[Εξώφυλλο]

Impact of climate variability on mosquito occurrence and malaria transmission in Greece. Επίπτωση του κλίματος στην παρουσία κουνουπιών και στη μετάδοση ελονοσίας στον ελλαδικό χώρο.

Maria-Chara Karypidou

Περίληψη


Στην παρούσα εργασία γίνεται μελέτη της επίπτωσης του κλίματος στην παρουσία διαβιβαστών που σχετίζονται με την εμφάνιση ελονοσίας στην Ελλάδα. Για την εκπόνηση της παρούσας εργασίας χρησιμοποιήθηκαν πέντε στατιστικά και ένα δυναμικό μοντέλο για τη μελέτη των περιβαλλοντικών χαρακτηριστικών εμφάνισης του An. Sacharovi, του μελετούμενου είδους κουνουπιού στην παρούσα εργασία. Τα δεδομένα που χρησιμοποιήθηκαν αποτελούνται από κλιματικά δεδομένα που λαμβάνονται μέσω της βάσης δεδομένων WorldClim η οποία παρέχει στοιχεία που καλύπτουν την περίοδο 1950-2000. Επίσης, χρησιμοποιήθηκαν τα αποτελέσματα προσομοιώσεων από οχτώ περιοχικά κλιματικά μοντέλα, οι προσομοιώσεις την οποίων πραγματοποιήθηκαν στο πλαίσιο του EURO-CORDEX. Τα δεδομένα αυτά χρησιμοποιήθηκαν για τον υπολογισμό ορισμένων βιοκλιματικών μεταβλητών, που προτείνονται μέσω του προγράμματος WorldClim. Η πληροφορία σχετικά με την παρουσία του An. Sacharovi εξήχθη από τη βάση δεδομένων που δημιουργήθηκε και συντηρείται από την ιδιωτική εταιρεία ΟΙΚΟΑΝΑΠΤΥΞΗ Α.Ε. και τα επιδημιολογικά δεδομένα προέρχονται από τον ΚΕΕΛΠΝΟ. Τα μεθοδολογικά εργαλεία αποτελούνται από πέντε στατιστικά μοντέλα και ένα δυναμικό μοντέλο. Τα στατιστικά μοντέλα προσέφεραν μια εκτίμηση της περιβαλλοντικής καταλληλότητας για το An. sacharovi με βάση έξι επεξηγηματικές μεταβλητές και ένα σύνολο από θέσεις παρουσίας του κουνουπιού. Επιπλέον, χρησιμοποιήθηκε ένα δυναμικό μοντέλο που προσομοιώνει τη μετάδοση της ελονοσίας. Σύμφωνα με τα στατιστικά μοντέλα που εφαρμόστηκαν, οι περιοχές
που χαρακτηρίζονται ως κατάλληλες, βρίσκονται στην πεδιάδα της κεντρικής Μακεδονίας στη βόρεια Ελλάδα, την πεδιάδα της Θεσσαλίας στην κεντρική Ελλάδα, στις παράκτιες περιοχές της βόρειας Ελλάδας καθώς και στην πεδιάδα των Σερρών, επίσης στη βόρεια Ελλάδα. Επιπροσθέτως, εντοπίζονται κατάλληλες περιοχές για τις παράκτιες περιοχές στην
νότια ηπειρωτική Ελλάδα, την Αττική, την Πελοπόννησο και τα ανατολικά νησιά του Αιγαίου.


In the current work, five statistical and a dynamical model were employed for the studying of the spatio-temporal attributes of An. sacharovi. The data that were employed in the current analysis consisted of climatic data obtained from the WorldClim database that provides gridded climatic data covering the period 1950-2000. Also, eight Regional Climate Model outputs were obtained from the ESGF database, containing evaluation experiments in the context of the EURO-CORDEX initiative at 0.11 ◦ spatial resolution. These data were employed for the calculation of certain bioclimatic variables, proposed through the WorldClim project. The information concerning the presence of An. sacharovi mosquitoes was extracted from the vector database created and maintained by Ecodevelopment S.A. and the epidemiological data were provided by the HCDCP. The methodological tools applied consist of a certain set of statistical models and a dynamical model. The statistical models provided an estimation of the environmental suitability for An. sacharovi based on six explanatory variables and a set of An. sacharovi presence locations. Furthermore, a dynamical model was employed, simulating malaria transmission. According to the statistical models applied, the areas characterized as suitable are located over the plain of central Macedonia in northern Greece, over the plain of Thessaly in central Greece, over the coastal areas of northern Greece and over the plain of Serres, also in northern Greece. Additionally, suitable areas are identified over coastal areas in southern mainland Greece, Attica, Peloponnese and over the eastern islands of the Aegean Sea.

