Σύνθεση ζεολίθου από ελληνικές ιπτάμενες τέφρες παρουσία υδατικών διαλυμάτων Η2Ο2 = Zeolite synthesis from Greek fly ashes promoted by H2O2 solutions.

Θεόδωρος Κ. Μουχτάρης

Περίληψη


Η κατεργασία σε ανοιχτό σύστημα, 10g ιπτάμενης τέφρας των θειοασβεστιτικών ιπταμένων τεφρών του Λιγνιτικού Κέντρου Δυτικής Μακεδονίας (Λ.Κ.Δ.Μ.), και συγκεκριμένα των Α.Η.Σ. Καρδιάς, Λιπτόλ και Πτολεμαΐδας, με υδατικό διάλυμα 40, 80, 120, 160, 200, 240 mL 30% H2O2, είχε ως αποτέλεσμα, σε σταθερή θερμοκρασία 80 °C, τον σχηματισμό 2-40 %κ.β. ζεολίθου EPI-type (επιστιλβίτη). Με τις αργιλιοπυριτικές ιπτάμενες τέφρες του Λιγνιτικού Κέντρου Μεγαλόπολης δεν παρατηρήθηκε σχηματισμός ζεολίθου. Το μεγαλύτερο ποσοστό επιστιλβίτη (40 %κ.β.) σχηματίστηκε στο πείραμα με 240 mL 30% H2O2, με αρχική ιπτάμενη τέφρα από τον Α.Η.Σ. Καρδιάς.
Η δεσμευτική ικανότητα της αρχικής ιπτάμενης τέφρας Α.Η.Σ. Καρδιάς μετρήθηκε σε 92 meq/100g, ενώ του ζεολιθοποιημένου στερεού προϊόντος με 34 %κ.β. επιστιλβίτη (πείραμα με 120 mL 30% H2O2) μετρήθηκε σε 136 meq/100g, δηλαδή παρατηρήθηκε αύξηση της δεσμευτικής ικανότητας κατά 48%.
Στα πειράματα των ιπταμένων τεφρών του Λ.Κ.Δ.Μ., εκτός του επιστιλβίτη, ως νέες φάσεις σχηματίστηκαν το ένυδρο ασβεστιοαργιλικό ανθρακικό άλας (Cm) σε ποσοστά 2-20 %κ.β. και η γύψος σε 2-15 %κ.β.
Με την επίδραση των υδατικών διαλυμάτων 30% H2O2, η περιεκτικότητα των αμόρφων υλικών σε σχέση με τις αρχικές ιπτάμενες τέφρες μειώθηκε στα πειράματα σε 13-22 %κ.β. (από 27-42 %κ.β.), του ανυδρίτη μειώθηκε σε 4-11 %κ.β. (από 9-16 %κ.β.), της ασβέστου μειώθηκε σε 0-3 %κ.β. (από 4-14 %κ.β.) και του πορτλανδίτη μειώθηκε σε 0-6 %κ.β. (από 13 %κ.β.), ενώ η αρχική περιεκτικότητα του ασβεστίτη αυξήθηκε σε 8-26 %κ.β. (από 6-19 %κ.β).
Ο ανυδρίτης (CaSO4), ως αρχικό συστατικό, καταναλώνεται μερικώς για τον σχηματισμό της νέας φάσης της γύψου (CaSO4.2H2O). Η άσβεστος (CaO) και ο πορτλανδίτης [Ca(OH)2], ως αρχικά συστατικά, καταναλώνονται για τον σχηματισμό του ασβεστίτη (CaCO3), της γύψου, του επιστιλβίτη [(Ca,Na)3Al6Si18O48.16H2O] και του Cm (Ca8Al4O14CO2.24 H2O). Τα άμορφα υλικά καταλανώνονται μερικώς για τον σχηματισμό του επιστιλβίτη, του Cm και πιθανώς της γύψου και του ασβεστίτη. Ο ρόλος των ασβεστιτικών, πυριτικών και αργιλικών αμόρφων υλικών, είναι σημαντικός για τον σχηματισμό του Cm, το οποίο θεωρείται ενδιάμεση φάση στον σχηματισμό του επιστιλβίτη. Το ποσοστό του επιστιλβίτη αυξάνεται με την μείωση του Cm.
Η περιεκτικότητα σε CaO, SiO2 και Al2O3 και οι σχετικές αναλογίες μεταξύ τους, στις αρχικές ιπτάμενες τέφρες του Λ.Κ.Δ.Μ., είναι σημαντικοί παράγοντες για τον σχηματισμό του επιστιλβίτη και του Cm. Η αρχική ιπτάμενη τέφρα του Α.Η.Σ. Καρδιάς στην οποία σε όλα τα πειράματά της σχηματίστηκαν τα υψηλότερα ποσοστά επιστιλβίτη (17-40 %κ.β.), περιέχει CaO 34,52 %κ.β., SiO2 31,93 %κ.β. και Al2O3 13,05 %κ.β.
Η προσθήκη του 30%H2O2, σε σταθερή θερμοκρασία 80 °C, με την ταυτόχρονη παρουσία σημαντικού ποσοστού των ορυκτών άσβεστος (CaO) και πορτλανδίτης (CaOH2), δημιουργούν περιβάλλον υψηλής αλκαλικότητας (pH>11), δηλαδή συνθήκες κατάλληλες για να προχωρήσει η ζεολιθοποίηση με αρχικά υλικά τόσο από τις προϋπάρχουσες κρυσταλλικές ορυκτολογικές φάσεις όσο και από υλικά τα οποία προκύπτουν από την καταστροφή των οργανικών μακρομορίων τα οποία είχαν παραμείνει ως άκαυστο υλικό από τον αρχικό λιγνίτη. Με την καταστροφή – αποδόμησή των μακρομορίων αυτών προκύπτουν εντός του διαλύματος και πρόσθετες ανόργανες άμορφες φάσεις, πλούσιες σε αργίλιο, πυρίτιο και σίδηρο, οι οποίες συμβάλλουν - λειτουργούν αθροιστικά στη διαδικασία της ζεολιθοποίησης.

