[Εξώφυλλο]

Κοιτασματολογική μελέτη της μεταλλοφορίας αντιμονίτη στα Ριζανά, Κιλκίς = Study of the stibnite ore mineralization in Rizana, Kilkis.

Ευάγγελος Κωνσταντίνος Σκούπρας

Περίληψη


Η μεταλλοφορία αντιμονίτη στα Ριζανά ανήκει στη μεταλλογενετική περιοχή του Κιλκίς στην Βόρεια Ελλάδα και φιλοξενείται στους γνευσίους της ενότητας Βερτίσκου στην Σερβομακεδονική μάζα. Ο μαγματισμός του Ολιγοκαίνου-Μειοκαίνου στην Σερβομακεδονική μάζα είναι υπεύθυνος για τη δημιουργία μαγματικών-υδροθερμικών μεταλλοφοριών, τύπου πορφυριτικού, επιθερμικού, αντικατάστασης, skarn και χαλαζιακών φλεβών. Στην περιοχή έρευνας εντοπίζονται ο γρανίτης της Ξυλόπολης Τριτογενούς ηλικίας, και ο ηφαιστίτης Ριζανών με σύσταση ρυόλιθο, δακίτη και ρυοδακίτη. Η μεταλλοφορία συνδέεται με τον ηφαιστίτη και εντοπίζεται σε χαλαζιακές φλέβες πάχους έως 20m. Οι φλέβες αυτές αποτέλεσαν αντικείμενο έρευνας και εκμετάλλευσης κατά τις δεκαετίες 1930 έως 1950 κυρίως από τους Γερμανούς και για τον λόγο αυτό στην περιοχή εντοπίζονται εγκαταλειμμένες υπόγειες στοές. Η μεταλλοφορία έχει μορφή διάσπαρτη, συμπαγή και εντοπίζεται σε φλεβίδια και σε λατυποπαγή (breccia). Η ανάπτυξή της ελέγχεται τεκτονικά και εντοπίζεται σε θραυσιγενείς ζώνες διάτμησης. Το κύριο μεταλλικό ορυκτό της μεταλλοφορίας είναι ο αντιμονίτης με ίχνη από σφαλερίτη, σιδηροπυρίτη, βερθιερίτη, χαλκοπυρίτη, βαλεντινίτη και Fe-οξείδια. Ο χαλαζίας και ο βαρύτης είναι τα σύνδρομα ορυκτά. H σερικιτίωση και η πυριτίωση είναι οι σημαντικότερες εξαλλοιώσεις του πετρώματος. Επίσης είναι εμφανής η εκτεταμένη οξείδωση του πετρώματος και του μεταλλεύματος Οι χημικές αναλύσεις εκτός από αντιμόνιο έδειξαν εμπλουτισμό και σε As, Cu, Ga, Li, Sr, Tl, V, W και REE κυρίως La, Ce, Sc, Y. Η δημιουργία των υδροθερμικών λατυποπαγών (breccias) με τον κατακερματισμό του γνευσίου και την πλήρωση των κενών με συμπαγή μεταλλοφορία αντιμονίτη δείχνει ότι τα υδροθερμικά ρευστά εκμεταλλευόμενα τον χώρο που τους προσέφερε η τεκτονική με τη δράση των ρηγμάτων απέθεσαν το μεταλλικό τους περιεχόμενο στους κενούς χώρους. Από την μελέτη των ρευστών εγκλεισμάτων προέκυψε ότι η μεταλλοφορία σχηματίστηκε σε ένα περιορισμένο φάσμα θερμοκρασιών, αλατότητας και πιέσεων. Τα ρευστά είχαν μικρή έως μέτρια αλατότητα (6.6-8.8% κβ ισοδ. ΝaCl) με σχετικά χαμηλές θερμοκρασίες ομογενοποίησης (217-254° C, με ένα μέγιστο στους 220° C). Οι συνθήκες αυτές δείχνουν ένα υδροθερμικό γεγονός επιθερμικού σταδίου που σχηματίστηκε σε υδροστατικές πιέσεις από 23 έως 40 bar και βάθος σχηματισμού της μεταλλοφορίας αντιμονίτη έως 400 μέτρα. Τέλος, η ρύπανση των υδάτων και των εδαφών της περιοχής από αντιμόνιο αποτελεί ένα σημαντικό περιβαλλοντικό πρόβλημα.

