Εξώφυλλο

Τα κρίσιμα μέταλλα ή μέταλλα υψηλής τεχνολογίας στην παγκόσμια οικονομία = The critical metals or high-tech metals in the global economy.

Ζαφειρία Αντώνης Χατζή

Περίληψη


Η παρούσα εργασία έχει ως στόχο την ανάλυση των κρίσιμων μετάλλων ή μετάλλων υψηλής τεχνολογίας όσο αναφορά την παραγωγή τους, τόσο την πρωτογενή όσο και την δευτερογενή, τις διάφορες εφαρμογές τους, το κόστος στην αγορά καθώς και διάφορα υποκατάστατα αυτών. Τα μέταλλα αυτά έχουν χαρακτηριστεί ως κρίσιμα λόγω της οικονομικής τους σημασίας καθώς και της έλλειψης εφοδιασμού τους και είναι απαραίτητα για τη λειτουργία και την ακεραιότητα ενός ευρέος φάσματος βιομηχανικών οικοσυστημάτων. Αναλύονται 30 κρίσιμα μέταλλα τα οποία συγκαταλέγονται στον κατάλογο των κρίσιμων μετάλλων της ΕΕ για το έτος 2020.

This diploma thesis aims to analyze the critical or high-tech metals, in terms of their production, both primary and secondary, their various applications, market costs and various substitutes. These metals have been identified as critical due to their economic importance as well as their supply shortage and are essential for the functioning and integrity of a wide range of industrial ecosystems. 30 critical metals are analyzed which are included in the EU's list of critical metals for the year 2020.

Πλήρες Κείμενο:

PDF

Αναφορές


Anderson, C. (2019). Antimony Production and Commodities. SME Mineral Processing and Extractive Metallurgy Handbook. Society for Mining, Metallurgy and Exploration 431-442.

Arndt, N. & Ganino, C. (2012). Metals and society: An introduction to economic geology. Springer.

Arndt, N. T., Fontboté, L., Hedenquist, J. W., Kesler, S. E., Thompson, J. F., & Wood, D. G. (2017). Future global mineral resources. Geochemical Perspectives, 6(1), 1-171.

Arrobas, D. L. P., Hund, K. L., Mccormick, M. S., Ningthoujam, J., & Drexhage, J. R. (2017). The growing role of minerals and metals for a low carbon future.

Bonel, K. A. (2005). Barytes.

Bradley, C., D., Stilings, L., L., Jaskula, W., B., Munk, L., & McCauley D., A. (2017). Lithium, in Schulz, K. J. (Ed.). Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Geological Survey.

Brown, T., & Pitfield, P. (2014). Tungsten, in Gunn, G. (Ed.). Critical metals handbook. John Wiley & Sons, 385-413

Buchert, M., Schüler, D., Bleher, D., & Programme des Nations Unies pour l'environnement. (2009). Critical metals for future sustainable technologies and their recycling potential. UNEP DTIE; Öko-Institut.

Butcher, T., & Brown, T. (2014). Gallium, in Gunn, G. (Ed.). Critical metals handbook. John Wiley & Sons, 150-176

Cisse, L., & Mrabet, T. (2004). World phosphate production: overview and prospects. Phosphorus Research Bulletin, 15, 21-25.

CRM Alliance. (2022). Critical Raw Materials. Retrieved from https://www.crmalliance.eu/critical-raw-materials

De Boer, M. A., Wolzak, L., & Slootweg, J. C. (2019). Phosphorus: reserves, production, and applications. Phosphorus recovery and recycling, 75-100.

Duda, A., & Fidalgo Valverde, G. (2021). The economics of coking coal mining: A fossil fuel still needed for steel production. Energies, 14(22), 7682.

Enterprise and Industry European Commission. (2010). Annex V to the Report of the Ad-hoc Working Group on defining critical raw materials.

European Commission. (2020). Study on the EU’s List of Critical Raw Materials, Factsheets on Critical Raw Materials.

Evans, K. (2014). Lithium, in Gunn, G. (Ed.). Critical metals handbook. John Wiley & Sons, 230-260

Foley, K., N., Jaskula, W., B., Kimball, E., B., & Schulte, F., R. (2017). Gallium, in Schulz, K. J. (Ed.). Critical mineral resources of the United States:

economic and environmental geology and prospects for future supply. Geological Survey.