The treatment in open system of 10g of fly ash of the sulphocalcic fly ashes of the Lignite Center of Western Macedonia (L.C.W.M.), power plants of Kardia, Liptol and Ptolemais, with aqueous solutions of 40, 80, 120, 160, 200, 240 mL 30% H2O2, under constant temperature of 80 °C, resulted in the formation of 2-40 wt% of EPI-type zeolite (epistilbite), while in the experiments with the aluminosiliceous fly ashes of the Lignite Center of Megalopolis experiments, no zeolite formation was observed. The highest epistilbite yield (40 wt%) occured in the 240 mL, 30% H2O2, KR6 experiment (initial fly ash from Kardia power plant).
There was a 48% increase in sorption ability between the 92 meq/100g value measured in the initial Kardia power plant fly ash and that of 136 meq/100g value measured in the KR3 zeolite-containing solid product (experiment in which 120 mL 30% H2O2 was used and the epistilbite yield reached 34 wt%).
Apart from the formation of epistilbite zeolite, new mineralogical phases occured in the experiments where the starting fly ashes used were from the Lignite Center of Western Macedonia (LCWM), namely, the hydrated calcium-aluminum carbonate (Cm) at a rate of 2-20 wt% and gypsum at 2-15 wt%.
Under the treatment with 30% H2O2 aqueous solutions, the content of the amorphous materials contained in the initial fly ashes decreased to 13-22 wt% (from 27-42 wt%), anhydrite decreased to 4-11 wt% (from 9-16 wt%), lime decreased to 0-3 wt% (from 4-14 wt%) and portlandite decreased to 0-6 wt% (from 13 wt%), while the initial content of calcite increased to 8-26 wt% (from 6-19 wt%).
Anhydrite (CaSO4), a constituent of the initial fly ashes, is partially consumed leading to the formation of gypsum (CaSO4.2H2O) as a new phase. Lime (CaO) and portlandite [Ca(OH)2], being constituents of the initial fly ashes, are also consumed leading to the formation of calcite (CaCO3), gypsum, epistilbite zeolite [(Ca,Na)3Al6Si18O48.16H2O] and Cm (Ca8Al4O14CO2.24 H2O). The amorphous materials are partially consumed for the formation of epistilbite zeolite, of Cm, and possibly of gypsum and of calcite. The role of Ca-Si-Al amorphous materials is important for Cm formation. Cm is formed as an intermediate phase towards the formation of the epistilbite zeolite, whose percentage increases while Cm is decreasing.
The content of CaO, SiO2 and Al2O3 and their relative ratios in the initial fly ashes of the L.C.W.M., are important factors for the formation of epistilbite zeolite and Cm. The initial fly ash of the power plant of Kardia, which formed the highest percentages of epistilbite (17-40 wt%) in all its experiments, contained CaO 34,52 wt%, SiO2 31,93 wt% and Al2O3 13,05 wt%.
The addition of 30% H2O2 in 80 °C constant temperature with the simultaneous presence of considerable amounts of lime (CaO) and portlandite (CaOH2), create high alkalinity conditions (pH>11), favourable for the zeolitization, which occurs using materials from the initial stable crystalline mineral phases and also materials that resulted from the deconstruction of the organic polymers which were in the initial lignite and remained unburned and which contained both organic and inorganic materials. The deconstruction of those polymers resulted in additional inorganic amorphous phases rich in aluminum, silicon and iron which contributed to the zeolitization process and to the formation of the final product.

Πλήρες Κείμενο:

PDF

Αναφορές


Adamidou, K., Kassoli-Fournaraki, A., Filippidis, A., Christanis, K., Amanatidou, E., Tsikritzis, L. and Patrikaki, O., 2007. Chemical investigation of lignite samples and their ashing products from Kardia lignite field of Ptolemais, Northern Greece. Fuel, 86, 2502-2508.

Aiello, R., Nastro, A., Crea, F. and Colella, C., 1982. Use of natural products for zeolite synthesis. V. Self-bonded zeolite pellets from rhyolitic pumice. Zeolites, 2(4), 290-294.

Amrhein, C., Haghnia, G.H., Kim, T.S., Mosher, P.A., Gagajena, R.C., Amanios, T. and Torre de la, L., 1996. Synthesis and Properties of Zeolites from Coal Fly Ash. Environ. Sci. Technol., 30(3), 735-742.

Anuwattana, R. and Khummongkol, P., 2009. Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge. Journal of Hazardous Materials, 166, 227–232.

Asl Hosseini, S.M., Javadian, H., Khavarpour, M., Belviso, C., Taghavi, M. and Maghusi, M. 2019. Porous Adsorbents derived from coal fly ash as cot-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. Journal of Cleaner Production. 208, 1131-1147.

Baccouche, A., Srasra, E. and Maaoui, M.E., 1998. Preparation of Na-P1 and sodalite octahydrate zeolites from interstratified illite-smectite. Applied Clay Science, 13, 255-273.

Baerlocher, Ch., McCusker, L., B. and Olson, D., H., 2007. Atlas of Zeolite Framework Types. 6th revised edition, Elsevier, Amsterdam.

