Εξώφυλλο

Το γεωθερμικό πεδίο the Geysers, California = The geothermal field the Geysers, California.

Σοφία Σπυριάδου

Περίληψη


Το γεωθερμικό πεδίο «The Geysers» (California, USA) είναι το μεγαλύτερο γεωθερμικό πεδίο στον κόσμο που αξιοποιείται για παραγωγή ηλεκτρικής ενέργειας και ένα από τα ελάχιστα που παράγει ξηρό ατμό. Έχει έκταση 116,54km² και εκτείνεται σε μια περιοχή που αποτελείται από μεταμορφωμένα ιζήματα και πρόσφατα ηφαιστειακά πετρώματα. Το γεωθερμικό σύστημα τροφοδοτείται με θερμότητα από ένα εκτεταμένο σώμα όξινων πυριγενών πετρωμάτων, γνωστό και ως «φελσίτης», που εντοπίζεται σε βάθος από 0,7 έως 7,5 km και πολύ πρόσφατες μαγματικές διεισδύσεις που συνδέονται με την ηφαιστειακή δραστηριότητα στην Καλιφόρνια κατά την περίοδο Τριτογενούς-Τεταρτογενούς. Ο γεωθερμικός ταμιευτήρας βρίσκεται κάτω από ένα τεκτονικά επωθημένο στεγανό κάλυμμα από μεταμορφωμένα ιζήματα, και αποτελείται κυρίως από έναν έντονα τεκτονισμένο γραουβάκη, ο οποίος επιτρέπει την κυκλοφορία γεωθερμικών ρευστών με τη μορφή ατμού. Η γεωθερμική έρευνα στην περιοχή ξεκίνησε στις αρχές του περασμένου αιώνα (1927), μετά τις πρώτες πολύ ρηχές παραγωγικές γεωτρήσεις που έγιναν στην περιοχή, και συνεχίζεται αδιάληπτα μέχρι σήμερα, αποκαλύπτοντας ολοένα και περισσότερα στοιχεία για τα χαρακτηριστικά και τις ιδιότητες του πολύ σημαντικού αυτού γεωθερμικού συστήματος. Η εμπορική και συστηματική αξιοποίηση του γεωθερμικού ατμού για ηλεκτροπαραγωγή ξεκίνησε τη δεκαετία του 1960. Η παραγωγή ηλεκτρικής ισχύος ακολούθησε θεαματικά αυξητική πορεία μέχρι τα μέσα της δεκαετίας του 1980, φτάνοντας τα 1600 MW παραγόμενης ισχύος. Από το 1987 και μετά και άρχισε να παρατηρείται σημαντική πτώση της πίεσης του ατμού στον ταμιευτήρα και, ταυτόχρονα, της παραγωγικότητας των γεωτρήσεων, φαινόμενα που αποδόθηκαν στην υπερκετάλλευση του ταμιευτήρα σε συνδυασμό με στην πολύ περιορισμένη επανατροφοδοσία του. Η κατάσταση σταθεροποιήθηκε και οι πτωτικές τάσεις ανακόπηκαν, εν μέρει λόγω συγκυριακών φαινομένων όπως η μειωμένη ζήτηση, αλλά κυρίως εξαιτίας της εφαρμογής προγραμμάτων συστηματικής επανεισαγωγής μεγάλων ποσοτήτων νερού που μεταφέρεται μέσω αγωγών από μονάδες επεξεργασίας λυμάτων γειτονικών πόλεων. Σήμερα, το πεδίο Geysers, εξακολουθεί να παραμένει πρώτο παγκοσμίως όσον αφορά την παραγόμενη ενέργεια (~850 MW).

The geothermal field "The Geysers" (California, USA) is the largest geothermal field in the world used for electricity generation, and one of the few that produces dry steam. It covers an area of 116.54 km² and extends over a region composed of metamorphosed sediments and recent volcanics. The geothermal system is heated by a large body of acidic igneous rocks, known as "felsite," located at depths ranging from 0.7 to 7.5 km, along with recent magmatic intrusions associated with the Tertiary-Quaternary volcanic activity in California. The geothermal reservoir lies beneath a tectonically placed (thrust) impermeable cap of metamorphosed sediments (caprock) and mainly consists of intensely tectonized greywacke that facilitates the circulation of geothermal steam. Geothermal research began in the early 20th century (1927), using the data from the first very shallow productive drilling, and has continued uninterrupted to this day, revealing increasingly detailed information about the characteristics and properties of this significant geothermal system. Commercial and systematic utilization of geothermal steam for electricity production began in the 1960s. Power generation followed a intense upward trend until the mid-1980s, reaching 1600 MW of generated capacity. However, from 1987 onwards, a significant drop in the reservoir steam pressure, along with a decline in well productivity, was observed. These phenomena were attributed to overexploitation of the reservoir combined with very limited recharge. The situation stabilized, and the downward trends were halted, partly due to circumstantial factors such as reduced demand, but primarily as a result of systematic reinjection of large quantities of water transported through long pipelines from wastewater treatment plants in nearby towns. Today, The Geysers field continues to be the global leader in terms of energy production (~850 MW).


