Εξώφυλλο

Τα κοιτάσματα των μετάλλων για την αποθήκευση ενέργειας στις μπαταρίες = The deposits of metals for energy storage in batteries.

Μαρία Χρήστος Αραμπατζόγλου

Περίληψη


Ο πλανήτης σήμερα βιώνει τεράστιες τεχνολογικές αλλαγές. Η ενεργειακή μετάβαση με χαμηλές εκπομπές διοξειδίου του άνθρακα τίθεται σε προτεραιότητα και καθίσταται σπουδαία κινητήρια δύναμη της παγκόσμιας ζήτησης για μέταλλα μπαταριών. Λόγω της στροφής αυτής σε ανανεώσιμες πηγές ενέργειας, τα μέταλλα μπαταριών αποκτούν όλο και μεγαλύτερη αξία, σε βαθμό που πλέον αποτελούν αιτία πυροδότησης γεωπολιτικών εντάσεων μεταξύ χωρών. Στην παρούσα διπλωματική, θα αναλυθεί το λίθιο, το νικέλιο και το κοβάλτιο, τρία απ’ τα σημαντικότερα μέταλλα μπαταριών, ως προς τις χρήσεις, την οικονομική τους εξέλιξη, τις μεγαλύτερες χώρες παραγωγούς και φυσικά, θα γίνει ενδελεχής μελέτη των σημαντικότερων κοιτασμάτων των μετάλλων αυτών. Άλλωστε, λαμβάνοντας υπόψη την όλο και αυξανόμενη ζήτηση τους, μια πιο βαθιά και κριτική ματιά στα κύρια κοιτάσματα των στοιχείων κρίνεται απαραίτητη.
     
     The planet today is experiencing huge technological changes. The low-carbon energy transition is becoming a priority and is a major contributor to the global demand for battery metals. Due to this shift to renewable energy sources, battery metals are becoming increasingly important, to the extent that they are now triggering geopolitical tensions between countries. In this thesis, lithium, nickel and cobalt, three of the most important battery metals, will be analyzed in regard to their uses, their economic evolution, the major producing countries and, of course, there will be a thorough report on the most important deposits of these metals. Besides, considering their steadily increasing demand, a deeper and more critical look at the major deposits of the elements is considered necessary.

Πλήρες Κείμενο:

PDF

Αναφορές


Abdalla, A. M., Abdullah, M. F., Dawood, M. K., Wei, B., Subramanian, Y., Azad, A. T., ... & Azad, A. K. (2023). Innovative lithium-ion battery recycling: Sustainable process for recovery of critical materials from lithium-ion batteries. Journal of Energy Storage, 67, 107551.

Altiparmak, S. O. (2023). China and lithium geopolitics in a changing global market. Chinese Political Science Review, 8(3), 487-506.

Barnes, S. J., Yudovskaya, M. A., Iacono-Marziano, G., Vaillant, M. L., Schoneveld, L. E., & Cruden, A. R. (2023). Role of volatiles in intrusion emplacement and sulfide deposition in the supergiant Norilsk-Talnakh Ni-Cu-PGE ore deposits. Geology, 51(11), 1027-1032.

Bos, V., Marie, F., & Gunzburger, Y. (2024). Lithium-based energy transition through Chilean and Australian miningscapes. The Extractive Industries and Society, 17, 101384.

Boxall, N. J., King, S., Cheng, K. Y., Gumulya, Y., Bruckard, W., & Kaksonen, A. H. (2018). Urban mining of lithium-ion batteries in Australia: Current state and future trends. Minerals Engineering, 128, 45-55.

Bubar, ONTARIO, M. I., & TORONTO’S, G. R. The Battery Metal Supply Chain. Minerals Engineering, 163, 106743.

Camurri, M., Colasanti, A., & Internazionale, M. The Emergence of Lithium as a Crucial Metal: Present and Future Environmental and Geopolitical Implications.

Chen, J., Luo, Q., Sun, X., Zhang, Z., & Dong, X. (2023). The impact of renewable energy consumption on lithium trade patterns: An industrial chain perspective. Resources Policy, 85, 103837.

Choe, G., Kim, H., Kwon, J., Jung, W., Park, K. Y., & Kim, Y. T. (2024). Re-evaluation of battery-grade lithium purity toward sustainable batteries. nature communications, 15(1), 1185.

Ding, Y., Cano, Z. P., Yu, A., Lu, J., & Chen, Z. (2019). Automotive Li-ion batteries: current status and future perspectives. Electrochemical Energy Reviews, 2, 1-28.

