gidrotermalnikh sistem s uglekislotoi (Physical chemistry of hydrothermal systems with carbon dioxide). Moscow: Nauka. 111 pp.

Marais, E., Martini, J., & Irish, J. (1995). Gâuab As (Namibie occidentale), une grotte dans de la dolomie mégacristalline hydrothermale. Karstologia, 25(1), 51-54.

Martini. J.. 2017. Hypogene Caves in Germany. Geological and Geochemical Background. In Hypogene Karst Regions and Caves of the World. Klimchouk. A.. Palmer. A. N.. Waele. J. D.. Auler. A. S.. Audra. P.. Eds.. 865-878. Springer.

Maslyn. R. M., DuChene. H. R., Luiszer. F. G.. 2017. Structural Settings and Hypogenic Flow Paths for Three Colorado Caves. In Hypogene Karst Regions and Caves of the World. Klimchouk. A.. Palmer. A. N.. Waele. J. D.. Auler. A. S.. Audra. P.. Eds.. 575-590. Springer.

Melfos, V., Voudouris, P., 2017. Fluid evolution in Tertiary magmatic-hydrothermal ore systems at the Rhodope metallogenic province, NE Greece. A review. Geologia Croatica, 69.1: 157-167.

Μέλφος, Β. (1995). Έρευνα των βασικών και ευγενών μετάλλων στην περιροδοπική Ζώνη της Θράκης, Διδακτορική Διατριβή, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ).

Mercier JL, Vergely P (1984) Geological map of Greece in 1:50.000 scale. Map sheet Edessa. Institute of Geology and Mineral Exploration, Athens.

Μερδενισιάνος, Κ. (1994). Ιαματικά σπήλαια" Καϊάφα" και" Κουνουπελιού" του Νομού Ηλείας: ιαματικό σπήλαιο" Ανιγρίδων Νυμφών" λουτρών Καϊάφα νομού Ηλείας. Δελτίον Ελληνικής Σπηλαιολογικής Εταιρίας, 21, 413-426.

Μιγκήρος Π. Γ., 1998. Συνοπτική περιγραφή του ορυκτού πλούτου της Θεσσαλίας, γεωτεκτονική ένταξη – αξιοποίηση πόρων. Ορυκτός πλούτος, 108, 15-26.

Mostafa. A. A.-F. 2012. Caves of the Nile Valley (Governorate of Assiut. Middle Egypt): a long-term interaction between human societies and their environment. Géomorphologie. 18. 37-44.

Mountrakis, D., Thomaidou, E., Zouros, N., & Kilias, A. (2001). Kinematic analysis and tertiary evolution of the Lesvos ophiolites and metamorphic sole (Aegean sea, Greece). Bulletin of the Geological Society of Greece, 34(1), 267-274.

Onac, B. P., and Forti, P. (2011). State of the art and challenges in cave minerals studies. Studia UBB Geologia, 56(1), 33-42.

Onac, B. P., Sumrall, J., Tămaş, T., Cizmaş, C., Dârmiceanu, V., Povară, I., & Nicoliță, L. (2009). Mineralogical and stable isotope investigations of minerals from caves on Cerna Valley (Romania). In Proceedings of the 15th International Congress of Speleology (Vol. 1, pp. 318-323). Kerrville, Texas.

Onac, B.P., Wynn, J.G., Sumrall, J.B., 2011. Tracing the sources of cave sulfates: a unique case from Cerna Valley, Romania. Chem. Geol. 288:105–114. https://doi.org/ 10.1016/j.chemgeo.2011.07.006.

Osborne, R. A. L., 2004. The troubles with cupolas. Acta carsologica, 33(2), 9-36.

Palmer A. N., 2000. Hydrogeologic control of cave patterns. In: Klimchouk A.B., Ford D.C., Palmer A.N. & Dreybrodt W. (Eds.) Speleogenesis: Evolution of Karst

Aquifers. National Speleological Society, Huntsville: 77-90.

Papageorgakis, I., Koumantakis, I., 1978. Hydrogeological study of Halkidiki and the basins of Anthemountas and Epanomi, Thessaloniki (in Greek), Ministry of Agriculture, p. 59-88, c.5, Athens.

Pavlides, S., Mountrakis, D., Kilias, A. and Tranos, M.,1990. The role of strikeslip movements in the extensional area of the northern Aegean (Greece), Annale Tectonique, 4, 196-211.

Pingitore Jr, N. E., & Eastman, M. P. (1984). The experimental partitioning of Ba2+ into calcite. Chemical Geology, 45(1-2), 113-120.

Plan, L., Tschegg, C., De Waele, J., & Spötl, C. (2012). Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria). Geomorphology, 169, 45-54.

Polyak, V. J., McIntosh, W. C., Guven, N., & Provencio, P. (1998). Age and origin of Carlsbad Cavern and related caves from 40Ar/39Ar of alunite. Science, 279(5358), 1919-1922.