The antimonite mineralization in Rizana belongs to the metallogenic region of Kilkis in Northern Greece. It is hosted in the gneiss of the Vertiskos unit in the Serbo-Macedonian massif. The magmatism that took place in the Serbo-Macedonian massif during Oligocene-Miocene is genetically associated with the formation of magmatic-hydrothermal mineralization including porphyry, epithermal, replacement, skarn and quartz-vein types. Two magmatic bodies occur in the broader area of Rizana, the Xylopolis Tertiary granite, and the Rizana rhyolite, dacite and rhyodacite. The mineralization is possibly related with the volcanic rocks and is found in quartz veins, which have a width of up to ..., m. These veins were mainly explored and exploited during the 1930s and 1950s by the Germans, leaving behind abandoned underground galleries in the area. The mineralization forms disseminations, massive sulfides, and is found in veinlets and in extensive hydrothermal breccias. It is tectonically controlled and is located along brittle shear zones. Antimonite is the main sulfide along with traces of sphalerite, pyrite, berthierite, chalcopyrite, valentinite and Fe-oxides. Quartz and barite are the gangue minerals. Sericitization and silicification are the major hydrothermal alterations of the rock. Extensive oxidation of the rock and the ore is also evident. Chemical analyses, in addition to antimony, have also shown enrichment in As, Cu, Ga, Li, Sr, Tl, V, W and REE, mainly La, Ce, Sc, Y. The hydrothermal breccias resulted in the fragmentation of gneiss and the gaps were filled with massive antimony mineralization. This shows that the hydrothermal fluids migrated through the cracks provided by the tectonics and the mineralization was deposited in the spaces. The study of fluid inclusions showed that the mineralization was formed under a limited range of temperature, salinity and pressure. The fluids had a low to moderate salinity (6.6-8.8 wt% equiv. NaCl) with relatively low homogenization temperatures (217-254° C, with a maximum at 220° C). These conditions indicate an epithermal hydrothermal event, formed at hydrostatic pressures from 23 to 40 bar and a depth of up to 400 meters. Finally, antimony contamination of water and soil in the area is a major environmental problem.

Πλήρες Κείμενο:

PDF

Αναφορές


Amann, G., Paar, W. H., Neubauer, F., and Daxner, G. (2002). Auriferous arsenopyrite-pyrite and stibnite mineralization from the Siflitz-Guginock area (Austria): Indications for hydrothermal activity during Tertiary oblique terrane accretion in the Eastern Alps. Geological Society, London, Special Publications, 204(1), 103-117.

Anderson, C. G. (2012). The metallurgy of antimony. Chemie der Erde-Geochemistry, 72, 3-8.

Audétat, A., Pettke, T., Heinrich, C. A., and Bodnar, R. J. (2008). The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions: Economic Geology, v. 103.

Bellot, J. P., Bailly, L., Lerouge, C., and Bouchot, V. (2004). Stibnite microstructures as imprints of fault movement. MineraliumDeposita, 39(5-6), 576-582.

Blundell, D., Arndt, N., Cobbold, P. R., and Heinrich, C. (2005). 9: Processes of tectonism, magmatism and mineralization: Lessons from Europe. Ore Geology Reviews, 27(1), 333-349.

Bortnikov, N. S., Gamynin, G. N., Vikent’eva, O. V., Prokof’ev, V. Y., and Prokop’ev, A. V. (2010). The Sarylakh and Sentachan gold-antimony deposits, Sakha-Yakutia: a case of combined mesothermal gold-quartz and epithermal stibnite ores. Geology of Ore Deposits, 52(5), 339-372.

Bristol, S.K., Spry, P.G., Voudouris, P.Ch., Melfos, V., Fornadel, A.P., Sakellaris, G.A., 2015. Geochemical and geochronological constraints on the formation of shearzone hosted Cu-Au-Bi-Te mineralization in the Stanos area, Chalkidiki, northern Greece. Ore Geol. Rev. 66, 266–282.

Brun, J.-P., Sokoutis, D., 2007. Kinematics of the Southern Rhodope core complex(Northern Greece). Int. J. Earth Sci. 96, 1079–1099.

Burg, J. P. (2012). Rhodope: From Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame. Journal of the Virtual Explorer, 42(1).