Dominish, E., Florin, N., & Wakefield-Rann, R. (2021). Reducing new mining for electric vehicle battery metals: responsible sourcing through demand reduction strategies and recycling.

Farahbakhsh, J., Arshadi, F., Mofidi, Z., Mohseni-Dargah, M., Kök, C., Assefi, M., ... & Razmjou, A. (2024). Direct lithium extraction: A new paradigm for lithium production and resource utilization. Desalination, 575, 117249.

Flexer, V., Baspineiro, C. F., & Galli, C. I. (2018). Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment, 639, 1188-1204.

Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International journal of environmental research and public health, 17(3), 679.

Godfrey, L., & Álvarez-Amado, F. (2020). Volcanic and saline lithium inputs to the Salar de Atacama. Minerals, 10(2), 201.

Gounaris, K. (2019). Applicability of digital tools for the assessment of the global mining industry of battery raw materials (Doctoral dissertation, TU Bergakademie Freiberg).

Holmes, J. S., & Grigson, J. L. (2019). Pilgangoora Lithium-Tantalum Project: deposit geology and new constraints on rare-metal pegmatite genesis. ASEG Extended Abstracts, 2019(1), 1-6.

Horn, S., Gunn, A. G., Petavratzi, E., Shaw, R. A., Eilu, P., Törmänen, T., ... & Wall, F. (2021). Cobalt resources in Europe and the potential for new discoveries. Ore Geology Reviews, 130, 103915.

Kamran, M., Raugei, M., & Hutchinson, A. (2021). A dynamic material flow analysis of lithium-ion battery metals for electric vehicles and grid storage in the UK: Assessing the impact of shared mobility and end-of-life strategies. Resources, Conservation and Recycling, 167, 105412.

Keays, R. R., & Lightfoot, P. C. (2020). Mafic intrusions in the footwall of the Sudbury Igneous Complex: origin of the Sudbury impact melt sheet and its associated ore deposits. Ore Geology Reviews, 120, 103435.

Kesler, S. E., Gruber, P. W., Medina, P. A., Keoleian, G. A., Everson, M. P., & Wallington, T. J. (2012). Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore geology reviews, 48, 55-69.

Li, L. J., Li, D. X., Mao, X. C., Liu, Z. K., Lai, J. Q., Su, Z., ... & Wang, Y. Q. (2023). Evolution of magmatic sulfide of the giant Jinchuan Ni-Cu deposit, NW China: Insights from chalcophile elements in base metal sulfide minerals. Ore Geology Reviews, 105497.

Li, W., Gao, Y., & Bagas, L. (2024). Ore forming process of magmatic Nickel-Copper-Cobalt sulfide deposits in China. Fundamental Research.

Liu, W., Oh, P., Liu, X., Lee, M. J., Cho, W., Chae, S., ... & Cho, J. (2015). Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries. Angewandte Chemie International Edition, 54(15), 4440-4457.

Liu, W., Liu, W., Li, X., Liu, Y., Ogunmoroti, A. E., Li, M., ... & Cui, Z. (2021). Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000–2018. Resources, Conservation and Recycling, 164, 105122.

Long, Y., Lu, A., Gu, X., Chi, G., Ye, L., Jin, Z., & Zhang, D. (2020). Cobalt enrichment in a paleo-karstic bauxite deposit at Yunfeng, Guizhou Province, SW China. Ore Geology Reviews, 117, 103308.

Martínez, J. M., Escudero, C., Rodríguez, N., Rubin, S., & Amils, R. (2021). Subsurface and surface halophile communities of the chaotropic Salar de Uyuni. Environmental Microbiology, 23(7), 3987-4001.

Mazer, K., Mills, S., & Bouard, S. (2022). Pathways to nickel mining employment among Inuit women in Nunavik, Canada and Kanak women in New Caledonia: A comparative study. The Extractive Industries and Society, 10, 101088.

de Oliveira, S. B., & Bertossi, L. G. (2023). 3D structural and geological modeling of the Kwatebala Cu–Co deposit, Tenke-Fungurume district, Democratic Republic of Congo. Journal of African Earth Sciences, 199, 104825.

Olivetti, E. A., Ceder, G., Gaustad, G. G., & Fu, X. (2017). Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule, 1(2), 229-243.

Pesaran, A. A. (2023). Lithium-Ion Battery Technologies for Electric Vehicles: Progress and challenges. IEEE Electrification Magazine, 11(2), 35-43.

Phelps-Barber, Z., Trench, A., & Groves, D. I. (2022). Recent pegmatite-hosted spodumene discoveries in Western Australia: insights for lithium exploration in Australia and globally. Applied Earth Science, 131(2), 100-113.