Πλήρες Κείμενο:

PDF

Αναφορές


ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

Φυτίκας και Ανδρίτσος, Γεωθερμία (2004)

ΞΕΝΟΓΛΩΣΣΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

Allis Rick. Insights on the formation of vapor-dominated Geothermal Systems. Energy & Geoscience Institute, University of Utah (2000).

Bailey H. Edgar, Irwin P. William, Jones L. David. Franciscan and related rocks and their significance in the geology of western California. California Div. Mines and Geology Bull (1964).

Bailey H. Edgar, Blake C. Milton, Jones L. David. On-land Mesozoic oceanic crust in California Coast Ranges. Geological Survey Professional Paper. 700C: C70–C81. ISSN 0096-0446 (1970).

Beall J. Joseph, Wright C. Melinda, Hulen B. Jeffrey. Pre and Post-Development Influences on fieldwide Geysers NCG Concentrations. Geothermal Resources Council Transactions (2007).

Beall J. Joseph, Wright C. Melinda, Pingol S. Alfonso, Atkinson Paul. Geothermal Consultant, Pollock Pines CA. Effect of High Rate Injection on Seismicity in The Geysers. Calpine Corporation, Middletown CA (2010).

Bergfeld Deb, Goff Fraser, Janik J. Cathy. Carbon isotope systematics and sources in The Geysers – Clear Lake region, Northern California, USA (2001).

Brophy Paul, Lippmann J. Marcelo, Dobson F. Patrick, Poux Bastien. Geothermal Resources council. The Geysers Geothermal Field Update 1990-2010 (2010).

Chamorro R. César, Mondéjar E. María, Ramos Roberto, Segovia J. José, Martín C. María, Villamañán A. Miguel. World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies (2012).

Chapman H. Rodger. Geophysical Study of the Clear Lake Region, California. California Division of Mines and Geology (1975).

Chave D. Alan and Jones G. Alan. The Magnetotelluric Method, Theory and Practice (2012).

Dalrymple G. Brent, Grove Marty, Lovera M. Oscar, Harrison T. Mark, Hulen Jeffrey B, Lanphere A. Marvin. Age and thermal history of the Geysers plutonic complex (felsite unit),

Geysers geothermal field, California: a 40Ar/39Ar and U–Pb study (1999).

Dickinson R. William, Rich I. Ernest. Petrologic Intervals and Petrofacies in the Great Valley Sequence, Sacramento Valley, California (1972).

Dickinson R. William and Snyder S. Walter. Geometry of triple junctions related to the San Andreas transform: Journal of Geophysical Research (1979).

Donnelly-Nolan M. Julie and Hearn B. Carter. Geochronology and evolution of the Clear Lake volcanics (1981).

Egbert D. Gary, Kelbert Anna. Computational recipes for electromagnetic inverse problems (2012).

Ernst W. Gary, McLaughlin J. Robert. Mineral parageneses, regional architecture, and tectonic evolution of Franciscan metagraywackes, Cape Mendocino-Garberville-Covelo 30′ ×

′ quadrangles, northwest California (2012).

Goyal P. Keshav and Pingol S. Alfonso. Geysers Performance Update Through 2006. Calpine Corporation, Middletown, CA, USA (2007).

Goyal P. Keshav, Conant T. Tim. Performance history of The Geysers steam field, California, USA (2010).

Graymer W. Russel, Moring C. Barry, Saucedo J. George, Wentworth M. Carl, Brabb E. Earl and Knudsen L. Keith. Geologic Map of the San Francisco Bay Region. United States

Geological Survey, in cooperation with the California Geological Survey, Scientific Investigations Map 2918 (2006).

Hartline S. Craig, Walters A. Mark, Wright C. Melinda. Three-Dimensional Structural Model Building Constrained By Induced Seismicity Alignments at The Geysers Geothermal Field, Northern California. Calpine Corporation (2019).

Hearn B. Carter, McLaughlin J. Robert, Donnelly-Nolan M. Julie. Tectonic framework of the Clear Lake basin, California (1988).