Chancerel, P., Rotter, V. S., Ueberschaar, M., Marwede, M., Nissen, N. F., and Lang, K. D. (2013). Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment. Waste management and research, 31(10_suppl), 3-16.

Dill, H. G. (1998). Evolution of Sb mineralisation in modern fold belts: a comparison of the Sb mineralisation in the Central Andes (Bolivia) and the Western Carpathians (Slovakia). Mineralium Deposita, 33(4), 359-378.

Fan, D. L. (2004). The Xikuangshan Sb deposit hosted by the Upper Devonian black shale series, Hunan, China. Ore Geol. Rev., 24, 121-133.

Filella, M., Belzile, N., and Chen, Y. W. (2002). Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth-Science Reviews, 57(1-2), 125-176.

Fossen, H., and Tikoff, B. (1998). Extended models of transpression and transtension, and application to tectonic settings. Geological Society, London, Special Publications, 135(1), 15-33.

Frei, R., 1995. Evolution of mineralizing fluid in the porphyry copper system of theSkouries deposit, northeast Chalkidiki (Greece): evidence from combined Pb-Sr and stable isotope data. Econ. Geol. 90, 746–762.

Fu, Z., Wu, F., Mo, C., Deng, Q., Meng, W., and Giesy, J. P. (2016). Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Science of the Total Environment, 539, 97-104.

Gunn, G. (Ed.). (2014). Critical metals handbook. John Wiley and Sons.

Gebel, T. (1997). Arsenic and antimony: comparative approach on mechanistic toxicology. Chemico-biological interactions, 107(3), 131-144.

Gu, X., Schulz, O., Vavtar, F., Liu, J., Zheng, M., and Fu, S. (2007). Rare earth elementgeochemistry of the Woxi W–Sb–Au deposit, Hunan province, South China. Ore Geology Reviews, 31(1-4), 319-336.

Hao, B., Deng, J., Bagas, L., Ge, L., Nie, F., Turner, S., and Qing, M. (2016). The Gaosongshan epithermal gold deposit in the Lesser Hinggan Range of the Heilongjiang Province, NE China: implications for Early Cretaceous mineralization. Ore Geology Reviews, 73, 179-197.

Hart, C. J. (2005). Classifying, distinguishing and exploring for intrusion-related goldsystems. The Gangue, 87(1), 9.

Himmerkus, F., Reischmann, T., and Kostopoulos, D. (2009). Serbo-Macedonian revisited: a Silurian basement terrane from northern Gondwana in the Internal Hellenides, Greece. Tectonophysics, 473(1), 20-35.

Jolivet, L., Menant, A., Sternai, P., Rabillard, A., Arbaret, L., Augier, R., .. and Labrousse, L. (2015). The geological signature of a slab tear below the Aegean. Tectonophysics, 659, 166-182.

Kanellopoulos, C., Voudouris, P., Moritz, R., 2014. Detachment-related Sb-As-Au-Ag-Te mineralization in Kallintiri area, northeastern Greece: Mineralogical and geochemical constraints. Proceedings 20th CBGA Congress, Tirana, Albania, Buletini i Shkencave Gjeologjike Special Issue 1, 162-165.

Kesler, S. E., Simon, A. C., and Simon, A. F. (2015). Mineral resources, economics and the environment. Cambridge University Press.

Kilias, A., Falalakis, G., Mountrakis, D., 1999. Cretaceous-Tertiary structures andkinematics of the Serbo-Macedonian metamorphic rocks and their relation to exhumation of the Hellenic hinterland (Macedonia, Greece). Int. J. Earth Sci. 88, 513–531.

Kilias, A., Falalakis, G., Sfeikos, A., Papadimitriou, E., Vamvaka, A., and Gkarlaouni, C. (2013). The Thrace basin in the Rhodope province of NE Greece—A tertiary supradetachment basin and its geodynamic implications. Tectonophysics, 595, 90-105.

Kydonakis, K., Gallagher, K., Brun, J. P., Jolivet, M., Gueydan, F., and Kostopoulos, D. (2014). Upper Cretaceous exhumation of the western Rhodope Metamorphic Province (Chalkidiki Peninsula, northern Greece). Tectonics, 33(6), 1113-1132.