Belardi, G., Massimila, S. and Piga, L., 1998. Crystallization of K-l and K-W zeolites from fly-ash. Resources, Conservation and Recycling, 24, 167-181.

Bish, D.L. and Ming, D.W., 2001. Natural Zeolites: Occurrence, properties, applications. Mineralogical Society of America (MSA), Geochemical Society, Reviews in Mineralogy and geochemistry, vol. 45, MSA, Washington DC.

Bosi, P., Creston, D. and Casini, L., 2002. Production performance of dairy cows after the dietary addition of clinoptilolite. Italian J. Anim. Sci., 1, 187-195.

Buema, G., Noli, F., Misaelides, P., Sutiman, D.M. and Cretescul Harja, M., 2014. Uranium removal from aqueous solutions by raw and modified thermal power plant ash. Journal of Radioanalytical and Nuclear Chemistry, 299, 381-386.

Chareonpanich, M., Jullaphan, O., and Tang, C., 2011. Bench-scale synthesis of zeolite A from subbituminous coal ashes with high crystalline silica content. Journal of Cleaner Production, 19, 58-63.

Charistos, D., Godelitsas, A., Tsipis, C., Sofoniou, M., Dwyer, J., Manos, G., Filippidis, A. and Triantafyllidis, C., 1997. Interaction of natrolite and thomsonite intergrowths with aqueous solutions of different initial pH values at 25o C in the presence of KCl: Reaction mechanisms. Applied Geochemistry, 12, 693-703.

Chen, J., Kong, H., Wu, D., Hu, Z., Wang, Z. and Wang, Y., 2006. Removal of phosphate from aqueous solution by zeolite synthesized from fly ash. Journal of Colloid and Interface Science, 300, 491–497.

Colella, C. and Mumpton, F.A., 2000. Natural Zeolites for the Third Millenium. De Frede Editore, Napoli.

Davis, J.M.G., 1993. In vivo assays to evaluate the pathogenic effects of minerals in rodents. In: Guthrie and Mossman (eds) Health Effects of Mineral Dusts. Miner. Soc. Amer., Washington DC, Reviews in Mineralogy, 28, 471-487.

Deligiannis, K., Lainas, Th., Arsenos, G., Papadopoulos, E., Fortomaris, P., Kufidis, D., Stamataris, C. and Zygoyiannis, D., 2005. The effect of feeding clinoptilolite on food intake and performance of growing lambs infected or not with gastrointestinal nematodes. Livestock Production Science, 96, 195-203.

Driscoll, K.E., 1993. In vitro evaluation of mineral cytotoxicity and inflammatory activity. In: Guthrie and Mossman (eds) Health Effects of Mineral Dusts. Miner. Soc. Amer., Washington DC, Reviews in Mineralogy, 28, 489-511.

Du, Y., Shi, S. and Dai, H., 2011. Water-bathing synthesis of high-surface-area zeolite P from diatomite. Particuology, 9, 174–178.

Eye, J.D. and Basu, T.K., 1970. The use of fly ash in wastewater treatment and sludge conditioning. J. Water Poll. Control Fed., 42, R125-145.

Filippidis, A., 2010. Environmental, industrial and agricultural applications of Hellenic Natural Zeolite. Hellenic Journal of Geosciences, 45, 91-100.

Filippidis, A., 2013. Industrial and municipal wastewater treatment by zeolitic tuff. Water Today, V(X), 34-38.

Filippidis, A., 2016. Applications of the Hellenic Natural Zeolite (HENAZE) and specifications of zeolitic tuffs. Bulletin of the Geological Society of Greece, 50(4), 1809-1819.

Filippidis, A. and Georgakopoulos, A., 1992. Mineralogical and chemical investigation of fly ash from the Main and Northern lignite fields in Ptolemais, Greece. Fuel, 71(4), 373-376.

Filippidis, A. and Kantiranis, N., 2007. Experimental neutralization of lake and stream waters from N. Greece using domestic HEU-type rich natural zeolitic material. Desalination, 213, 47-55.

Filippidis, A., Georgakopoulos, A. and Kassoli-Fournaraki, A., 1992. Mineralogical components from ashing at 600°C to 1000°C of the Ptolemais lignite, Greece. Trends in Mineral., 1, 295-300.

Filippidis, A., Georgakopoulos, A. and Kassoli-Fournaraki, A., 1996a. Mineralogical components of some thermally decomposed lignite and lignite ash from the Ptolemais basin, Geece. Int. J. Coal Geol., 30, 303-314.

Filippidis, A., Georgakopoulos, A., Kassoli-Fournaraki, A., Misaelides, P., Yiakkoupis, P. and Broussoulis, J., 1996b. Trace element contents in composited samples of three lignite seams from the central part of the Drama lignite deposit, Macedonia, Greece. International Journal of Coal Geology, 29, 219-234.

Filippidis, A., Godelitsas, A., Charistos, D., Misaelides, P. and Kassoli-Fournaraki, A., 1996c. The chemical behavior of natural zeolites in aqueous environments: Interactions between low-silica zeolites and 1M NaCl solutions of different initial pH-values. Applied Clay Sci., 11, 199-209.

Filippidis, A., Georgakopoulos, A., Kassoli-Fournaraki, A., Blondin, J. and Fernandez-Turiel, J.L., 1997. The sulphocalcic coal fly ashes of Ptolemais (Macedonia, Greece) and Gardanne (Provence, France). European Seminar on Coal Fly Ash: A Secondary Raw Material, Marseilles, France, 18 April 1997, Proc., 149-158.

Filippidis, A., Kantiranis, N., Stamatakis, M., Drakoulis, A. and Tzamos, E., 2007. The cation exchange capacity of the Greek zeolitic rocks. Bulletin of the Geological Society of Greece, 40(2), 723-735.