Hulen B. Jeffrey, Walters A. Mark, Nielson L. Dennis. Comparison of reservoir and caprock core from the Northwest Geysers steam field, California (1991).

Irwin P. William. Wallace, R.E., Geology and plate-tectonic development: In The San Andreas Fault System, California. USGS Professional Paper 1515 (1990).

Isherwood F. William. Gravity and magnetic studies of The Geysers-Clear Lake geothermal region (1975).

Isherwood F. William. Geophysical Overview of the Geysers (1981).

Isherwood F. William. Reservoir Depletion at The Geysers, Geothermal Resources Council Transactions (1997).

Iyer H.M., Oppenheimer H. David, Hitchcock Tim, Roloff N. Jeffrey, Coakley M. John. Large Teleseismic P-wave delays in The Geysers-Clear Lake Geothermal Area (1981).

Kennedy B. Mack and Truesdell H. Alfred. The Northwest Geysers High Temperature Reservoir: Evidence for Active Magmatic Degassing and Implications for the origin of the Geysers Geothermal Field (1996).

Khan M. Ali. The Geysers Geothermal Field, an Injection Success Story. Division of Oil, Gas, and Geothermal Resources, Santa Rosa, CA. (2010).

Kunkel Fred, Upson E. Joseph. Geology and Ground Water in Napa and Sonoma Valleys. U. S. Geological Survey (1960).

Lin Guoqing, Wu Bateer. Seismic velocity structure and characteristics of induced seismicity at the Geysers Geothermal Field, eastern California (2018).

Lipman C. Stephen, Strobel J. Calvin, Gulati S. Mohinder. Reservoir Performance of the Geysers field (1978).

Lowenstern B. Jacob, Janik J. Cathy, Fahlquist S. Lynne, Johnson S. Linda. Gas and Isotope Geochemistry of 81 steam samples from wells in The Geysers Geothermal field, Sonoma and Lake Counties, California, USA. USGS (1999).

Lowenstern B. Jacob, Janik J. Cathy, Fahlquist S. Lynne, Johnson S. Linda. A new compilation of gas and steam analyses from The Geysers geothermal field, California, USA. In:

Proceedings of the 21st New Zealand Geothermal Workshop, Auckland University, New Zealand (1999).

Lowenstern B. Jacob, Janik J. Cathy. The Origins of Reservoir Liquids and Vapors from The Geysers Geothermal Field, California (2005).

Lutz J. Susan, Walters A. Mark, Pistone Sarah, Moore N. Joseph. New Insights into the High-Temperature Reservoir, Northwest Geysers (2012).

Majer L. Ernest, Peterson E. John. The impact of injection on seismicity at The Geysers, California Geothermal Field (2007).

McLaughlin J. Robert, Donnelly N. Julie. Tectonic Setting of Pre-Tertiary Rocks and Its Relation to Geothermal Resources in the Geysers-Clear Lake Area, in Research in the

Geysers-Clear Lake Geothermal Area, Northern California, USGS Professional Paper 1141 (1981).

Mclaughlin J. Robert. Tectonic Setting Of PreTertiary rocks and its relation to geothermal resources in the geysers clear lake area (1981).

McLaughlin J. Robert, Kling A. Stanley, Poore Z. Richard, McDougal Kristin, Beutner C. Edward. Post-middle Miocene accretion of Franciscan rocks, northwestern California. GSA Bulletin (1982).

Mitchel A. Michael, Peacock R. Jared, Burgess D. Seth. Imaging the magmatic plumbing of the Clear Lake Volcanic Field using 3-D gravity inversions (2023).

Mondejar Montagud E. Maria, Chamorro R César. Geothermal power technologies. Encyclopedia of Sustainable Technologies (2017).

Moore N. Joseph, Anderson J. Alan, Adams C. Michael, Aines D. Roger, Norman I. David, Walters A. Mark. The fluid inclusion and mineralogic record of the transition from liquid to vapor-dominated conditions in The Geysers Geothermal System, California (1998).

Moore N. Joseph, Norman I. David, Kennedy B. Mack. Fluid inclusion gas compositions from an active magmatic–hydrothermal system: a case study of The Geysers geothermal field, USA (2001).

Muffler L.J. Patrick. Assessment of Geothermal Resources of the United States (1978).

Norton L. Denis, Hulen B. Jeffrey. Preliminary numerical analysis of the magma-hydrothermal history of The Geysers geothermal system, California, USA (2001).

Peacock R. Jared, Earney E. Tait, Mangan T. Margaret, Schermerhorn D. William, Glen M. Jonathan, Walters Mark, Hartline Craig. Geophysical characterization of the Northwest

Geysers geothermal field, California (2020).

