[Εξώφυλλο]

Προσομοιώσεις της ισχυρής σεισμικής κίνησης στο κοντινό πεδίο του σεισμού της Κω – Αλικαρνασσού 2017 = Near-field simulations of strong ground motion of the 2017 Kos – Halicarnassus earthquake.

Αντώνιος Ι. Χρήστου

Περίληψη


Ο σεισμός της 20ης Ιουλίου 2017 (22:31UTC, M6.6) με επίκεντρο στη θαλάσσια περιοχή ανατολικά της νήσου Κω, προκάλεσε βλάβες τόσο στην πόλη της Κω, όσο και στην περιοχή της Αλικαρνασσού (Bodrum) της Τουρκίας. Δεν υπάρχουν καταγραφές της ισχυρής σεισμικής κίνησης στην πόλη της Κω για να ερμηνευθεί η κατανομή των βλαβών, και να διερευνηθεί η θέση και η κλίση του ρήγματος. Χρησιμοποιήθηκαν μικρού μεγέθους σεισμοί, ως εμπειρικές συναρτήσεις Green, και προσομοιώθηκε η ισχυρή σεισμική κίνηση στην πόλη της Κω. Για το λόγο αυτόν, συλλέχθηκαν όλα τα διαθέσιμα επιταχυνσιογραφήματα του κύριου σεισμού και των μετασεισμών του με Μ≥3.0. Διερευνήθηκαν δημοσιευμένα μοντέλα ολίσθησης της σεισμικής πηγής και προσδιορίσθηκε η περιοχή έκλυσης της μεγαλύτερης ενέργειας, (Strong Motion Generation Area, SMGA). Με βάση αυτήν και καταγραφές του κύριου σεισμού και των μετασεισμών καθορίστηκαν οι τιμές των παραμέτρων της σεισμικής πηγής, και στη συνέχεια βαθμονομήθηκαν στις θέσεις που υπήρχαν καταγραφές της ακολουθίας. Η προσομοίωση της ισχυρής δόνησης στην πόλη  της Κω δίνει τιμές μέγιστης εδαφικής επιτάχυνσης μεταξύ 0.21g-0.28g, σε καλή συμφωνία με αποτελέσματα άλλων προσεγγίσεων εκτίμησής της, ενισχύοντας την αξιοπιστία της μεθοδολογίας των εμπειρικών συναρτήσεων Green (EGF).

The 20th July 2017 earthquake (22:31UTC, M6.6) with epicentre offshore of Kos island, caused damage both in Kos town and in Bodrum of Turkey. There are no records of strong ground motion in Kos town to relate with observed damage, and further investigation of the location and slip distribution on the fault plane. Here, we used small magnitude earthquakes as Empirical Green Functions, and simulated the mainshock’s strong ground motion in Kos town. We collected all the available accelerograms of the mainshock and its aftershocks with magnitude Μ≥3.0. We investigated published models of seismic source properties and determined the region of the strongest release of energy (referred to as Strong Motion Generation Area, SMGA). Based on this and on records of mainshock and its aftershocks, we searched the optimum values of seismic source parameters which best fitted the observed records. Having calibrated our model, we performed a blind simulation of the motion that would have been recorded at the strong motion station in Kos town. Our results predict values of peak ground acceleration between 0.21g to 0.28g, in good agreement with results of other approaches, strengthening the reliability of the EGFs method.

Πλήρες Κείμενο:

PDF

Αναφορές


Abrahamson & Somerville (1996), Effects of the Hanging Wall and Footwall on Ground Motions Recorded during the Northridge Earthquake, Bulletin of the Seismological Society of America, Vol. 86, No. 1B, pp. 593-599.

Abrahamson N. A., Silva W. J. (1997), Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes, Seismological Research Letters, Vol. 68, No. 1, 94-127.

Akansel V., Ameri G., Askan A., EERI M., Caner A., Erdil B., Kale O., Okuyucu D. (2014), The 23 October 2011 Mw7.0 Van (Eastern Turkey) Earthquake: Interpretations of Recorded Strong Ground Motions and Post-Earthquake Conditions of Nearby Structures, Earthquake Spectra, Vol. 30, No. 2, pp. 657-682.