Πλήρες Κείμενο:

PDF

Αναφορές


Abebe, A., Gemeda, A., Wondewossen, T., Lemu, G., 2011. Climatic variables and malaria transmission dynamics in Jimma town, South West Ethiopia. Parasit. Vectors 4.

Alemu, A., Abebe, G., Tsegaye, W., Golassa, L., 2011. Climatic variables and malaria transmission dynamics in Jimma town, South West Ethiopia. Parasit. Vectors 4, 30.

Alimi, T.O., Fuller, D.O., Qualls, W.A., Herrera, S.V., Arevalo-Herrera, M., Quinones, M.L., Lacerda, M.V.G., Beier, J.C., 2015. Predicting potential ranges of primary malaria vectors and malaria in northern South America based on projected changes in climate, land cover and human population. Parasit. Vectors 8, 431.

Allan, R.P., 2017. Global energy budget: Elusive origin of warming slowdown. Nat. Clim. Change 7, 316317.

Arifin, S.N., Madey, G.R., Collins, F.H., 2013. Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool. Malar. J. 12, 290.

Ayala, D., Costantini, C., Ose, K., Kamdem, G.C., Antonio-Nkondjio, C., Agbor, J.-P., Awono-Ambene, P., Fontenille, D., Simard, F., 2009. Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Malar. J. 8, 307.

Asare, E.O., 2016. Development and evaluation of temperature and surface hydrology schemes for dynamical vector-borne disease models. Kwame Nkrumah University of Science and Technology.

Baeza, A., Santos-Vega, M., Dobson, A.P., Pascual, M., 2017. The rise and fall of malaria under land-use change in frontier regions 1, 0108.

Balk, D., Pozzi, F., Yetman, G., Deichmann, U., Nelson, A., 2004. The Distribution of People and the Dimension of Place: Methodologies to Improve the Global Estimation of Urban Extents.

Bomblies, A., Duchemin, J.-B., and Eltahir, E. (2009). A mechanistic approach for accurate simulation of village scale malaria transmission. Malaria Journal, 8(1):223

Bush, A., Sollmann, R., Wilting, A., Bohmann, K., Cole, B., Balzter, H., Martius, C., Zlinszky, A., Calvignac-Spencer, S., Cobbold, C.A., Dawson, T.P., Emerson, B.C., Ferrier, S., Gilbert, M.T.P., Herold, M., Jones, L., Leendertz, F.H., Matthews, L., Millington, J.D.A., Olson, J.R., Ovaskainen, O., Raffaelli, D., Reeve, R., Rdel, M.-O., Rodgers, T.W., Snape, S., Visseren-Hamakers, I., Vogler, A.P., White, P.C.L., Wooster, M.J., Yu, D.W., 2017. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 1.

Caminade, C., Kovats, S., Rocklov, J., Tompkins, A.M., Morse, A.P., Coln-Gonzlez, F.J., Stenlund, H., Martens, P., Lloyd, S.J., 2014. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. 111, 32863291.

Chitnis, N., Hyman, J.M., Cushing, J.M., 2008. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70, 12721296.

Chitnis, N., 2017. Introduction to SEIR Models lecture given during the Workshop on Mathematical Models of Climate Variability, Environmental Change and Infectious Diseases, Trieste, Italy, 8 May

Cogswell, F.B., 1992. The hypnozoite and relapse in primate malaria. Clin. Microbiol. Rev. 5, 2635.