Kydonakis, K., Brun, J. P., Sokoutis, D., and Gueydan, F. (2015). Kinematics of Cretaceous subduction and exhumation in the western Rhodope (Chalkidiki block). Tectonophysics, 665, 218-235.

Kyriakopoulos, K. (1987). A geochronological, geochemical and mineralogical study of some Tertiary plutonic rocks of the Rhodope massif and their isotopic characteristics. University of Athens.

Li, J., Zheng, B., He, Y., Zhou, Y., Chen, X., Ruan, S., .. and Tang, L. (2018). Antimony contamination, consequences and removal techniques: a review. Ecotoxicology and environmental safety, 156, 125-134.

Liati, A., Gebauer, D., and Fanning, C. M. (2004). The age of ophiolitic rocks of the Hellenides(Vourinos, Pindos, Crete): first U–Pb ion microprobe (SHRIMP) zircon ages. Chemical Geology, 207(3), 171-188.

Løvik, A.N., Hagelüken, C. and Wäger, P., 2018. Improving supply security of critical metals: Current developments and research in the EU. Sustainable Materials and Technologies, 15, pp.9-18.

Madu, B. E., Nesbitt, B. E., and Muehlenbachs, K. (1990). A mesothermal gold-stibnite-quartz vein occurrence in the Canadian Cordillera. Economic Geology, 85(6), 1260-1268.

Marchev, P., Kaiser-Rohrmeier, M., Heinrich, C., Ovtcharova, M., von Quadt, A., and Raicheva, R. (2005). 2: Hydrothermal ore deposits related to post-orogenic extensional magmatism and core complex formation: The Rhodope Massif of Bulgaria and Greece. Ore Geology Reviews, 27(1), 53-89.

McCallum, R., 2005. Occupational exposure to antimony compounds. J. Environ. Monit. 7, 1245–1250.

Melfos, V., Vavelidis, M., Arikas, K., 2001. A new occurrence of argentopentlandite and gold from the Au–Ag-rich copper mineralisation in the Paliomylos area, SerbomacedonianMassif, Central Macedonia, Greece. Bull. Geol. Soc. Greece 34, 1065–1072.

Melfos, V., and Voudouris, P. (2017). Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geology Reviews, 89, 1030-1057.

Michailidis, K., & Kassoli-Fournaraki, A. (1994). Tourmaline concentrations in migmatitic metasedimentary rocks of the Riziana and Kolchiko areas in Macedonia, Northern Greece. European journal of mineralogy, 557-570.

Mouslopoulou, V., Saltogianni, V., Gianniou, M., and Stiros, S. (2014). Geodetic evidence for tectonic activity on the Strymon Fault System, northeast Greece. Tectonophysics, 633, 246-255.

Neiva, A. M. R., Andráš, P., and Ramos, J. M. F. (2008). Antimony quartz and antimony–gold quartz veins from northern Portugal. Ore Geology Reviews, 34(4), 533-546.

Němec, M., and Zachariáš, J. (2017). The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation. Mineralium Deposita, 1-20.

Obolensky, A. A., Gushchina, L. V., Borisenko, A. S., Borovikov, A. A., and Pavlova, G. G. (2007). Antimony in hydrothermal processes: solubility, conditions of transfer, and metal-bearing capacity of solutions. Russian Geology and Geophysics, 48(12), 992-1001.

Panagos, A., Pe, G. G., and Varnavas, S. P. (1978). The volcanic rocks of Strymonikon –Metamorphosis, Central Macedonia, Greece. Chem. Erde, 37, 50-61.

Papanikolaou, D. (2013). Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides. Tectonophysics, 595, 1-24.

Papanikolaou, D. J., and Royden, L. H. (2007). Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene‐Quaternary normal faults—Or what happened at Corinth?. Tectonics, 26(5).

Pierart, A., Shahid, M., Sejalon-Delmas, N., Dumat, C., 2015. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater. 289, 219–234.

Royden, L. H., and Papanikolaou, D. J. (2011). Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochemistry, Geophysics, Geosystems, 12(3).

Sillitoe, R. H. (2010). Porphyry copper systems. Economic geology, 105(1), 3-41.

Sillitoe, R. H., and Hedenquist, J. W. (2003). Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Special Publication-Society of Economic Geologists, 10, 315-343.

