Εξώφυλλο

Συνοπτική μελέτη ενός βαρομετρικού χαμηλού με χαρακτηριστικά τροπικού κυκλώνα στην Μεσόγειο το 2023 = Synoptic analysis of a barometric low with tropical cyclone characteristics in the Mediterranean in 2023.

Αντώνιος Δημήτριος Παπανικολάου

Περίληψη


Στόχος της παρούσας διπλωματικής εργασίας είναι η συνοπτική ανάλυση ενός βαρομετρικού χαμηλού που εμφάνισε χαρακτηριστικά τροπικού κυκλώνα στην Αδριατική θάλασσα τον Ιανουάριο του 2023. Για τον σκοπό αυτό αξιοποιήθηκαν πλεγματικά δεδομένα επιχειρησιακών αναλύσεων και προγνώσεων του Ευρωπαϊκού Κέντρου Μεσοπρόθεσμων Προγνώσεων Καιρού (ECMWF) και δορυφορικά δεδομένα. Το βαρομετρικό χαμηλό σχηματίσθηκε στον Ατλαντικό ωκεανό και εισήλθε στην Ιβηρική θάλασσα στις 20 Ιανουαρίου υπό την παρουσία ενός αυλώνα στη μέση τροπόσφαιρα. Στη συνέχεια, κατευθυνόμενο ανατολικά διέσχισε το νότιο τμήμα της Ιταλικής χερσονήσου στις 21 Ιανουαρίου. Εκεί φαίνεται να ενισχύθηκε από την παρουσία μιας ανωμαλίας της δυναμικής τροπόπαυσης και τις επιφανειακές ροές ενέργειας καθώς, λίγες ώρες αργότερα, εμφάνισε χαρακτηριστικά τροπικού κυκλώνα. Τέλος, κινούμενο κατά μήκος της Αδριατικής θάλασσας, το σύστημα κατέληξε στην περιοχή της πόλης Ανκόνα όπου και διαλύθηκε τις πρώτες ώρες της 22ης Ιανουαρίου. Από τη συνοπτική και δυναμική μελέτη έγινε εμφανές πως παρόλο που το σύστημα παρουσίασε ορισμένα χαρακτηριστικά τροπικών κυκλώνων, όπως ανέφελο ‘μάτι’ και θερμό πυρήνα, η κατηγοριοποίηση του ως Μεσογειακό κυκλώνα δεν είναι τόσο ξεκάθαρη.

The aim of this thesis is the synoptic analysis of a barometric low that exhibited characteristics of a tropical cyclone in the Adriatic Sea in January 2023. For this purpose, gridded operational analyses and forecast data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and satellite data were utilized. The barometric low initially formed in the Atlantic Ocean and entered the Iberian Sea on January 20 under the presence of a trough in the mid-troposphere. Afterwards, it moved eastward, crossing the southern part of the Italian Peninsula on 21 January. In this region, it appears to have been strengthened by the presence of an anomaly in the dynamic tropopause and the surface fluxes of latent and sensible heat, as a few hours later it exhibited characteristics of a tropical cyclone. Finally, moving along the Adriatic Sea, the system reached the area of the city of Ancona where it dissipated in the early hours of January 22. The synoptic and dynamic study made it evident that although the system exhibited some characteristics of tropical cyclones, such as a cloud-free ‘eye’ and a warm-core, its classification as a Mediterranean tropical-like cyclone is not entirely clear.


Πλήρες Κείμενο:

PDF

Αναφορές


ΞΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

Alpert, P., & Ziv, B. (1989). The Sharav Cyclone: Observations and some theoretical considerations. Journal of Geophysical Research: Atmospheres, 94(D15), 18495–18514. https://doi.org/10.1029/JD094iD15p18495

Ammar, K., El-Metwally, M., Almazroui, M., & Wahab, M. (2013). A climatological analysis of Saharan cyclones. Climate Dynamics 43, 483–501 (2014). https://doi.org/10.1007/s00382-013-2025-0

