[Εξώφυλλο]

Source parameters of the 24 May 2014 North Aegean earthquake

Ευαγγελία Τσακιρούδη

Περίληψη


Σκοπός της παρούσας διατριβής ήταν ο προσδιορισμός των παραμέτρων σεισμικής πηγής και το μοντέλο ολίσθησης πεπερασμένης πηγής του σεισμού του Βορείου Αιγαίου της  24ης του Μάη 2014, με την εφαρμογή τριών μεθόδων: φασματική ανάλυση, αντιστροφή τανυστή σεισμικής ροπής και αντιστροφή της ολίσθησης τηλεσεισμικών δεδομένων. Η μέθοδος φασματικής ανάλυσης διεξήχθη σε Ρ και S τηλεσεισμικά φάσματα, προκειμένου να υπολογιστεί η σεισμική ροπή, το μέγεθος ροπής και η γωνιακή συχνότητα. Οι τιμές που προέκυψαν χρησιμοποιούνται σε διάφορες εμπειρικές σχέσεις για τον υπολογισμό των διαστάσεων της πηγής, της πτώσης τάσης και της μέγιστης μετάθεσης. Η μέθοδος της αντιστροφής τανυστή ροπής χρησιμοποιήθηκε για τον υπολογισμό του μηχανισμού γένεσης, της σεισμικής ροπής και της χρονικής συνάρτησης πηγής του σεισμού. Το μοντέλο ολίσθησης προσδιορίστηκε με τη μέθοδο της αντιστροφής ολίσθησης.Ένας άλλος στόχος της μελέτης ήταν η διερεύνηση σχετικά με το πώς οι προαναφερθείσες τρεις διαφορετικές τεχνικές μπορούν να συνδυαστούν προκειμένου να επιλυθούν καλύτερα πολύπλοκα σεισμικά γεγονότα.

The aim of the present thesis was the determination of the source parameters and the finite fault slip model of the 24 May 2014 North Aegean earthquake, with the application of three methods: spectral analysis, moment tensor inversion and slip inversion of teleseismic data. The spectral analysis method was carried out on P and S teleseismic wave spectra, in order to calculate seismic moment, moment magnitude and corner frequency. The resulted values were input parameters in various empirical relations in order to derive the source dimensions, stress drop and maximum dislocation. The method of moment tensor inversion was used to determine the focal mechanism, seismic moment and source time function of the earthquake. The finite fault slip model was derived by the method of slip inversion. Another aim of this study was the investigation on how the aforementioned three different techniques could be combined in order to best resolve complex seismic events.


Πλήρες Κείμενο:

PDF

Αναφορές


Abercrombie, R. E. (1995). Earthquake source scaling relationships from –1 to 5 ML using seismograms recorded at 2.5 km depth. J. Geophys. Res. 100, 24015–24036.

Aki, K. (1972). The upper mantle techtonophysics, Techtonophysics, 13, 1-4, 423-446.

Aki, K. and P. G. Richards (2002). Quantitative seismology. Second Edition, ISBN 0-935702-96-2, University Science Books, Sausalito, 704 pp.

Bormann, P. and J. Saul (2009). Earthquake magnitude. In: Meyers, A. (Ed.) Encyclopedia of complexity and systems science, Vol. 3, Springer, Heidelberg - New York, 2473–2496.

Bouchon, M. (1976). Teleseismic body wave radiation from a seismic source in a layered medium, Geophys. J. R. Astr. Soc. 47, 515-530.

Brune, J. (1970). Tectonic stress and seismic shear waves from earthquakes. J. Geophys. Res. 75, 4997–5009.

Chousianitis, K., Ganas, A., & Evangelidis, C. P. (2015). Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release. Journal of Geophysical Research: Solid Earth.

Choy, G. L., & Cormier, V. F. (1986). Direct measurement of the mantle attenuation operator from broadband P and S waveforms. Journal of Geophysical Research: Solid Earth (1978–2012), 91(B7), 7326-7342.

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems, Proceedings of the Royal Society of London, Series A, 241, 376-396.

Evangelidis, C. P. (2015). Imaging supershear rupture for the 2014 Mw 6.9 Northern Aegean earthquake by backprojection of strong motion waveforms. Geophysical Research Letters, 42, 307-315.

Futterman, W.I. (1962). Dispersive body waves, J. Geophys. Res., 67, 5279-5291.

Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66(5), 1501-1523.

Goldstein, P., D. Dodge, M. Firpo, Lee Minner (2003). SAC2000: Signal processing and analysis tools for seismologists and engineers. In: Lee, W. H. K., H. Kanamori, P. C. Jennings and C. Kisslinger (Eds.) Invited contribution to, The IASPEI international handbook of earthquake and engineering seismology. Academic Press, London.

Goldstein, P., A. Snoke, (2005). “SAC Availability for the IRIS Community”, Incorporated Institutions for Seismology Data Management Center Electronic Newsletter.

Hanks, M. and H. Kanamori (1979). A moment magnitude scale. J. Geophys. Res. 84, 2348–2340.

Haskell, N. A. (1960). Crustal reflection of plane SH waves. Journal of Geophysical Research, 65(12), 4147-4150.

Haskell, N. A. (1962). Crustal reflection of plane P and SV waves. Journal of Geophysical Research, 67(12), 4751-4768.

Havskov, J. and L. Ottemöller, Routine Data Processing in Earthquake Seismology, DOI 10.1007/978-90-481-8697-6, © Springer Science+Business Media B.V. 2010.

Helmberger, D.V., (1974). Generalized ray theory for shear dislocation, Bull. Seism. Soc. Am., 64, 45-64.

Houston, H. and H. Kanamori (1986). Source spectra of great earthquakes: Teleseismic constraints on rupture process and strong motion. Bull. Seism. Soc. Am. 76, 19–42..