Filippidis, A., Apostolidis, N., Paragios, I. and Filippidis, S., 2008. Zeolites clean up. Industrial Minerals, 487, 68-71.

Filippidis, A., Papastergios, G., Apostolidis, N., Filippidis, S., Paragios, I. and Sikalidis, C., 2010. Purification of urban wastewaters by Hellenic Natural Zeolite. Bulletin of the Geological Society of Greece, 43(5), 2597-2605.

Filippidis, A., Godelitsas, A., Kantiranis, N., Gamaletsos, P., Tzamos, E. and Filippidis, S., 2013. Neutralization of sludge and purification of wastewater from Sindos industrial area of Thessaloniki (Greece) using natural zeolite. Bulletin of the Geological Society of Greece, 47(2), 920-926.

Filippidis, A., Kantiranis, N., Papastergios, G. and Filippidis, S., 2015a. Safe management of municipal wastewater and sludge by fixation of pollutants in very high quality HEU-type zeolitic tuff. Journal of Basic and Applied Research International, 7(1), 1-8.

Filippidis, A., Papastergios, G., Kantiranis, N. and Filippidis, S., 2015b. Neutralization of dyeing industry wastewater and sludge by fixation of pollutants in very high quality HEU-type zeolitic tuff. Journal of Global Ecology and Environment, 2(4), 221-226.

Filippidis, A., Kantiranis, N. and Tsirambides, A., 2016a. The mineralogical composition of Thrace zeolitic rocks and their potential use as feed additives and nutrition supplements. Bulletin of the Geological Society of Greece, 50(4), 1820-1828.

Filippidis, A., Tziritis, E., Kantiranis, N., Tzamos, E., Gamaletsos, P., Papastergios, G. and Filippidis, S., 2016b. Application of Hellenic Natural Zeolite in Thessaloniki industrial area wastewater treatment. Desalination and Water Treatment, 57(42), 19702-19712.

Filippidis, A., Mytiglaki, C., Kantiranis, N. and Tsirambides, A., 2020. The mineralogical composition of Samos zeolitic rocks and their potential use as feed additives and nutrition supplements. Bulletin of the Geological Society of Greece, 56(1), 84-99.

Floros, G.D., Kokkari, A.I., Kouloussis, N.A., Kantiranis, N.A., Damos, P., Filippidis, A.A. and Koveos, D.S., 2018. Evaluation of the natural zeolite lethal effects on adults of the bean weevil under different temperatures and relative humidity regimes. Journal of Economic Entomology, 111(1), 482-490.

Gay, A.J., Littlejohn, R.F. and Van Duin, P.J., 1983. Formation of carbonaceous cenospheres during fluidized-bed combustion of bituminous coals. Fuel, 62, 1224-1226.

Gay, A.J., Littlejohn, R.F. and Van Duin, P.J., 1984. Studies of carbonaceous cenospheres from fluidized-bed combustors. The Science of the Total Environment, 36, 239-246.

Georgakopoulos, A., Kassoli-Fournaraki, A. and Filippidis, A., 1992. Morphology, mineralogy and chemistry of the fly ash from the Ptolemais lignite basin (Greece) in relation to some problems in human health. Trends in Mineralogy, 1, 301-305.

Georgakopoulos, A., Filippidis, A. and Kassoli-Fournaraki, A., 1994. Morphology and trace element contents of the fly ash from Main and Northern lignite fields, Ptolemais, Greece. Fuel, 73(11), 1802-1804.

Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A., Iordanidis, A., Fernandez-Turiel, J.L., Llorens, J.F. and Gimeno, D., 2002a. Environmentally important elements in fly ashes and their leachates of the power stations of Greece. Energy Sources, 24(1), 83-91.

Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A., Fernandez-Turiel, J.L., Llorens, J.F. and Mousty, F., 2002b. Leachability of major and trace elements of fly ash from Ptolemais power station, Northern Greece. Energy Sources, 24(2), 103-113.

Ghorbakar, H. and Schaef, O., 1999. Synthesis of gismondine type zeolites by the hydrothermal method. Mater. Res. Bull., 34, 517-525.

Giannatou, S., Vasilatos, C., Mitsis, I. and Koukouzas, N. 2018. Utilization of natural and synthetic zeolitic materials as soil amendments in ababdoned mine sites. Bulletin of the Geological Society of Greece, 53(1), 78-98.

Godelitsas, A., Misaelides, P., Charistos, D., Filippidis, A. and Anousis, I., 1996a. Interaction of HEU-type zeolite crystals with Thorium aqueous solutions. Chemie der Erde - Geochemistry, 56, 143-156.

Godelitsas, A., Misaelides, P., Filippidis, A., Charistos, D. and Anousis, I., 1996b. Uranium sorption from aqueous solutions on sodium-form of HEU-type zeolite crystals. Journal of Radioanalytical and Nuclear Chemistry, Articles, 208(2), 393-402.

Godelitsas, A., Charistos, D., Dwyer, J., Tsipis, C., Filippidis, A., Hatzidimitriou, A. an Pavlidou, E., 1999. Copper (II)-loaded HEU-type zeolite crystals: characterization and evidence of surface complexation with N,N-diethyldithiocarbamate anions. Microporous and Mesoporous Materials, 33, 77-87.

Godelitsas, A., Charistos, D., Tsipis, A., Tsipis, C., Filippidis, A., Triantafyllidis, C., Manos, G. and Siapkas, D., 2001. Characterisation of zeolitic materials with a HEU-type structure modified by transition metal elements: Definition of acid sites in Nickel-loaded crystals in the light of experimental and quantum-chemical results. Chemistry European Journal, 7(17), 3705-3721.