Stergiou, C. L. (2016). Mineralogical, geochemical and structural-control study of the hydrothermal alterations and the ore mineralization at Vathi porphyry Cu-Au+-U+-mO SYSTEM, N. Greece. Προ/Μεταπτυχιακές Διατριβές στη Βιβλιοθήκη Θεόφραστος του Τμήματος Γεωλογίας του ΑΠΘ.

Stergiou, C., Melfos, V., Voudouris, P., Michailidis, K., Spry, P., Chatzipetros A. 2016. Hydrothermal alteration and structural control of the Vathi porphyry Cu-Au-Mo-U ore system, Kilkis district, N. Greece. Scientific Annals of the School of Geology, Aristotle University of Thessaloniki (Honorary Publication in Memory of Professor A. Kasoli-Fournaraki) 105, 69–74.

Stergiou, C. L., Melfos, V., and Voudouris, P., 2018. A Review on the Critical and Rare Metals Distribution throughout the Vertiskos Unit, N. Greece.Thymiatis, G.E., 1995. Metallogenesis of Laodikino-Lipsidrio area, Kilkis/Mecedonia, Northern Greece. Unpublished Doctoral dissertation, Thessaloniki, Greece, Aristotle University of Thessaloniki. 240 p (in Greek).

Tranos, M. D. (2011). Strymon and Strymonikos Gulf basins (Northern Greece): Implications on their formation and evolution from faulting. Journal of Geodynamics, 51(4), 285-305.

Urban, M., Thomas, R., Hurai, V., Koneèný, P., and Chovan, M. (2006). Superdense CO2 inclusions in Cretaceous quartz–stibnite veins hosted in low-grade Variscan basement of the Western Carpathians, Slovakia. MineraliumDeposita, 40(8), 867-873.

Vavelidis, M., Kilias, A., Melfos, V., Schmidt-Mumm, A., 1996. New investigations in the Au-Ag-bearing Cu mineralization and its structural control in the Koronouda area, central Macedonia, Northern Greece. In: Knezˇevic´ , V., Krstic´, B., (Eds.), Terranes of Serbia, Proceedings, pp. 317–322.

Vavelidis M., Melfos V., Kilias A., 1999. The gold-bearing quartz veins in the metamorphic rocks at the Drakontio area, central Macedonia, northern Greece. In: Stanley, C.J. et al., Mineral Deposits: Processes to Processing. Proceedings, pp. 209–212.

Voudouris, P., 2011. Conditions of formation of the Mavrokoryfi high-sulfidation epithermal Cu-Ag-Au-Te deposit (Petrota Graben, NE Greece). Mineral. Petrol.101, 97–113.

Voudouris P., Mavrogonatos C., Spry P.G., Baker T., Melfos V., Klemd R., Haase K., Repstock A., Djiba A., Bismayer U., Tarantola A., Scheffer C., Moritz R.,Kouzmanov K., Alfieris D., Papavassiliou K., Schaarschmidt A., Galanopoulos E., Galanos E., Kołodziejczyk J.,

Stergiou C., Melfou M. (2019). Porphyry and epithermal deposits in Greece: an overview, new discoveries, and mineralogical constraints on their genesis. Ore Geology Reviews, 107, 654–691.

Voudouris, P., Spry, P. G., Mavrogonatos, C., and Sakellaris, G. A. (2010, April). Gold-bismuth-telluride-sulfide assemblages at the Stanos shear zone-related prospect, Chalkidiki, northern Greece. In 13th Quadrennial IAGOD symposium, Adelaide, SouthAustralia (Vol. 6, No. 9, pp. 297-298).

Voudouris P.C., Spry P.G., Mavrogonatos C., Sakellaris G-A., Bristol S.K., Melfos V., Fornadel A.P. (2013). Bismuthinite derivatives, lillianite homologues and bismuth sulfotellurides as indicators of gold mineralization in the Stanos shear-zone related deposit, Chalkidiki, Northern Greece. Canadian Mineralogist, 51, 119-142.

Voudouris, P., Tarkian, M., Arikas, K., 2006. Mineralogy of telluride-bearingepithermal ores in Kassiteres-Sappes area, western Thrace, Greece. Mineral.Petrol. 87, 31–52.

Williams-Jones, A. E., and Norman, C. (1997). Controls of mineral parageneses in the system Fe-Sb-SO. Economic Geology, 92(3), 308-324.