Conley, A.K., Fuller, D.O., Haddad, N., Hassan, A.N., Gad, A.M., Beier, J.C., 2014. Modeling the distribution of the West Nile and Rift Valley Fever vector Culex pipiens in arid and semi-arid regions of the Middle East and North Africa. Parasit. Vectors 7, 289.

CORINE Land Cover Copernicus Land Monitoring Service [WWW Document], URL http://land.copernicus.eu/pan-european/corine-land-cover (accessed 7.16.17).

Cunze, S., Koch, L.K., Kochmann, J., Klimpel, S., 2016. Aedes albopictus and Aedes japonicus - two invasive mosquito species with different temperature niches in Europe. Parasit. Vectors 9.

Danis, K., Lenglet, A., Tseroni, M., Baka, A., Tsiodras, S., Bonovas, S., 2013. Malaria in Greece: historical and current reflections on a re-emerging vector borne disease. Travel Med. Infect. Dis. 11, 814.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hlm, E. V., Isaksen, L., Kllberg, P., Khler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thpaut, J.-N., Vitart, F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc. 137, 553597.

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004.

Fick, S.E., Hijmans, R.J., n.d. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol.

Giorgi, F., Jones, C., Asrar, G.R., 2009. Addressing climate information needs at the regional level: the CORDEX framework, WMO Bulletin 58, 175-183.

Giorgi, F., Gutowski, W.J.Jr., 2015. Regional Dynamical Downscaling and the CORDEX Initiative. Annu. Rev. Environ. Resour. 40, 467490.

Gallego, F.J., 2010. A population density grid of the European Union. Popul. Environ. 31, 460473. Gething, P.W., Smith, D.L., Patil, A.P., Tatem, A.J., Snow, R.W., Hay, S.I., 2010. Climate change and the global malaria recession. Nature 465, 342345.

Gething, P.W., Van Boeckel, T.P., Smith, D.L., Guerra, C.A., Patil, A.P., Snow, R.W., Hay, S.I., 2011. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit. Vectors 4, 92.

HCDCP [WWW Document], URL http://www.keelpno.gr/en-us/home.aspx (accessed 7.16.17).

Hengl, T., Sierdsema, H., Radovi, A., Dilo, A., 2009. Spatial prediction of species distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging. Ecol. Model., Selected Papers on Spatially Explicit Landscape Modelling: Current practices and challenges 220, 34993511.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 19651978.

Hijmans, R.J., Graham, C.H., 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol. 12, 22722281.

Horton, R., Lo, S., 2015. Planetary health: a new science for exceptional action. The Lancet 386, 19211922.

How Aspect worksHelp — ArcGIS for Desktop [WWW Document], URL http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-aspect-works.htm (accessed 7.16.17).

How Slope worksHelp — ArcGIS for Desktop [WWW Document], n.d. URL http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-slope-works.htm (accessed 7.16.17).

Huang, F., Zhou, S., Zhang, S., Wang, H., Tang, L., 2011. Temporal correlation analysis between malaria and meteorological factors in Motuo County, Tibet. Malar. J. 10, 54.

Hutchinson, G.E., 1957. Concluding remarks. In: Cold Spring Harbour Symposium on Quantitative Biology, vol. 22 , pp. 415427.

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Katragkou, E., Garca-Dez, M., Vautard, R., Sobolowski, S., Zanis, P., Alexandri, G., Cardoso, R.M., Colette, A., Fernandez, J., Gobiet, A., Goergen, K., Karacostas, T., Knist, S., Mayer, S., Soares, P.M.M., Pytharoulis, I., Tegoulias, I., Tsikerdekis, A., Jacob, D., 2015. Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8, 603618.

Koch, L.K., Cunze, S., Werblow, A., Kochmann, J., Drge, D.D., Mehlhorn, H., Klimpel, S., 2016. Modeling the habitat suitability for the arbovirus vector Aedes albopictus (Diptera: Culicidae) in Germany. Parasitol. Res. 115, 957964.

Kotlarski, S., Keuler, K., Christensen, O.B., Colette, A., Dqu, M., Gobiet, A., Goergen, K., Jacob, D., Lthi, D., van Meijgaard, E., Nikulin, G., Schr, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., Wulfmeyer, V., 2014. Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7, 12971333.