Godelitsas, A., Charistos, D., Tsipis, C., Misaelides, P., Filippidis, A. and Schindler, M., 2003. Heterostructures patterned on aluminosilicate microporous substrates: Crystallisation of cobalt (III) tris(N,N-diethyldithiocarbamato) on the surface of HEU-type zeolite. Microporous and Mesoporous Materials, 61, 69-77.

Gottardi, G. and Galli, D., 1985. Natural Zeolites. Springer-Verlag, Berlin, Heidelberg.

Gupta, G.S., Prasad, G., Panday, K.K. and Singh, V.N., 1988. Removal of chrome dye from aqueous solution by fly ash. Water, Air and Soil Poll., 37, 13-24.

Harben, P.W., 1992. The Industrial Minerals HandyBook. Ind. Miner. Div., Metal Bull. PLC, London.

Harja, M., Ciobanu, G., Favier, L., Bulgariu, L. and Rusu, L., 2016. Adsorption of crystal violet dye onto modified ash. Buletinul Institutului Politehnic din Iaṣi. Publicat dei Universitatea Tehnica “Gheorghe Asachi” din Iaṣi. Volumul 62 (66), Numărul 1, 2016. Secţia Chimie ṣi Inginierje Chimica. 27-37.

Harja, M., Kotova, O., Ciobanu. G. and Litu, L., 2017a. New adsorbent materials on the base of ash and lime for lead removal. International Symposium “The Environment and the Industry”. Simi 2017, Proc. 69-76.

Harja, M., Kotova, O., Samuil, C., Ciocinta, R. and Ciobanu. G., 2017b. Adsorption of direct green 6 dye onto modified ash. Lucrări Ştinţifice, seria Agronomie, 60(2), 15-20.

Hatzigiannakis, E., Kantiranis, N., Tziritis, E., Filippidis, A., Arampatzis, G. and Tzamos, E., 2016. The use of HEU-type zeolitic tuff in sustainable agriculture: Experimental study on the decrease of nitrate load in vadose zone leachates. Bulletin of the Geological Society of Greece, 50(4), 2145-2154.

Höller, H. and Wirsching, U., 1985. Zeolite formation from fly ash. Fortschr. Miner., 63(1), 21-43.

Hollman, G.G., Steenbruggen, G. and Jannsen-Jurkovičová, M., 1999. A two-step process for the synthesis of zeolites from coal fly ash. Fuel, 78, 1225-1230.

Hui, K.S. and Chao, C.Y.H., 2006. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents. Journal of Hazardous Materials, B 137, 401–409.

Inada, M., Tsujimoto, H., Eguchi, Y., Enomoto, N. and Hojo, J., 2005. Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel, 84, 1482–1486.

Itskos, G., Moutsatsou, A., Rohatgi, P.K., Koukouzas, N., Vasilatos, C. and Katsika, E., 2011. Compaction of high-Ca fly ash-Al and Al-alloy-composites: Evaluation of their microstructure and tribological performance. Coal Combustion and Gasification Products, 3, 75-82.

Itskos, G., Rohatgi, P.K., Moutsatsou, A., DeFouw, J.D., Koukouzas, N., Vasilatos, C. and Schultz, B.F., 2012. J. Mater. Sci., 47, 4042-4052.

Itskos, G., Koutsianos, A., Koukouzas, N. And Vasilatos, C., 2015. Zeolite development from fly ash and utilization in lignite mine-water treatment. International Journal of Mineral Processing, 139, 43-50.

Izquierdo, M., Koukouzas, N., Touliou, S., Panopoulos, K.D., Querol, X. and Itskos, G., 2011. Geochemical controls on leaching of lignite-fired combustion by-products from Greece. Applied Geochemistry, 26, 1599-1606.

JCPDS-ICDD, 2003. PCPDFWIN. CD-ROM, Ver. 2.4, June 2003.

Jha, B. and Singh, D.N., 2011. A review on synthesis, characterization and industrial applications of flyash zeolites. Journal of Meterials Education, 33(1-2), 65-132.

Juan, R., Hernández, S., Andrés, J.M. and Ruiz, C., 2009. Ion exchange uptake of ammonium in wastewater from a Sewage Treatment Plant by zeolitic materials from fly ash. Journal of Hazardous Materials, 161, 781–786.

Kalaitzis, A., Stoulos, S., Melfos, V., Kantiranis, N. and Filippidis, A. 2019. Application of zeolitic rocks in the environment: assessment of radiation due to natural radioactivity. Journal of Radioanalytical and Nuclear Chemistry, 319, 975-985.

Kan, G., Wu, Z., Xu, R., Wei, Q., Peng, S., Xiong, G., Sheng, S. and Huang, J. (1991). State of iron and catalytic properties of alkali-metal-exchanged ferrisilicate zeolite molecular sieves. Studies in Surface Science and Catalysis, 69, 241-249.

Kang, S.J., Egashira, K. and Yoshida, A., 1998. Transformation of a low-gade Korean natural zeolite to high cation exchanger by hydrothermal reaction with or without fusion with sodium hydroxide. Applied Clay Science, 13, 117-135.

Kantiranis, N., Tsirambides, A., Filippidis, A. and Christaras, B., 1999. Technological characteristics of the calcined limestone from Agios Panteleimonas, Macedonia, Greece. Materials & Structures, 32, 546-551.

Kantiranis, N., Georgakopoulos, A., Filippidis, A. and Drakoulis, A., 2004. Mineralogy and organic matter content of bottom ash samples from Agios Dimitrios power plant, Greece. Bulletin of the Geological Society of Greece, 36(1), 320-326.