Polyak, V., Hill, C., & Asmerom, Y. (2008) – Age and evolution of the Grand Canyon revealed by U-Pb dating of water table-type speleothems. Science, 319(5868), 1377-1380.

Polyak, V. J., DuChene, H. R., Davis, D. G., Palmer, A. N., Palmer, M. V., & Asmerom, Y. (2013). Incision history of Glenwood Canyon, Colorado, USA, from the uranium-series analyses of water-table speleothems. International Journal of Speleology, 42(3), 193-202.

Polyak, V.J., Asmerom, Y., Hill, C., Palmer, A.N., Provencio, P.P., Palmer, M.V., McIntosh, W.C., Decker, D.D., Onac B.P., (2014). Isotopic studies of byproducts of hypogene speleogenesis and their contribution to the geologic evolution of the western United States. In: Klimchouk, A., Sasowsky, I.D., Mylroie, J., Engel, S.,

Engel, A.S. (eds) Hypogene cave morphologies, vol 18. Karst Water Institute special publication, pp 88–96.

Poulianos N.A., 2007 – The cave of the petralonian archanthropinae (8th edition), ISBN 960-86804-3-3, 97 p.

Puşcaş, C. M., Onac, B. P., Effenberger, H. S., & Povară, I. (2013). Tamarugite-bearing paragenesis formed by sulphate acid alteration in Diana Cave, Romania. European Journal of Mineralogy, 25(3), 479-486.

Πομώνης, Π. (2003). Οι οφιόλιθοι της οροσειράς του Κόζιακα: γεωλογική μελέτη-πετρογενετική εξέλιξη-γεωτεκτονική ερμηνεία (Doctoral dissertation, Πανεπιστήμιο Πατρών. Σχολή Θετικών Επιστημών. Τμήμα Γεωλογίας. Τομέας Ορυκτών Πρώτων Υλών).

Rigakis N., Parassis A. & Georgala D., 1995 – The origin of hydrocarbons and the source rock potential in the Thermaikos basin, Eastern Greece. Abstracts of the Conference and Exhibition: Modern exploration and improved oil and gas recovery methods, Cracow, Poland, p. 174-175, Geosynoptics Society GEOS.

Rigakis N., Roussos N., Kamberis E. & Proedrou P., 2001 – Hydrocarbon gas accumulations in Greece and their origin. Bulletin of the Geological Society of Greece, 34 (3): 1265-1273.

Roedder, E., 1984: Fluid Inclusions.- Reviews in Mineralogy, 12, 1,646.

Roussos N., 1993 – The gas field of Epanomi (Thessaloniki). An example of a fractured reservoir. Bulletin of the Geological Society of Greece, 28 (2): 507-523. (in Greek with English abstract)

Sarbu, S. M., & Lascu, C. (1997). Condensation corrosion in Movile cave, Romania. Journal of Caves and Karst Studies, 59, 99-102.

Sharp, Z. (2017). Principles of stable isotope geochemistry. Pearson Education, Upper Saddle River, NJ.

Sotiriadis L., 1969 - Über der Borhaltige Salzquelle und der Dampfe am Agia Paraskevi. SW Kassandra, Chalkidiki. Scientific Annals, Faculty of Physics and

Mathematics, A.U.TH., 11: 1-21.

Sotiriadis L., Psilovikos A. & Vavliakis E., 1982 - Development of subsurface karst in the area of Agia Paraskevi. Kassandra-Chalkidiki. Bulletin of the Hellenic Speleological Society, 18: 427-439.

Spirakis, C. and Cunningham, K. (1992). Genesis of sulfur deposits in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Native Sulfur–Developments in Geology and Exploration: American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), 139-145.

Spötl, C., Dublyansky, Y., Meyer, M., & Mangini, A. (2009). Identifying low-temperature hydrothermal karst and palaeowaters using stable isotopes: a case study from an alpine cave, Entrische Kirche, Austria. International Journal of Earth Sciences, 98(3), 665-676.

Temovski, M., Audra, P., Mihevc, A., Spangenberg, J. E., Polyak, V., McIntosh, W., & Bigot, J. Y. (2013). Hypogenic origin of Provalata Cave, Republic of Macedonia: a distinct case of successive thermal carbonic and sulfuric acid speleogenesis. International Journal of Speleology, 42(3), 235.

Temovski, M., Futó, I., Túri, M., & Palcsu, L. (2018). Sulfur and oxygen isotopes in the gypsum deposits of the Provalata sulfuric acid cave (Macedonia). Geomorphology, 315, 80-90.

Tranos, M. D., 2011. Strymon and Strymonikos Gulf basins (Northern Greece): implications on their formation and evolution from faulting. J. Geodyn.,51.4: 285-305.