Aki K. (1967), Scaling law of seismic spectrum, J. Geophys. Res. 72, 1217-1231.

Anderson H., Jackson J. (1987), Active tectonics of the Adriatic region, Geophysical J. R. Astr. Soc., 91, 937-983.

Asano K. (2018), Source Modeling of an Mw 5.9 Earthquake in the Nankai Trough, Southwest Japan, Using Offshore and Onshore Strong-Motion Waveform Records, Bulletin of the Seismological Society of America, Vol. 108, pp. 1231-1239.

Bard P-Y., M. Campillo, F. J. Cha'vez-Garcia, F. Sa'nchez-Sesma (1988), The Mexico Earthquake of September 19, 1985-A, Theoretical investigation of Large and Small scale Amplification Effects in the Mexico City Valley, Earthquake Spectra: August 1988, Vol. 4, No. 3, pp. 609-633.

Beresnev A., Wen K. (1996), Nonlinear Soil Response, Bulletin of the Seismological Society of America, Vol. 86, No. 6, pp. 1964-1978.

Borcherdt R. D. (1996), Preliminary amplification estimates inferred from strong ground-motion recordings of the Northridge earthquake of January 17, 1994, Proc. International Workshop on Site Response Subjected to Strong Earthquake Motions , Port and Harbor Research Institute, January 16-17, Yokosuka, Japan, I, 24-33; II, 21-46.

Brune J. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, Journal of Geophysical Research, 75(26), pp.4997-5009.

Campbell K. W. (1985), Strong ground motions attenuation relations: A ten-year perspective, Earthquake-Spectra, Vol. 1, No. 4, pp. 759-804.

Caputo R., Pavlides S. (2013), The Greek Database of Seismogenic Sources (GreDaSS), version 2.0: A compilation of potential seismogenic sources (Mw>5.5) in the Aegean Region. http://gredass.unife.it/.

Chang C. H. (2004), Application of a dense seismic network data on the study of seismogenic structures of central and eastern Taiwan, Ph.D. Thesis, Institute of Geophysics, National Central University, 156 pp.

Choudhury P., Chopra S., Singha K., Sharma J., B. K. Rastogi. (2017), Revisiting the 1956 Anjar Earthquake in Western India: Empirical Green’s Function Approach, Bulletin of the Seismological Society of America, Vol. 107, pp. 592-602.

Desio A. 1931, Le isole Italiane dell’Egeo.

Fytikas M., Innocenti F., Manetti P., Mazzuoli R., Pecerillo A., Villari L. (1985), Tertiary to Quaternary evolution of the volcanism in the Aegean region. In: J. F. Dixon and A.H.F. Robertson (Editors), The Geological Evolution of the Eastern Mediterranean, Blackwell Publ., Oxford, pp. 848.

Ganas A., Elias P., Kapetanidis V., Valkaniotis S., Briole P., Kassaras I., Argyrakis P., Barberopoulou A., Moshou A. (2019), The July 20, 2017 M6.6 Kos Earthquake: Seismic and Geodetic Evidence for an Active North-Dipping Normal Fault at the Western End of the Gulf of Gӧkova (SE Aegean Sea), Pure and Applied Geophysics.

Ganas A., Parsons T. (2009), Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift, Journal of Geophysical Research, Vol. 114, B06404.

Hartzell S. (1978), Earthquake aftershocks as Green’s functions, Geophysical Research Letters, 5, 1-4.

Hartzell S. H., Heaton T. H. (1985), Teleseismic time functions for large shallow subduction zone earthquakes, Bulletin of the Seismological Society of America, 75, 965-1004.

Haskell N. A. (1964), Total Energy and Energy Spectral Density of Elastic Wave Radiation From Propagating Faults, Bulletin of the Seismological Society of America, Vol. 54, No. 6, pp. 1811-1841.

Housner G. W., Jennings P. C. (1964), Generation of Artificial Earthquakes, ASCE, Journal of the Engineering Mechanics Division, Vol. 90, No. 1, pp. 113-150.