Kantiranis, N., Filippidis, A. and Georgakopoulos, A., 2005. Investigation of the uptake ability of fly ashes produced after lignite combustion. Journal of Environmental Management, 76, 119-123.

Kantiranis, N., Filippidis, A., Mouhtaris, Th., Paraskevopoulos, K.M., Zorba, T., Squires, C. and Charistos, D., 2006. EPI-type zeolite synthesis from Geek sulphocalcic fly ashes promoted by H2O2 solutions. Fuel, 85, 360–366.

Kantiranis, N., Sikalidis, C., Papastergios, G., Squires, C. and Filippidis, A., 2010. Continuous extra-framework Na+ release from Greek Analcime-rich volcaniclastic rocks on exchange with NH4+. Scientific Annals, School of Geology, Aristotle University of Thessaloniki, 100, 81-87.

Kantiranis, N., Sikalidis, K., Godelitsas, A., Squires, C., Papastergios, G. and Filippidis, A., 2011. Extra-framework cation release from heulandite-type rich tuffs on exchange with NH4+. Journal of Environmental Management, 92, 1569-1576.

Kassoli-Fournaraki, A., Georgakopoulos, A. and Filippidis, A., 1992. Heating experiments of the Ptolemais lignite in the temperature range from 100°C to 500°C. N. Jb. Miner. Mh., 11, 487-493.

Kassoli-Fournaraki, A., Stamatakis, M., Hall, A., Filippidis, A., Michailidis, K., Tsirambides, A. and Koutles, Th., 2000. The Ca-rich clinoptilolite deposit of Pentalofos, Thrace, Greece. In: Natural Zeolites for the Third Millennium (C. Colella & F.A. Mumpton, eds), De Frede Editore, Napoli, 193-202.

Kazakis, N., Kantiranis, N., Kalaitzidou, K., Kaprara, M., Mitrakas, M., Frei, R., Vargemezis, G., Tsourlos, P., Zouboulis, A. and Filippidis, A., 2017. Origin of hexavalent chromium in groundwater: The example of Sarigkiol basin, Northern Greece. Science of the Total Environment, 593/594, 552-566.

Kazakis, N., Kantiranis, N., Kalaitzidou, K., Kaprara, E., Mitrakas, M., Frei, R., Vargemezis, G., Vogiatzis, D., Zouboulis, A. and Filippidis, A., 2018. Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece). Environmental Pollution, 235, 632-641.

Kim, J.K. and Lee, H.D., 2009. Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash. Journal of Industrial and Engineering Chemistry, 15, 736–742.

Kolovos, N., Georgakopoulos, A., Filippidis, A. and Kavouridis, C., 2002a. Environmental effects of lignite and intermediate steriles coexcavation in the Southern lignite field mine of Ptolemais, Northern Greece. Energy Sources, 24(6), 561-573.

Kolovos, N., Georgakopoulos, A., Filippidis, A. and Kavouridis, C., 2002b. The effects on the mined lignite quality characteristics by the intercalated thin layers of carbonates in Ptolemais mines, Northern Greece. Energy Sources, 24(8), 761-772.

Kolovos, N., Georgakopoulos, A., Filippidis, A. and Kavouridis, C., 2002c. Utilization of lignite reserves and simultaneous improvement of dust emissions and operation efficiency of a power plant by controlling the calcium (total and free) content of the fed lignite. Application on the Agios Dimitrios power plant, Ptolemais, Greece. Energy and Fuels, 16(6), 1516-1522.

Koukouzas, N., Zeng, R., Perdikatsis, V., Xu, W. and Kakaras E.K., 2006. Mineralogy and geochemistry of Greek and Chinese coal fly ash. Fuel, 85, 2301-2309.

Koukouzas, N., Hämäläinen, J., Papanikolaou D., Tourunen, A. and Jäntti, T., 2007. Mineralogical and elemental composition of fly ash from pilot scale fluidized bed combustion of lignite, bituminous coal, wood chips and their blends. Fuel, 86, 2186-2193.

Koukouzas, N., Ward, C.R., Papanikolaou, D., Li, Z. and Ketikidis, C., 2009. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidized bed combustion technology. Journal of Hazardous Materials, 169, 100-107.

Koukouzas, N., Kalaitzidis, S.P. and Ward, C.R., 2010a. Organic petrographical, mineralogical and geochemical features of the Achlada and Mavropigi lignite deposits. NW Macedonia, Greece. International Journal of Coal Geology, 83, 387-395.

Koukouzas, N., Vasilatos, C., Itskos, G., Mitsis, I. and Moutsatsou, A., 2010b. Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials. Journal of Hazardous Materials, 173, 581–588.

Koukouzas, N., Ketikidis, C. and Itskos, G., 2011. Heavy metal characterization of CFB-derived coal fly ash. Fuel Processing Technology, 92, 441-446.

Lin, C.F. and Shi, H.C., 1995. Resource Recovery of Waste Fly Ash: Synthesis of Zeolite-like Materials. Environ. Sci. Technol., 29(4), 1109-1117.

Lin, C.F., Lo, S.S., Lin, H.Y. and Lee, Y., 1998. Stabilization of Cadmium contaminated soils using synthesized zeolite. Journal of Hazardous Materials, 60, 217-226.

Long, V.P.J., 1977. Electron probe microanalysis. In: Zussman J. (Ed) Physical Methods in determinative mineralogy. Academic Press, New York, 273-341.

Marin, E., Lekka, M., Andreatta, F., Fedrizzi, L., Itskos, G., Moutsatsou, A., Koukouzas, N. and Kouloumbi, N., 2012. Electrochemical study of aluminum-fly ash composites obtained by powder metallurgy. Materials Characterizarion, 69, 16-30.