Ye, L., Qiu, S., Li, X., Jiang, Y., and Jing, C. (2018). Antimony exposure and speciation in human biomarkers near an active mining area in Hunan, China. Science of The Total Environment, 640, 1-8.

Zhai, W., Sun, X., Yi, J., Zhang, X., Mo, R., Zhou, F., .. and Zeng, Q. (2014). Geology, geochemistry, and genesis of orogenic gold–antimony mineralization in the Himalayan Orogen, South Tibet, China. Ore Geology Reviews, 58, 68-90.

Zhong, J., Pirajno, F., and Chen, Y. J. (2017). Epithermal deposits in South China: Geology, geochemistry, geochronology and tectonic setting. GondwanaResearch, 42, 193-219.

Βασιλάτος, Χ., Μπάρλας, Κ., Σταματάκης, Μ. Γ., and Τσιβίλης, Σ. Γ. (2001). Βολφραμίτης-αντιμονίτηςΡιζανώνΛαχανά νομού Κιλκίς. Δυνατότητα χρήσηςτουςωςευτηκτικώνστην παρασκευή τσιμέντου= Wolframite-stibnite mineral assemblages from RizanaLachanas, Macedonia, Greece and their possible use as flux agent in the manufacturing. Δελτίον της Ελληνικής Γεωλογικής Εταιρίας, 34(2), 825-834.

Δήμου, Ε., 2006. Τα μεταλλικά ορυκτά της Ελλάδος κάτω από το μικροσκόπιο. Μελιδώνης, Ν,, 1972. Ο ΗΦΑΙΣΤΙΤΗΣ ΤΩΝ ΡΙΖΑΝΩΝ.

Journal of Thesis and Dissertations of the School of Geology, AUTh

Παρασκευόπουλος, Γ. (1958). Η ΓΕΝΕΣΙΣ ΤΩΝ ΒΟΛΦΡΑΜΙΟΥΧΩΝ ΚΑΙ ΑΝΤΙΜΟΝΙΟΥΧΩΝ ΚΟΙΤΑΣΜΑΤΩΝ ΤΗΣ ΠΕΡΙΟΧΗΣ ΛΑΧΑΝΑ ΕΝ ΤΗ ΚΕΝΤΡΙΚΗ ΜΑΚΕΔΟΝΙΑ. Annalles Geologique des Pays Hellenique, 9, 227-241.

Πατσιούρη, ΑΧ., 2017. Ορυκτολογική και γεωχημική μελέτη μεταλλοφόρων εμφανίσεων στα μεταμορφωμένα πετρώματα της περιοχής Κολχικού Θεσσαλονίκης. Μεταπτυχιακή εργασία ειδίκευσης, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Τσεβαϊρίδου, Α. (2015). Μελέτη των χαλαζιακών φλεβών αντιμονίτη στο Νέο Καλλυντίρι του νομούΡοδόπης= Study of the stibnite quartz veins in Neo Kallintiri, Rhodope, NE Greece. Προ/Μεταπτυχιακές Διατριβές στη Βιβλιοθήκη Θεόφραστος του Τμήματος Γεωλογίας του ΑΠΘ.

Τσιρίγκας, Σ. (2008). Κατανομή, ταξινόμηση και ψηφιακή χαρτογράφηση των κοιτασμάτων-ορυχείων στον ελληνικό χώρο (Doctoraldissertation).

Φανουράκη (2011).ΜΕΛΕΤΗ ΡΥΠΑΝΣΗΣ ΥΠΟΓΕΙΩΝ ΥΔΑΤΩΝ ΚΑΙ ΕΔΑΦΩΝ ΑΠΟ ΑΡΣΕΝΙΚΟ ΚΑΙ ΑΝΤΙΜΟΝΙΟ ΣΕ ΠΕΡΙΟΧΕΣ ΕΜΦΑΝΙΣΗΣ

ΘΕΙΟΥΧΟΥ ΜΕΤΑΛΛΟΦΟΡΙΑΣ ΤΟΥ Β. ΤΜΗΜΑΤΟΣ ΤΗΣ ΝΗΣΟΥ ΧΙΟΥ. Διδακτορική Διατριβή, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών.

Eldorado Gold Corp., 2017. Assets; Resources and Reserves. http://www.eldoradogold.com


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.