Kousoulis, A.A., Chatzigeorgiou, K.-S., Danis, K., Tsoucalas, G., Vakalis, N., Bonovas, S., Tsiodras, S., 2013. Malaria in Laconia, Greece, then and now: a 2500-year-old pattern. Int. J. Infect. Dis. 17, 811.

Krefis, A.C., Schwarz, N.G., Krger, A., Fobil, J., Nkrumah, B., Acquah, S., Loag, W., Sarpong, N., Adu-Sarkodie, Y., Ranft, U., May, J., 2011. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 84, 285291.

Kulkarni, M.A., Desrochers, R.E., Kerr, J.T., 2010. High Resolution Niche Models of Malaria Vectors in Northern Tanzania: A New Capacity to Predict Malaria Risk? PLOS ONE 5, e9396.

Laprise, R., de Ela, R., Caya, D., Biner, S., Lucas-Picher, P., Diaconescu, E., Leduc, M., Alexandru, A., Separovic, L., 2008. Challenging some tenets of Regional Climate Modelling, Met. and Atm. Physics 100, 3-22.

Laprise, R., Kornic, D., Rapai, M., eparovi, L., Leduc, M., Nikiema, O., Luca, A.D., Diaconescu, E., Alexandru, A., Lucas-Picher, P., de Ela, R., Caya, D., Biner, S., 2012 Considerations of domain size and large-scale driving for nested regional climate models: Impact on internal variability and ability at developing small-scale details. Climate Change: Inferences from Paleoclimate and Regional Aspects, 181-199.

Leedale, J., Tompkins, A.M., Caminade, C., Jones, A.E., Nikulin, G., Morse, A.P., 2016. Projecting malaria hazard from climate change in eastern Africa using large ensembles to estimate uncertainty. Geospatial Health 11, 393.

Lyons, C.L., Coetzee, M., Terblanche, J.S., Chown, S.L., 2012. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malar. J. 11, 226.

Mandal, S., Sarkar, R.R., Sinha, S., 2011. Mathematical models of malaria - a review. Malar. J. 10, 202. Mandyla, M., Tsiamis, C., Kousoumis, A., Petridou, E., 2011. Pioneers in the anti-malaria battle in Greece (19001930). Gesnerus 68, 180-197.

Millet, J.-P., Montalvo, T., Bueno-Mar, R., Romero-Tamarit, A., Prats-Uribe, A., Fernndez, L., Camprub, E., del Bao, L., Peracho, V., Figuerola, J., Sulleiro, E., Martnez, M.J., Cayl, J.A., Barcelona, Z.W.G. in, lamo-Junquera, D., de Andrs, A., Avellans, I., Gonzlez, R., Gorrindo, P., Sents, A., Simn, P., Bartumeus, F., Busquets, N., Alejo, I., Gascn, J., Muoz, J., Oliveira, I., Jess Pinazo, M., Rodriguez, N., Bocanegra, C., Espasa, M., Molina, I., Pou, D., Salvador, F., Snchez-Montalv, A., Pumarola, T., Rando, A., Serre, N., Soriano-Arandes, A., Trevio, B., 2017. Imported Zika Virus in a European City: How to Prevent Local Transmission? Front. Microbiol. 8.

Moffett, A., Shackelford, N., Sarkar, S., 2007. Malaria in Africa: Vector Species Niche Models and Relative Risk Maps. PLOS ONE 2, e824.

Mora, C., Dousset, B., Caldwell, I.R., Powell, F.E., Geronimo, R.C., Bielecki, C.R., Counsell, C.W.W., Dietrich, B.S., Johnston, E.T., Louis, L.V., Lucas, M.P., McKenzie, M.M., Shea, A.G., Tseng, H., Giambelluca, T.W., Leon, L.R., Hawkins, E., Trauernicht, C., 2017. Global risk of deadly heat. Nat. Clim. Change 7.

Mughini-Gras, L., Mulatti, P., Severini, F., Boccolini, D., Romi, R., Bongiorno, G., Khoury, C., Bianchi, R., Montarsi, F., Patregnani, T., Bonfanti, L., Rezza, G., Capelli, G., Busani, L., 2014. Ecological niche modelling of potential West Nile virus vector mosquito species and their geographical association with equine epizootics in Italy. EcoHealth 11, 120132.