Pruess Karsten, Spycher Nicolas, Kneafsey J. Timothy. Water injection as a means for reducing non-condensible and corrosive gases in steam produced from vapor-dominated reservoirs (2008).

Rutqvist Johnny, Dobson F. Patrick, Garcia Julio, Hartline Craig, Jeanne Pierre, Oldenburg M. Curtis, Vasco W. Donald, Walters Mark. The Northwest Geysers EGS Demonstration Project, California: Pre-stimulation Modeling and Interpretation of the Stimulation (2013).

Sanyal K. Subir and Enedy L. Steven. Fifty Years of power generation at the Geysers Geothermal Field, California – The lessons learned. GeothermEx Inc. and Calpine Corporation (2011).

Schmitt K. Axel, Grove Marty, Harrison T. Mark, Lovera Oscar, Hulen Jeffrey, Walters Mark. The Geysers-Cobb Mountain Magma System, California (Part 2): timescales of pluton

emplacement and implications for its thermal history (2003).

Song Haomin, Liu Youhai, Liu Zhejun, Singer H. Matthew, Li Chenyu, Cheney R. Alec, Ji Dengxin, Zhou Lyu, Zhang Nan, Zeng Xie, Bei Zongmin, Yu Zongfu, Jiang Suhua, Gan

Qiaoqiang. Cold Vapor Generation beyond the Input Solar Energy Limit (2017).

Stanley D. William and Rodriguez D. Brian. A Revised Tectonic Model for The Geysers-Clear Lake Geothermal Region, California (1992).

Stimac A. James, Goff Fraser, Wohletz Ken. Thermal modeling of the Clear Lake magmatic-hydrothermal system, California, USA (2001).

Truesdell H. Alfred and White E. Donald. Production of superheated steam from vapor-dominated geothermal reservoirs (1973).

Truesdell H. Alfred, Haizlip J. Robinson, Box Jr. W. T., D'Amore Franco. Fieldwide Chemical and Isotopic Gradients in Steam from The Geysers (1987).

Truesdell H. Alfred, Haizlip J. Robinson, Box Jr. W. T., D'Amore Franco. A Geochemical Overview of The Geysers Geothermal Reservoir, Geothermal Resources Council (1991).

Walters A. Mark and Combs Jim. Heat Flow in the Geysers-Clear Lake Geothermal Area of Northern California, USA. Geothermal Resources Council (1991).

Walters A. Mark. Heat Flow in the Geysers – Clear Lake Geothermal Area of Northern California, U.S.A. (1992).

Weres Oleh, Tsao Karen, Wood Byron. Resource, Technology, and Environment at The Geysers (1977).

White E. Donald, Muffler L.J. Patrick, Truesdell H. Alfred. Vapor Dominated hydrothermal systems compared with hot waters systems (1971).

Williams F. Collin, Galanis S. Peter, Moses H. Thomas, Grubb V. Frederick. Heat-flow studies in the Northwest Geysers geothermal field, California. Geothermal Research Council Transactions 17 (1993).

ΔΙΑΔΙΚΤΥΑΚΕΣ ΠΗΓΕΣ

https://www.lovegeothermal.org/

https://www.usgs.gov/volcanoes/clear-lake-volcanic-field/science/geysers-geothermal-field (USGS, The Geysers Geothermal field)

https://geysers.com/The-Geysers/Geysers-By-The-Numbers (Geysers by the numbers, Calpine Corporation, 2022)

https://www.researchgate.net/publication/341099488_Desalination_Using_Renewable_Energy (Abdelrahman Fawzy. Desalination Using Renewable Energy, 2020).

https://volcano.si.edu/volcano.cfm?vn=323100 (Smithsonian Institution, National Museum of Natural History, Global Volcanism Program. Clear Lake Volcanic Field)

https://www.unionegeotermica.it/What_is_geothermal_en.html

https://www.usgs.gov/volcanoes/clear-lake-volcanic-field/science/geysers-geothermal-field

https://www.eia.gov/energyexplained/geothermal/geothermal-power-plants.php

https://www.energy.gov/eere/geothermal/electricity-generation

https://www.nps.gov/subjects/geology/plate-tectonics-subduction-zones.htm

https://web.mit.edu (A brief history of geothermal energy)

https://www.osti.gov/servlets/purl/1048267 (The Geysers Geothermal Field Update 1990/2010)

https://geysers.com/history11 (Calpine, History Timeline of The Geysers)

https://geysers.com/ (Calpine 2024).


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.