IASPEI (2005). Summary of magnitude working group recommendations on standard procedures for determining earthquake magnitudes from digital data. http://www.iaspei.org/commissions/CSOI.html

Jeffreys, H. and K. E. Bullen (1940). Seismological tables. British Association for the Advancement of Science, Burlington House, London.

Kanamori, H. (1977). The energy release in great earthquakes, JGR, 82, No. 20, 2981-2987.

Kikuchi, M. and H. Kanamori (1982). Inversion of complex body waves, Bull. Seism. Soc. Am. 72, 491-506.

Kikuchi, M. and H. Kanamori (1991). Inversion of complex body waves – III. Bull. Seism. Soc. Am. 81, 2335–2350.

Kikuchi, M., Kanamori, H., & Satake, K. (1993). Source complexity of the 1988 Armenian Earthquake: Evidence for a slow after‐slip event. Journal of Geophysical Research: Solid Earth (1978–2012), 98(B9), 15797-15808.

Kiratzi, A., Tsakiroudi, E. and G. Karakaisis (2015). The May 24, 2014 (Mw6.8) earthquake in North Aegean Trough: spatiotemporal evolution, source and slip model from teleseismic data, Physics and Chemistry of the Earth, under review.

Knopoff, L. (1957). Energy release in great earthquakes, Geophysical Journal, l, 44-52.

Kreemer, C., & Chamot-Rooke, N. (2004). Contemporary kinematics of the southern Aegean and the Mediterranean Ridge. Geophysical Journal International, 157(3), 1377-1392.

Kurt, H., Demirbaǧ, E., & Kuşçu, İ. (2000). Active submarine tectonism and formation of the Gulf of Saros, Northeast Aegean Sea, inferred from multi-channel seismic reflection data. Marine Geology, 165(1), 13-26.

Langston, C. A. and D. V. Helmberger (1975). A procedure for modeling shallow dislocation sources. Geophys. J. R. Astr. Soc. 42, 117–130.

Lay, T. and T. C. Wallace (1995). Modern global seismology. Academic Press, San Diego, 521 pp.

Madariaga, R. (1976). Dynamics of an expanding circular fault. Bull. Seism. Soc. Am. 66, 639–666.

McCaffrey, R., and G. Abers, (1988). SYN3: A program for inversion of teleseismic body wave form on microcomputers, Air Force Geophysics Laboratory Technical Report, AFGL-TR-88-0099.

McCaffrey, R., Zwick, P., and Abers, G. (1991). “SYN4 Program”, IASPEI Software Library, 3, 81-166.

McCaffrey, R., G. Abers, and P. Zwick (1991). Inversion of Teleseismic Body Waves, IASPEI Software Library, Volume 3, Chapter 3.

McNeill, L. C., Mille, A., Minshull, T. A., Bull, J. M., Kenyon, N. H., & Ivanov, M. (2004). Extension of the North Anatolian Fault into the North Aegean Trough: Evidence for transtension, strain partitioning, and analogues for Sea of Marmara basin models. Tectonics, 23(2).

Nabelek, J. L. (1984). Determination of earthquake source parameters from inversion of body waves, Ph.D. Thesis, MIT, Cambridge, Massachusetts.

Okal, E. A. (1992). A student’s guide to teleseismic body wave amplitudes. Seismological Research Letters, 63(2), 169-180.

Oral, M., Reilinger, R. E., Nafi Toksöz, M., King, R. W., Aykut Barka, A., Kinik, I., & Lenk, O. (1995). Global positioning system offers evidence of plate motions in eastern Mediterranean. EOS, Transactions American Geophysical Union, 76(2), 9-11.

Papanikolaou, I. D., & Papanikolaou, D. I. (2007). Seismic hazard scenarios from the longest geologically constrained active fault of the Aegean. Quaternary international, 171, 31-44.

Papazachos, B. C. (1989). A time-predictable model for earthquake generation in Greece. Bulletin of the Seismological Society of America, 79(1), 77-84.

Papazachos, B. C. and Papazachou, C. (1997). The Earthquakes of Greece, Editions Ziti, Thessaloniki, pp. 286 (in greek).

Papazachos, B. C., Papadimitriou, E. E., Kiratzi, A. A., Papazachos, C. B., & Louvari, E. K. (1998). Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implications. Boll. Geof. Teor. Appl, 39(3), 199-218.

Papazachos, C. B. (1999). Seismological and GPS evidence for the Aegean‐Anatolia Interaction. Geophysical Research Letters, 26(17), 2653-2656.

Papazachos, B. C., Savvaidis, A. S., Karakaisis, G. F., & Papazachos, C. B. (2002). Precursory accelerating seismic crustal deformation in the Northwestern Anatolia Fault Zone. Tectonophysics, 347(4), 217-230.

Papazachos, B., Scordilis, E., Panagiotopoulos, D., Papazachos, C. and Karakaisis, G. (2004). Global relations between seismic fault parameters and moment magnitude of earthquakes. 10th International Congress of Geological Society of Greece, Thessaloniki, 15- 17 April 2004, 539-540.

SEED (2007). SEED reference manual. Standard for the exchange of earthquake data, SEED format version 2.4. International Federation of Digital Seismograph Networks Incorporated Research Institutions for Seismology (IRIS), USGS. www.iris.edu

Shearer, P. M. (2009). Introduction to seismology. Cambridge University Press.

Stein, S. and M. Wysession (2003). Introduction to seismology, earthquakes and earth structure. Blackwell Publishing, Oxford, 498 pp.

Wells, D. L., and K. J. Coppersmith (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seism. Soc. Am. 84, 974-1002.

Zwick, P., McCaffery, R., and Abers, G. (1994). “MT5 Program”, IASPEI Software Library, 4.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.