Picazo-Rodriguez, N. G., Toro, N., Román, M. R. G., Soriano, D. A. T., Madrid, F. M. G., Jamett, I., ... & Cedillos, J. G. M. (2023). Cobalt Metal: Overview of

Deposits, Reserves, Processing, and Recycling.

Pourret, O., & Faucon, M. P. (2017). Cobalt. Encyclopedia of Engineering Geology, 1-4.

Rathor, G., Chopra, N., & Adhikari, T. (2014). Nickel as a Pollutant and its Management. Int Res J Environ Sci, 3(10), 94-98.

Roberts, S., & Gunn, G. (2014). Cobalt. Critical metals handbook, 122-149.

Rossi, C., Bateson, L., Bayaraa, M., Butcher, A., Ford, J., & Hughes, A. (2022). Framework for remote sensing and modelling of lithium-brine deposit formation. Remote Sensing, 14(6), 1383.

Si, C., Liu, W., Chau, K. T., & Jiang, C. (2022, June). Perspectives on Lithium-Based Batteries and Post-Lithium Batteries for Electric Vehicles. In 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (pp. 1-6). IEEE.

Sterba, J., Krzemień, A., Fernández, P. R., García-Miranda, C. E., & Valverde, G. F. (2019). Lithium mining: Accelerating the transition to sustainable energy. Resources Policy, 62, 416-426.

Sun, X., Shi, Q., & Hao, X. (2022). Supply crisis propagation in the global cobalt trade network. Resources, Conservation and Recycling, 179, 106035.

Sweetapple, M. T., Holmes, J., Young, J., Grigson, M. W., Barnes, L., & Till, S. AUSTRALIAN ORE DEPOSITS monograph.

Tabelin, C. B., Dallas, J., Casanova, S., Pelech, T., Bournival, G., Saydam, S., & Canbulat, I. (2021). Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives.

Titirici, M. M. (2021). Sustainable batteries—quo vadis?. Advanced Energy Materials, 11(10), 2003700.

Vuleta*, S., LeGras, M., E Smith, R., Laukamp, C., Schoneveld, L., & Anand, R. (2019). Characterising lithium host minerals within the lateritic duricrust,

Greenbushes, Western Australia. ASEG Extended Abstracts, 2019(1), 1-2.

Wang, X. Q., Wu, T., Zhong, H., & Su, C. W. (2023). Bubble behaviors in nickel price: What roles do geopolitical risk and speculation play?. Resources Policy, 83, 103707.

Wells, M. A., Ramanaidou, E. R., Quadir, M. Z., Roberts, M., Bourdet, J., & Verrall, M. (2022). Morphology, composition and dissolution of chromite in the Goro lateritic nickel deposit, New Caledonia: Insight into ophiolite and laterite genesis. Ore Geology Reviews, 143, 104752.

Wilton, D. H., Thompson, G. M., & Evans-Lamswood, D. (2021). MLA-SEM characterization of sulphide weathering, erosion, and transport at the Voisey’s bay orthomagmatic Ni-Cu-Co sulphide mineralization, Labrador, Canada. Minerals, 11(11), 1224.

Zamble, D. (2017). Introduction to the biological chemistry of nickel.

ΒΙΒΛΙΟΓΡΑΦΙΑ (ΙΣΤΟΣΕΛΙΔΕΣ)

https://www.mining-technology.com/projects/goro-nickel/ (Πρόσβαση 18 Μαΐου 2024)

https://www.usgs.gov/centers/national-minerals-information-center/cobalt-statistics-and-information (Πρόσβαση 19 Μαΐου 2024)

https://www.cobaltinstitute.org/news/cobalt-raw-material-in-the-eu/ (Πρόσβαση 19 Μαΐου 2024)

https://www.ecora-resources.com/our-portfolio/portfolio-overview/voiseys-bay/ (Πρόσβαση 19 Μαΐου 2024)

https://pilbaraminerals.com.au/our-company/our-projects/pilgangoora-operation/ (Πρόσβαση 13 Μαΐου 2024)

https://www.nsenergybusiness.com/projects/salar-de-uyuni-lithium-deposit/ (Πρόσβαση 13 Μαΐου 2024)

https://www.usgs.gov/media/before-after/lithium-mining-salar-de-atacama-chile (Πρόσβαση 13 Μαΐου 2024)

https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en#fifth-list-2023-of-critical-raw-materials-for-

the-eu (Πρόσβαση 27 Απριλίου 2024)


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.