Megalovasilis, P., Papastergios, G. and Filippidis, A., 2013. Behavior study of trace elements in pulverized lignite, bottom ash and fly ash of Amyntaio power station, Greece. Environmental Monitoring and Assessment, 185, 6071-6076.

Megalovasilis, P., Papastergios, G. and Filippidis, A., 2016. Mineralogy, geochemistry and leachability of ashes produced after lignite combustion in Amyntaio Power Station, northern Greece. Energy Sources, 38 (10), 1385-1392.

Mezni, M., Hamzaoui, A., Hamdi, N. and Srasra, E., 2011. Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods. Applied Clay Science, 52, 209–218.

Meier, W.M. and Olson, D.H., 1992. Atlas of zeolite structure types. Butterworth-Heinemann, London.

Misaelides, P., 2011. Application of natural zeolites in environmental remediation: A short review. Microporous and Mesoporous Materials, 144(1-3), 15-18.

Misaelides, P., Godelitsas, A., Haristos, D., Noli, F., Filippidis, A. and Sikalidis, C. 1993. Determination of heavy metal uptake by the sodium form of heulandite using radiochemical techniques. Geologica Carpathica-Series Clays, 44(2), 115-119.

Misaelides, P., Godelitsas, A. and Filippidis, A., 1995a. The use of zeoliferous rocks from Metaxades-Thrace, Greece, for the removal of caesium from aqueous solutions. Fresenius Environmental Bulletin, 4, 227-231.

Misaelides, P., Godelitsas, A., Filippidis, A., Charistos, D. and Anousis, I., 1995b. Thorium and uranium uptake by natural zeolitic materials. Sci. Total Environ., 173/174, 237-246.

Misaelides, P., Zamboulis, D., Sarridis, P., Warchol, J. and Godelitsas, A., 2008. Chromium (VI) uptake by polyhexamethylene-quanidine-modified natural zeolitic materials. Microporous and Mesoporous Materials, 108, 162-167.

Misaelides, P., Fellhauer, D., Gaona X., Altmaier M. and Geckeis, H., 2017. Thorium(IV) and neptunium(V) uptake from carbonate containing aqueous solutions by HDTMA-modified natural zeolites. Journal of Radioanalytical and Nuclear Chemistry, 311(3), 1665-1671.

Misaelides, P., Sarri, S., Kantiranis, N., Noli, F., Filippidis, A., de Blochouse, B., Maes, A. and Breynaert E., 2018. Investigation of chabazitic materials as Cs-137 sorbents from cementitious aqueous solutions. Microporous and Mesoporous Materials, 266, 183-188.

Mondragon, F., Rincon, F., Sierra, L., Escobar, J., Ramirez, J. and Fernandez, J., 1990. New perspectives for coal ash utilization: synthesis of zeolitic materials. Fuel, 69, 263-266.

Moreno, N., Querol, X., Andres, J.M., Stanton, K.T., Towler, M., Nugteren, H., Janssen-Jurkovicova, M. and Jones, R., 2005. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel, 84, 1351-1363.

Moriyama, R., Takeda, S., Onozaki, M., Katayama, Y., Shiota, K., Fukuda, T., Sugihara, H. and Tani, Y., 2005. Large-scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution. Fuel, 84, 1455–1461.

Mouhtaris, Th., Charistos, D., Kantiranis, N., Filippidis, A., Kassoli-Fournaraki, A. and Tsirambidis, A., 2003. GIS-type zeolite synthesis from Geek lignite sulphocalcic fly ashes promoted by NaOH solutions. Microporous and Mesoporous Materials, 61 (1-3), 57-67.

Mumpton F.A. 1977. Mineralogy and Geology of Natural Zeolites. Mineralogical Society of America, vol. 4, Virginia Blacksburg.

Murayama, N., Yamamoto, H. and Shibata, J., 2002. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int. J. Miner. Process., 64, 1–17.

Murayama, N., Takahashi, T., Shuku, K., Lee, H. and Shibata, J., 2008. Effect of reaction temperature on hydrothermal syntheses of potassium type zeolites from coal fly ash. International Journal of Mineral Processing, 87, 129-133.

Mytiglaki C., Kantiranis N., Misaelides P., Noli F., Filippidis A. (2020). Comparative study of the Cesium uptake ability between HEU-type (clinoptilolite-heulandite) zeolitic tuff and pure heulandite. Bulletin of the Geological Society of Greece, 56(1), 56-69.

Nagy, J.B., Bodart, P., Hannus, I. and Kirisci, I., 1998. Synthesis, characterization and use of zeolitic microporous materials. DecaGen Ltd., Szeged, Hungary.

Nascimento, M., Soares, P.S.M. and De Souza, V.P., 2009. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method. Fuel 88, 1714–1719.

Nikolaidou, P., Triantafyllou, A., Kantiranis, N. and Filippidis, A. 2016. Mineralogical composition of suspended particles PM10 in the Ptolemais-Kozani area, Macedonia, Greece. Bulletin of the Geological Society of Greece, 50(2), 1046-1051.

Noli, F. and Tsamos, P. 2016. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Science of the Total Environment. 563-564, 377-385.

Noli, F., Buema, G., Misaelides, P. and Harja, M., 2015. New materials synthesized from ash under moderate conditions for removal of toxic and radioactive metals. J. Radioanal. Nucl. Chem. 303, 2303-2311.

Noli, F., Buema, G., Misaelides, P. and Harja, M., 2016a. Retention of cesium from aqueous solutions using synthetic zeolites produced from power plant ash. J. Radioanal. Nucl. Chem. 309, 589-596.