NCMA S.A. [WWW Document], URL http://www.ktimatologio.gr/sites/en/Pages/Default.aspx (accessed 7.16.17).

Neelin, D.J., 2011. Climate Change and Climate Modelling, University of California, Cambridge University Press.

Ngasala, B.E., 2010. Improved malaria case management in under-fives in the era of Artemisini-based combination therapy in Tanzania, Karolinska Institutet.

Ngonghala, C.N., Pluciski, M.M., Murray, M.B., Farmer, P.E., Barrett, C.B., Keenan, D.C., Bonds, M.H., 2014. Poverty, Disease, and the Ecology of Complex Systems. PLOS Biol. 12.

Parham, P.E., Michael, E., 2010. Modeling the Effects of Weather and Climate Change on Malaria Transmission. Environ. Health Perspect. 118, 620626.

Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 3742.

Pascual, M., Cazelles, B., Bouma, M.J., Chaves, L.F., Koelle, K., 2008. Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc. R. Soc. Lond. B Biol. Sci. 275, 123132.

Pavlidis, V., 2015. Evaluation of climatic simulations of climate models for Europe for the period 1990-2008, MSc Dissertation, Aristotle University of Thessaloniki.

Peterson, A.T., Papes, M., Soberon, J., 2015. Mechanistic and Correlative Models of Ecological Niches, Eur. J. Ecol. 1, 28-38.

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231259.

Prevention, C.-C. for D.C. and CDC - Malaria - About Malaria - Biology [WWW Document]. URL https://www.cdc.gov/malaria/about/biology/ (accessed 7.11.17).

Pulliam, H. r., 2000. On the relationship between niche and distribution. Ecol. Lett. 3, 349361.

Sallam, M.F., Xue, R.-D., Pereira, R.M., Koehler, P.G., 2016. Ecological niche modeling of mosquito vectors of West Nile virus in St. Johns County, Florida, USA. Parasit. Vectors 9, 371.

Samson, J., Berteaux, D., McGill, B.J., Humphries, M.M., 2011. Geographic disparities and moral hazards in the predicted impacts of climate change on human populations. Glob. Ecol. Biogeogr. 20, 532544.

Semenza, J.C., 2015. Prototype early warning systems for vector-borne diseases in Europe. Int. J. Environ. Res. Public. Health 12, 63336351.

Sillero, N., 2011. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 222, 13431346.

Sinka, M.E., Bangs, M.J., Manguin, S., Rubio-Palis, Y., Chareonviriyaphap, T., Coetzee, M., Mbogo, Charles M., Hemingway, J., Patil, A.P., Temperley, W.H., Gething, P.W., Kabaria, C.W. Burkot, T.R., Harbach, R.E., Hay, S.I., 2012. A global map of dominant malaria vectors. Parasit Vectors. 5, 1-69.

Sudre, B., Rossi, M., Van Bortel, W., Danis, K., Baka, A., Vakalis, N., Semenza, J.C., 2013. Mapping Environmental Suitability for Malaria Transmission, Greece. Emerging Infectious Diseases, 19, 784786.

Sweeney, A.W., Beebe, N.W., Cooper, R.D., 2007. Analysis of environmental factors influencing the range of anopheline mosquitoes in northern Australia using a genetic algorithm and data mining methods. Ecol. Model. 203, 375386.

Thom, D., Rammer, W., Dirnbck, T., Mller, J., Kobler, J., Katzensteiner, K., Helm, N., Seidl, R., 2017. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J. Appl. Ecol. 54, 2838.

Tompkins, A.M., Di Giuseppe, F., 2014. Potential Predictability of Malaria in Africa Using ECMWF Monthly and Seasonal Climate Forecasts. J. Appl. Meteorol. Climatol. 54, 521540.

Tompkins, A.M., Ermert. V., 2013. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malar. J. 12.

Tonnang, H.E., Kangalawe, R.Y., Yanda, P.Z., 2010. Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa. Malar. J. 9, 111.