Irikura K. (1983), Semi-Empirical Estimation of Strong Ground Motions During Large Earthquakes, Bull. Disas. Prev. Res. Inst. Kyoto Univ., Vol. 33, Part 2, No 298.

Irikura K. (1986), Prediction of Strong Acceleration Motions Using Empirical Green’s Function, Proceedings of the 7th Japan Earthquake Engineering Symposium.

Irikura K., Kagawa T. and Sekigushi H. (1997), Seism. Soc. Japan, 2, B25.

Irikura K., Kamae K. (1994), Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique, ANNALI DI GEOFISICA, Vol. XXXVII, N. 6, pp. 1721-1743.

Irikura K., Miyakoshi K., Kamae K., Yoshida K., Somei K., Kurahashi S., Miyake H. (2017), Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake, Earth, Planets and Space, 69:10.

Ishihara K. (1996), Soil Behaviour in Earthquake Geotechnics, Clarendon Press.

Jibson R .W., Harp E. L., Schulz W., Keefer D. K. (2004), Landslides triggered by the 2002 M-7.9 Denali Fault, Alaska, earthquake and the inferred nature of the strong shaking, Earthq. Spectra 20, 669, 691.

Karasӧzen E., Nissen E., Büyükakpinar P., Cambaz M., Kahraman M., Ertan E., Abgarmi B., Bergman E., Ghods A., Ozacar A. (2018), The 2017 July 20 Mw 6.6 Bodrum-Kos earthquake illuminates active faulting in the Gulf of Gӧkova, SW Turkey, Geophysical Journal International, 214, 185-199.

Karnik V. (1969), Seismicity of the European Area, Part 1, Reidel, Dordrecht, 364 pp.

Kiratzi A., Koskosidi A. (2018), Constrains on the Near-Source Motions of the Kos-Bodrum 20 July 2017 Mw6.6 Earthquake, 16th European Conference on Earthquake Engineering, pp. 13, ID 11450.

Konca., Guvercin E., Ozarpaci S., Ozdemir A., Funning G., Dogan U., Ergintav S., Floyd M., Karabulut H., Reilinger R. (2019), Slip distribution of the 2017 Mw6.6 Bodrum-Kos earthquake: resolving the ambiguity of fault geometry.

Lee C-P., Tsai Y-B., and Wen K-L. (2006), Analysis of non linear site response using the LSST downhole accelerometer array data, Soil Dynamics and Earthquake Engineering, Vol. 26, No. 5, pp. 435-460.

McGuireR. K. (1978), Seismic ground motion parameter relations, Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT4, pp. 481-490.

Miyake H., Iwata T., Irikura K. (2003), Source Characterization for Broadband Ground-Motion Simulation Kinematic Heterogeneous Source Model and Strong Motion Generation Area, Bulletin of the Seismological Society of America, Vol. 93, pp. 2531-2545.

Mori J., Somerville P. (2006), Seismology and Strong Ground Motions in the 2004 Niigata Ken Chuetsu , Japan, Earthquake Spectra, Vol. 22, No. S1, pp. 9-21.

Newmark N., Hall W. (1982), Earthquake spectra and design, EERI Monograph Series, Earthquake Engineering Research Institute, Oakland, CA.

Papathanassiou G., Valkaniotis S., Pavlides S. (2019), The July 20, 2017 Bodrum-Kos, Aegean Sea Mw=6.6 earthquake; Preliminary field observations and image-based survey on a lateral spreading site, Soil Dynamics and Earthquake Engineering, 116, 668-680.

Papazachos B. and C. Papazachou (1997), The Earthquakes of Greece (Ziti Publ., Thessaloniki), pp. 356.

Papazachos B. C., Comninakis P. E. (1978), Deep structure and tectonics of the eastern Mediterranean., Tectonophysics, 46: 285-296.

Papazachos B. C., Comninakis P., Hatzidimitriou P., Kiriakidis E., Kiratzi A., Panagiotopoulos D., Tzanis E. (1982), Atlas of isoseismal maps of earthquakes in Greece 1902-1981. Publ. Geophys. Lab. Univ. Thessaloniki, No 4, 125p.