Τρανός, Μ. (2011). Γεωλογικές χαρτογραφήσεις: γεωλογικοί χάρτες και τομές. University Studio Press, σελ. 306.

Tyrovola, K., Nikolaidis, N. P., Veranis, N., Kallithrakas-Kontos, N., & Koulouridakis, P. E. (2006). Arsenic removal from geothermal waters with zero-valent iron—effect of temperature, phosphate and nitrate. Water Research, 40, 2375–2386.

Tziritis, E., & Kelepertzis, A. (2011). Trace and ultra-trace element hydrochemistry of Lesvos thermal springs. In Advances in the research of aquatic environment (pp. 185-192). Springer, Berlin, Heidelberg.

Uygur, V., & Rimmer, D. L. (2000). Reactions of zinc with iron‐oxide coated calcite surfaces at alkaline pH. European Journal of Soil Science, 51(3), 511-516.

Φυτίκας, Μ. Δ., & Ανδρίτσος, Ν. (2004). Γεωθερμία. Εκδόσεις ΤΖΙΟΛΑ, σ. 416.

Vaxevanopoulos, M. and Melfos, V, 2010. Hypogenic features in Maronia cave, Thrace, Greece. Evidence from morphologies and fluid inclusions. Bulletin of the Geological Society of Greece, 43(2), pp.948-957.

Vött, A. (2007). Relative sea level changes and regional tectonic evolution of seven coastal areas in NW Greece since the mid-Holocene. Quaternary Science Reviews, 26(7-8), 894-919.

Voudouris, P., Mavrogonatos, C., Melfos, V., Spry, P.G., Magganas, A., Alfieris, D., Soukis, K., Tarantola, A., Periferakis, A., Kołodziejczyk, J., C. Scheffer, A. Repstock, M. Zeug, 2019. The geology and mineralogy of the Stypsi porphyry Cu-Mo-Au-Re prospect, Lesvos Island, Aegean Sea, Greece. Ore Geol. Rev, 112, 103023.

Vougioukalakis, G. (2002). Petrological, geochemical, volcanological study of the Almopias Pliocene volcanic formations and their correlation with the geothermal manifestations in the area. Ph.D Thesis, Aristotle University of Thessaloniki, pp. 303.

Veni, G., Poulianos, N.A., Golubovic-Deligianni, M. and Poulianos, A.N., 2009. Preliminary hydrogeologic survey of Petralona Cave, Chalkidiki, Greece. Proceedings of the 15th International Congress of Speleology, William B. White, ed., Kerrville, Texas, 1,717-1,722.

Voutsa D., Dotsika E., Kouras A., Poutoukis D., & Kouimtzis T., 2009 – Study on distribution and origin of boron in groundwater in the area of Chalkidiki, Northern Greece by employing chemical and isotopic tracers. Journal of Hazardous Materials, 172 (2): 1264-1272.

Webb, J. A. (2021). Supergene sulphuric acid speleogenesis and the origin of hypogene caves: evidence from the Northern Pennines, UK. Earth Surface Processes and Landforms, 46(2), 455-464.

Williams, A. J., Alpers, C. N., Sumner, D. Y., Campbell, K. M., 2017. Filamentous hydrous ferric oxide biosignatures in a pipeline carrying acid mine drainage at Iron Mountain Mine, California. Geomicrobiol. J., 34.3: 193-206.

Williams, A. J., Sumner, D. Y., Alpers, C. N., Karunatillake, S., Hofmann, B. A., 2015. Preserved filamentous microbial biosignatures in the Brick Flat gossan, Iron Mountain, California. Astrobiology, 15.8: 637-668.

Wong, K., Draper, K., Feng, L., Hawkins, P., Oakley, S., & Zheng, X. X. (2019). The geology of Mount Orliakas and the Pindos Ophiolite, Greece. Bulletin of the Geological Society of Greece, 54(1), 144.

Zachara, J. M., Kittrick, J. A., & Harsh, J. B. (1988). The mechanism of Zn2+ adsorption on calcite. Geochimica et Cosmochimica Acta, 52(9), 2281-2291.

Zarasvandi, A., Rezaei, M., Sadeghi, M., Pourkaseb, H., & Sepahvand, M. (2016). Rare-earth element distribution and genesis of manganese ores associated with Tethyan ophiolites, Iran: A review. Mineralogical Magazine, 80(1), 127-142.

Zelilidis, A., Piper, D. J. W., & Kontopoulos, N. (2002). Sedimentation and basin evolution of the Oligocene-Miocene Mesohellenic basin, Greece. Aapg Bulletin, 86(1), 161-182.

Zkeri, E., Aloupi, M., & Gaganis, P. (2015). Natural occurrence of arsenic in groundwater from Lesvos Island, Greece. Water, Air, & Soil Pollution, 226(9), 1-16.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.