Frenzel, M., Ketris, M. P., & Gutzmer, J. (2014). On the geological availability of germanium. Mineralium Deposita, 49, 471-486.

Gunn, G. (2014). Platinum-group metals, in Gunn, G. (Ed.). Critical metals handbook. John Wiley & Sons, 284-311

Junior, A. B., Espinosa, D. C. R., Vaughan, J., & Tenório, J. A. S. (2021). Recovery of scandium from various sources: A critical review of the state of the art and future prospects. Minerals Engineering, 172, 107148.

Kelley, D., K., Scott, T., C., Polyak, E., D., & Kimball, E., B. (2017). Vanadium, in Schulz, K. J. (Ed.). Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Geological Survey.

Linnen, R., Trueman, D., & Burt, R. (2014). Tantalum and niobium, in Gunn, G. (Ed.). Critical metals handbook. John Wiley & Sons, 361-384

Matyjaszek, M., Wodarski, K., Krzemień, A., García-Miranda, C. E., & Sánchez, A. S. (2018). Coking coal mining investment: Boosting European Union's raw

materials initiative. Resources Policy, 57, 88-97.

Maurits, J. E. A. (2014). Silicon production. In Treatise on process Metallurgy (pp. 919-948). Elsevier.

Melcher, F., & Buchholz, P. (2014). Germanium, in Gunn, G. (Ed.). Critical metals handbook. John Wiley & Sons, 177-203

Moss, R. L., Tzimas, E., Kara, H., Willis, P., & Kooroshy, J. (2011). Critical metals in strategic energy technologies. Publications Office of the European Union, Luxembourg.

Neelameggham, R., N., & Brown, B. (2014). Magnesium, in Gunn, G. (Ed.). Critical metals handbook. John Wiley & Sons, 261-283

Pathak, P., & Gupta, D. K. (Eds.). (2020). Strontium contamination in the environment. Springer International Publishing.

Robinson, R., G., Jr., Hammarstrom, M., J., & Olson, W., D. (2017). Graphite, in Schulz, K. J. (Ed.). Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Geological Survey.

Schulz, J., K., Piatak, M., N., & Papp, F., J. (2017). Niobium and Tantalum, in Schulz, K. J. (Ed.). Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Geological Survey.

Schwarz-Schanpera, U. (2014). Indium, in Gunn, G. (Ed.). Critical metals handbook. John Wiley & Sons, 204-229

Soares, F. A., & Steinbüchel, A. (2022). Natural rubber degradation products: Fine chemicals and reuse of rubber waste. European Polymer Journal, 111001.

Subramaniam, A. (1987). Natural rubber. Rubber Technology, 179-208.

Tan, J., & Ramakrishna, S. (2021). Applications of magnesium and its alloys: A review. Applied Sciences, 11(15), 6861.

U.S.G.S. (2019). Mineral commodity summaries. US Geological Survey

U.S.G.S. (2022). Mineral commodity summaries. US Geological Survey

Umar, H. Y., Giroh, D. Y., Agbonkpolor, N. B., & Mesike, C. S. (2011). An overview of world natural rubber production and consumption: An implication for economic empowerment and poverty alleviation in Nigeria. Journal of Human Ecology, 33(1), 53-59.

Van Gosen, S., B., Verplanck, L., P., Seal II, R., R., Long, R., K., & Gambogi, J. (2017). Rare-Earth Elements, in Schulz, K. J. (Ed.). Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Geological Survey.

Wall, F. (2014). Rare earth elements, in Gunn, G. (Ed.). Critical metals handbook. John Wiley & Sons, 312-339

Wang, W., Pranolo, Y., & Cheng, C. Y. (2011). Metallurgical processes for scandium recovery from various resources: A review. Hydrometallurgy, 108(1-2), 100-108.

Woodruff, G., L., Bedinger, M., G., & Piatak, M., N. (2017). Titanium, in Schulz, K. J. (Ed.). Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Geological Survey.

Zientek, L., M., Loferski, J., P., Parks, L., H., Schulte, F., R., & Seal II, R., R. (2017). Platinum-Group Elements, in Schulz, K. J. (Ed.). Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Geological Survey.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.