Businger, S., & Reed, R. J. (1989). Cyclogenesis in Cold Air Masses. Weather and Forecasting, 4(2), 133–156. https://doi.org/10.1175/1520-0434(1989)004<0133:CICAM>2.0.CO;2

Campins, J., Genovés, A., Picornell, M. A., & Jansà, A. (2011). Climatology of Mediterranean cyclones using the ERA-40 dataset. International Journal of Climatology, 31(11), 1596–1614. https://doi.org/10.1002/joc.2183

Cavicchia, L., Von Storch, H., & Gualdi, S. (2013). A long-term climatology of medicanes. Climate Dynamics, 43. https://doi.org/10.1007/s00382-013-1893-7

Cioni, G., Malguzzi, P., & Buzzi, A. (2016). Thermal structure and dynamical precursor of a Mediterranean tropical-like cyclone. Quarterly Journal of the Royal Meteorological Society, 142(697), 1757–1766. https://doi.org/10.1002/qj.2773

Emanuel, K. (2005). Genesis and maintenance of “Mediterranean hurricanes.” Advances in Geosciences, 2, 217–220. https://doi.org/10.5194/adgeo-2-217-2005

Flaounas, E., Davolio, S., Raveh-Rubin, S., Pantillon, F., Miglietta, M., Gaertner, M., Hatzaki, M., Homar, V., Khodayar Pardo, S., Korres, G., Kotroni, V., Kushta, J., Reale, M., & Ricard, D. (2022). Mediterranean cyclones: Current knowledge and open questions on dynamics, prediction, climatology and impacts. Weather and Climate

Dynamics, 3, 173–208. https://doi.org/10.5194/wcd-3-173-2022

Flaounas, E., Kotroni, V., Lagouvardos, K., Kazadzis, S., Gkikas, A., & Hatzianastassiou, N. (2015). Cyclone contribution to dust transport over the Mediterranean region. Atmospheric Science Letters, 16(4), 473–478. https://doi.org/10.1002/asl.584

Gačić, M., Marullo, S., Santoleri, R., & Bergamasco, A. (1997). Analysis of the seasonal and interannual variability of the sea surface temperature field in the Adriatic

Sea from AVHRR data (1984–1992). Journal of Geophysical Research: Oceans, 102(C10), 22937–22946. https://doi.org/10.1029/97JC01720

Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, Jackson Tan (2023), GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07, Greenbelt, MD,

Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [20/09/2024], 10.5067/GPM/IMERG/3B-HH/07

Kouroutzoglou, J., Flocas, H. A., Keay, K., Simmonds, I., & Hatzaki, M. (2011). Climatological aspects of explosive cyclones in the Mediterranean. International Journal of Climatology, 31(12), 1785–1802. https://doi.org/10.1002/joc.2203

Kouroutzoglou, J., Samos, I., Flocas, H. A., Hatzaki, M., Lamaris, C., Mamara, A., & Emmannouil, A. (2021). Analysis of the Transition of an Explosive Cyclone to a Mediterranean Tropical-like Cyclone. Atmosphere, 12(11), Article 11. https://doi.org/10.3390/atmos12111438

Lagouvardos, K., Karagiannidis, A., Dafis, S., Kalimeris, A., & Kotroni, V. (2022). Ianos—A Hurricane in the Mediterranean. Bulletin of the American Meteorological Society, 103(6), E1621–E1636. https://doi.org/10.1175/BAMS-D-20-0274.1

Lagouvardos, K., Kotroni, V., Nickovic, S., Jovic, D., Kallos, G., & Tremback, C. J. (1999). Observations and model simulations of a winter sub-synoptic vortex over the central Mediterranean. Meteorological Applications, 6(4), 371–383. https://doi.org/10.1017/S1350482799001309

Liberato, M. L. R., Pinto, J. G., Trigo, I. F., & Trigo, R. M. (2011). Klaus – an exceptional winter storm over northern Iberia and southern France. Weather, 66(12), 330–334. https://doi.org/10.1002/wea.755