Tseroni, M., Baka, A., Kapizioni, C., Snounou, G., Tsiodras, S., Charvalakou, M., Georgitsou, M., Panoutsakou, M., Psinaki, I., Tsoromokou, M., Karakitsos, G., Pervanidou, D., Vakali, A., Mouchtouri, V., Georgakopoulou, T., Mamuris, Z., Papadopoulos, N., Koliopoulos, G., Badieritakis, E., Diamantopoulos, V., Tsakris, A., Kremastinou, J., Hadjichristodoulou, C., 2015. Prevention of Malaria Resurgence in Greece through the Association of Mass Drug Administration (MDA) to Immigrants from Malaria-Endemic Regions and Standard Control Measures. PLoS Negl. Trop. Dis. 9.

Tsiamis, C., Piperaki, E.T., Tsakris, A., 2013. The history of the Greek Anti-Malaria League and the influence of the Italian School of Malariology. Infez Med 21, 60-75.

Vakali, A., Patsoula, E., Spanakos, G., Danis, K., Vassalou, E., Tegos, N., Economopoulou, A., Baka, A., Pavli, A., Koutis, C., Hadjichristodoulou, C., Kremastinou, T., 2012. Malaria in Greece, 1975 to 2010. Euro Surveill. 17.

Watts, N., Adger, W.N., Ayeb-Karlsson, S., Bai, Y., Byass, P., Campbell-Lendrum, D., Colbourn, T., Cox, P., Davies, M., Depledge, M., Depoux, A., Dominguez-Salas, P., Drummond, P., Ekins, P., Flahault, A., Grace, D., Graham, H., Haines, A., Hamilton, I., Johnson, A., Kelman, I., Kovats, S., Liang, L., Lott, M., Lowe, R., Luo, Y., Mace, G., Maslin, M., Morrissey, K., Murray, K., Neville, T., Nilsson, M., Oreszczyn, T., Parthemore, C., Pencheon, D., Robinson, E., Schtte, S., Shumake-Guillemot, J., Vineis, P., Wilkinson, P., Wheeler, N., Xu, B., Yang, J., Yin, Y., Yu, C., Gong, P., Montgomery, H., Costello, A., 2017. The Lancet Countdown: tracking progress on health and climate change. The Lancet 389, 11511164.

Weiss, D.J., Bhatt, S., Mappin, B., Van Boeckel, T.P., Smith, D.L., Hay, S.I., Gething, P.W., 2014. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: a high-resolution spatiotemporal prediction. Malar. J. 13, 171.

WHO — World Health Statistics 2016: Monitoring health for the SDGs [WWW Document], URL http://www.who.int/gho/publications/orld_health_statistics/2016/en/ (accessed 7.10.17).

WHO/WMO. (2016) Climate Services for Health: Improving public health decision-making in a new climate. Eds. J.Shumake-Guillemot and L.Fernandez-Montoya. Geneva.

Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A., 2009. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. 106, 1972919736.

Williamson, A.E., Ylioja, P.M., Robertson, M.N., Antonova-Koch, Y., Avery, V., Baell, J.B., Batchu, H., Batra, S., Burrows, J.N., Bhattacharyya, S., Calderon, F., Charman, S.A., Clark, J., Crespo, B., Dean, M., Debbert, S.L., Delves, M., Dennis, A.S.M., Deroose, F., Duffy, S., Fletcher, S., Giaever, G., Hallyburton, I., Gamo, F.-J., Gebbia, M., Guy, R.K., Hungerford, Z., Kirk, K., Lafuente-Monasterio, M.J., Lee, A., Meister, S., Nislow, C., Overington, J.P., Papadatos, G., Patiny, L., Pham, J., Ralph, S.A., Ruecker, A., Ryan, E., Southan, C., Srivastava, K., Swain, C., Tarnowski, M.J., Thomson, P.,

Turner, P., Wallace, I.M., Wells, T.N.C., White, K., White, L., Willis, P., Winzeler, E.A., Wittlin, S., Todd, M.H., 2016. Open Source Drug Discovery: Highly Potent Antimalarial Compounds Derived from the Tres Cantos Arylpyrroles. ACS Cent. Sci. 2, 687701.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.