Papazachos B. C., Papadimitriou E. E., Kiratzi A. A., Papazachos C. B., and E. K. Louvari. (1998), Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication, Bolletino di GeofisicaTeoricaedApplicata, 39, 199-218.

Papazachos B., Margaris B., Theodulidis N. P., Papaioannou C. A. (1992), Seismic hazard assessment in Greece based on strong motion duration, In Proceedings of 10thW.C.E.E., volume 2, pages 425-430, Madrid.

Roumelioti Z., Kiratzi A., Theodoulidis N., Papaioannou C. (2002), S-wave spectral analysis of the 1995 Kozani-Grevena (NW Greece) aftershock sequence, Journal of Seismology, 6: 219-236.

Saltogianni V., Taymaz T., Yolsal-Cevikbilen S., Eken T., Gianniou M., Ocalan T., Pytharouli S., Stiros S. (Aug. 2017), Fault Model of the 2017 Kos-Bodrum (east Aegean Sea) Mw 6.6 earthquake from inversion of seismological and GPS data – Preliminary Report.

Shearer P. M. (1999), Introduction to Seismology, Cambridge University Press, 171-184.

Singh J. P. (1981), The influence of seismic source directivity on strong ground motions, Ph.D. Thesis California Univ. Berkeley.

Skarlatoudis A. A., Theodulidis N., Papaioannou Ch., Roumelioti Z. (2004), The Dependence of Peak Horizontal Acceleration on Magnitude and Distance from Small Magnitude Earthquakes in Greece, (2004), 13th World Conference on Earthquake Engineering, Paper No. 1857.

Somerville P., Irikura K., Graves R., Sawada S., Wald D., Abrahamson N., Iwasaki Y., Kagawa T., Smith N., Kowada A. (1999), Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion, Seismological Research Letters, Vol. 70, Number 1.

Somerville P., Smith N., Graves R., Abrahamson N. (1997), Modification of Empirical Strong Ground Motion Attenuation Relations to Inlude the Amplitude and Duration Effects of Rupture Directivity, Seismological Research Letters, 68(1), 199-222.

Theodulidis N. and Lekidis V. (1996), The Kozani-Grevena, northern Greece, earthquake of May 13, 1995: Strong motion data and structural response, European Earthq. Engin., 1, 3-13.

Theodulidis N. P., Papazachos B. C. (1992), Dependence of strong ground motion on magnitude-distance , site geology and macroseismic intensity for shallow earthquakes in Greece: I, peak horizontal acceleration, velocity and displacement., Soil Dynamics and Earthquake Engineering, 11(7), 387-402.

Trifunac M. D., Brady A. G. (1975), A Study on the Duration of Strong Earthquake Ground Motion, Bulletin of the Seismological Society of America, Vol. 65, No. 3, pp. 581-626.

Wood H. O., Neumann F. (1931), Modified Mercalli Intensity Scale of 1931, Bulletin of the Seismological Society of America, 21, 4, pp. 277-283.

Ινστιτούτο Τεχνικής Σεισμολογίας και Αντισεισμικών Κατασκευών (ΙΤΣΑΚ)., (Αυγ. 2017), Σεισμός Κω Mw6.6 της 21/07/2017-Προκαταρκτική Έκθεση. www.itsak.gr/uploads/news/earthquake_reports/EQ_COS_20170721_M6.6.pdf.

Κοκκάλας Σ., Γεωδυναμική εξέλιξη του ΝΑ τμήματος του Ελληνικού τόξου, Διδακτορική διατριβή (2000).

Μουντράκης Δ., (2010), Γεωλογία και Γεωτεκτονική Εξέλιξη της Ελλάδας, UniversityStudioPress, Θεσσαλονίκη.

Παπαζάχος Β., Παπαζάχου Κ. (2003), Οι σεισμοί της Ελλάδας, Ζήτη, Θεσσαλονίκη, Εκδόσεις Ζήτη.

Ψυχάρης Ι. και Ταφλαμπάς Ι., (2017), Προκαταρκτική εκτίμηση της εδαφικής κίνησης στην πόλη της Κω στο σεισμό της 21/07/2017, σελ. 20. http://psycharisgr.weebly.com/uploads/1/6/2/5/16258088/kos.pdf.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.