Ma, Z., & Fei, J. (2022). A Comparison between Moist and Dry Tropical Cyclones: The Low Effectiveness of Surface Sensible Heat Flux in Storm Intensification. Journal of the Atmospheric Sciences, 79(1), 31–49. https://doi.org/10.1175/JAS-D-21-0014.1

Michaelides, S., Karacostas, T., Sánchez, J. L., Retalis, A., Pytharoulis, I., Homar, V., Romero, R., Zanis, P., Giannakopoulos, C., Bühl, J., Ansmann, A., Merino, A.,

Melcón, P., Lagouvardos, K., Kotroni, V., Bruggeman, A., López-Moreno, J. I., Berthet, C., Katragkou, E., … Nisantzi, A. (2018). Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmospheric Research, 208, 4–44. https://doi.org/10.1016/j.atmosres.2017.11.022

Miglietta, M. M. (2019). Mediterranean Tropical-Like Cyclones (Medicanes). Atmosphere, 10(4), Article 4. https://doi.org/10.3390/atmos10040206

Miglietta, M. M., Buscemi, F., Dafis, S., Papa, A., Tiesi, A., Conte, D., Davolio, S., Flaounas, E., Levizzani, V., & Rotunno, R. (2023). A high-impact meso-beta vortex in the Adriatic Sea. Quarterly Journal of the Royal Meteorological Society, 149(751), 637–656. https://doi.org/10.1002/qj.4432

Miglietta, M. M., Cerrai, D., Laviola, S., Cattani, E., & Levizzani, V. (2017). Potential vorticity patterns in Mediterranean “hurricanes.” Geophysical Research Letters, 44(5), 2537–2545. https://doi.org/10.1002/2017GL072670

Miglietta, M. M., Laviola, S., Malvaldi, A., Conte, D., Levizzani, V., & Price, C. (2013). Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modeling and satellite approach. Geophysical Research Letters, 40(10), 2400–2405. https://doi.org/10.1002/grl.50432

Miglietta, M. M., Moscatello, A., Conte, D., Mannarini, G., Lacorata, G., & Rotunno, R. (2011). Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmospheric Research, 101(1), 412–426. https://doi.org/10.1016/j.atmosres.2011.04.006

Miglietta, M., & Rotunno, R. (2019). Development Mechanisms for Mediterranean Tropical‐Like Cyclones (Medicanes). Quarterly Journal of the Royal Meteorological Society, 145. https://doi.org/10.1002/qj.3503

Minzner, R. A., Reber, C. A., Jacchia, L. G., Huang, F. T., Cole, A. E., Kantor, A. J., Keneshea, T. J., Zimmerman, S. P., & Forbes, J. M. (1976). Defining constants, equations, and abbreviated tables of the 1975 US Standard Atmosphere (G-7659). https://ntrs.nasa.gov/citations/19760017709

Nastos, P. T., Karavana Papadimou, K., & Matsangouras, I. T. (2018). Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns. Atmospheric Research, 208, 156–166. https://doi.org/10.1016/j.atmosres.2017.10.023

Noyelle, R., Ulbrich, U., Becker, N., & Meredith, E. P. (2019). Assessing the impact of sea surface temperatures on a simulated medicane using ensemble simulations. Natural Hazards and Earth System Sciences, 19(4), 941–955. https://doi.org/10.5194/nhess-19-941-2019

Panegrossi, G., D’Adderio, L. P., Dafis, S., Rysman, J.-F., Casella, D., Dietrich, S., & Sanò, P. (2023). Warm Core and Deep Convection in Medicanes: A Passive Microwave-Based Investigation. Remote Sensing, 15(11), Article 11. https://doi.org/10.3390/rs15112838

Portmann, R., González-Alemán, J. J., Sprenger, M., & Wernli, H. (2020). How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas). Weather and Climate Dynamics, 1(2), 597–615. https://doi.org/10.5194/wcd-1-597-2020

Pytharoulis, I. (2018). Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmospheric Research, 208, 167–179. https://doi.org/10.1016/j.atmosres.2017.08.009

Pytharoulis, I., Craig, G. C., & Ballard, S. P. (2000). The hurricane-like Mediterranean cyclone of January 1995. Meteorological Applications, 7(3), 261–279. https://doi.org/10.1017/S1350482700001511

Rasmussen, E., & Zick, C. (1987). A subsynoptic vortex over the Mediterranean with some resemblance to polar lows. Tellus A, 39A(4), 408–425. https://doi.org/10.1111/j.1600-0870.1987.tb00318.x

Romem, M., Ziv, B., & Saaroni, H. (2007). Scenarios in the development of Mediterranean cyclones. Advances in Geosciences, 12, 59–65. https://doi.org/10.5194/adgeo-12-59-2007

SWE, A. (2018, September 30). Medicane aftermath in Greece and Turkey: Severe winds, torrential rainfall, major flooding and tornadoes. Severe Weather Europe. https://www.severe-weather.eu/event-analysis/medicane-aftermath-in-greece-and-turkey-severe-winds-torrential-rainfall-major-flooding-and-tornadoes/

Tory, K. J., & Dare, R. A. (2015). Sea Surface Temperature Thresholds for Tropical Cyclone Formation. Journal of Climate, 28(20), 8171–8183. https://doi.org/10.1175/JCLI-D-14-00637.1

Tous, M., & Romero, R. (2013). Meteorological environments associated with medicane development. International Journal of Climatology, 33(1), 1–14. https://doi.org/10.1002/joc.3428

Trigo, I. F., Bigg, G. R., & Davies, T. D. (2002). Climatology of Cyclogenesis Mechanisms in the Mediterranean. Monthly Weather Review, 130(3), 549–569. https://doi.org/10.1175/1520-0493(2002)130<0549:COCMIT>2.0.CO;2

Trigo, I. F., Davies, T. D., & Bigg, G. R. (1999). Objective Climatology of Cyclones in the Mediterranean Region. Journal of Climate, 12(6), 1685–1696. https://doi.org/10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2

Varlas, G., Pytharoulis, I., Steeneveld, G.-J., Katsafados, P., & Papadopoulos, A. (2023). Investigating the impact of sea surface temperature on the development of the Mediterranean tropical-like cyclone “Ianos” in 2020. Atmospheric Research, 291, 106827. https://doi.org/10.1016/j.atmosres.2023.106827

ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

Δημητριάδου, Κ. Δ. (2017). Δορυφορική μελέτη βαρομετρικών χαμηλών με χαρακτηριστικά τροπικού κυκλώνα στη Μεσόγειο. In Aristotle University of Thessaloniki Institutional Repository—IKEE (GRI-2017-20238, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης). https://doi.org/10.26262/heal.auth.ir.294318

Παρανός-Λιόλιος, Χ. Α. (2016). Συνοπτική και Δυναμική μελέτη βαρομετρικών χαμηλών με χαρακτηριστικά τροπικού κυκλώνα στη Μεσόγειο. In Aristotle University of Thessaloniki Institutional Repository—IKEE (GRI-2016-17356, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης). https://doi.org/10.26262/heal.auth.ir.284902

Σαχσαμάνογλου, Χ. Σ., & Μακρογιάννης, Τ. Ι. (2004). Μαθήματα γενικής μετεωρολογίας. ΧΑΡΙΣ Ε.Π.Ε.

Καρακώστας, Θ. (2013). Σημειώσεις Συνοπτικής και Δυναμικής Μετεωρολογίας. Σημειώσεις Προγράμματος Προπτυχιακών Σπουδών στο μάθημα «Συνοπτική και

Δυναμική Μετεωρολογία». Τμήμα Γεωλογίας, ΑΠΘ.

ΔΙΑΔΙΚΤΥΑΚΕΣ ΠΗΓΕΣ

https://www.severe-weather.eu/event-analysis/medicane-aftermath-in-greece-and-turkey-severe-winds-torrential-rainfall-major-flooding-and-tornadoes/

https://pics.eumetsat.int/viewer/index.html

http://212.232.25.232/ng-maps/

https://resources.eumetrain.org/satmanu/CMs/Medicane/navmenu.php?page=4.0.0

http://meteorologia.uib.eu/medicanes/


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.