Noli, F., Kapnisti, M., Buema, G. and Harja, M., 2016b. Retention of barium and europium from aqueous solutions on ash – based sorbents by application of radiochemical techniques. .Applied Radiation and Isotopes. 116, 102-109.

Ottana, R., Saija, L.M., Burriesci, N. and Giordano, N., 1982. Hydrothermal synthesis of zeolites from pumice in alkaline and saline enviroment. Zeolites, 2, 295-298.

Panday, K.K., Prasad, G. and Singh, V.N., 1985. Copper(II) removal from aqueous solutions by fly ash. Water Res., 19, 869-873.

Papaioannou, D., Katsoulos, P.D., Panousis, N. and Karatzias, H., 2005. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: A review. Microporous and Mesoporous Materials, 84, 161-170.

Papastergios G., Kantiranis N., Filippidis A., Sikalidis C., Vogiatzis D., Tzamos E. (2017). HEU-type zeolitic tuff in fixed bed columns as decontaminating agent for liquid phases. Desalination and Water Treatment, 59, 94-98.

Petrotou, A., Skordas, K., Papastergios, G. and Filippidis, A., 2010. Concentrations and bioavailability of potentially toxic elements in soils of an industrialised area of Northwestern Greece. Fresenius Environmental Bulletin, 19(12), 2769-2776.

Petrotou, A., Skordas, K., Papastergios, G., Filippidis, A., 2012. Factors affecting the distribution of potentially toxic elements in surface soils around an industrialized area of northwestern Greece. Environmental Earth Sciences, 65(3), 823-833.

Pond, W.G. and Mumpton, F.A., 1984. Zeo-Agriculture: Use of Natural Zeolites in Agriculture and Aquaculture. Intern. Committee on Natural Zeolites, Brockport, New York.

Qiu, W. and Zheng, Y., 2009. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal, 145 (2009)

–488.

Querol, X., Alastuey, A., Fernández-Turiel, J.L. and López-Soler, A., 1995a. Synthesis of Zeolites by alkaline activation of ferro-aluminous fly ash. Fuel, 74(8), 1226-1231.

Querol, X., Alastuey, A., López-Soler, A. and Plana, F., 1997a. A Fast Method for Recycling Fly Ash: Microwave-Assisted Zeolite Synthesis. Environ. Sci. Technol., 31, 2527-2533.

Querol, X., Alastuey, A., Moreno, N., Alvarez-Ayuso, E., García-Sánchez, A., Cama, J., Ayora, C. and Simón, M., 2006. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 62, 171–180.

Querol, X., Plana, F., Alastuey, A., Fernández-Turiel, J.L. and López-Soler, A., 1995b. Synthesis of industrial minerals from fly ash. In: Coal Science (Pajares & Tascon, Eds) Elsevier, Coal Science and Technology, 24, 1979-1982.

Querol, X., Plana, F., Alastuey, A. and López-Soler, A., 1997b. Synthesis of Na-zeolites from fly ash. Fuel, 76(8), 793-799.

Rios, C.A.R., Williams, C.D. and Roberts, C.L., 2009. A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites. Fuel, 88, 1403-1416.

Ross, M., Nolan, R.P., Langer, A.M. and Cooper, W.C., 1993. Health effects of various mineral dusts other than asbestos. In: Guthrie and Mossman (eds) Health Effects of Mineral Dusts. Miner. Soc. Amer., Washington DC, Reviews in Mineralogy 28, 361-407.

Sakorafa, V., Michailidis, K. and Burragato, F., 1996. Mineralogy, geochemistry and physical properties of the fly ash from Megalopolis lignite fields, Peloponnese, Southern Geece. Fuel, 75(4), 419-423.

Sand, L.B. and Mumpton, F.A., 1978. Natural Zeolites. Occurrence, Properties, Use. Pergamon Press, New York.

Shih, W.H. and Chang, H.L., 1996. Conversion of fly ash into zeolites for ion-exchange applications. Materials Letters, 28, 263-268.

Shigemoto, N., Hayashi, H. and Miyaura, K., 1993. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. J. Materials Sci., 29, 4781-4786.

Shushkov, D.A., Shutkomova, I.I., Rachkova, N.G. and Harja, M., 2018. Porosity and Sorption Properties of Zeolites Synthesized from Coal Fly Ash. Arctic vector of geological research, Vestnik IG Komi SC UB RAS, 3, 32-37.

Singer, A. and Bergkaut, V., 1995. Cation Exchange Properties of Hydrothermally Treated Coal Fly Ash. Environ. Sci. Technol., 29(7), 1748-1753.

Steenbruggen, G. and Hollman, G.G., 1998. The synthesis of zeolites from fly ash and the properties of the zeolite products. J. Geochem. Explor., 62, 305-309.

Tanaka, H., Fujii, A., Fujimoto, S., and Tanaka, Y., 2008. Microwave-Assisted Two-Step Process for the Synthesis of a Single-Phase Na-A Zeolite from Coal Fly Ash. Advanced Powder Technology, 19, 83–94.

Tanaka, H. and Fujii, A., 2009. Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and -X zeolites by two-step process. Advanced Powder Technology, 20, 473–479.

Tazaki, K., Fyfe, W.S., Sahu, K.C. and Powell, M., 1989. Observations on the nature of fly ash particles. Fuel, 68, 727-734.

Terzano, R., Spagnuolo, M., Medici, L., Tateo, F. and Ruggiero, P., 2005. Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation. Applied Clay Science, 29, 99–110.

Tserveni-Gousi, A.S., Yannakopoulos, A.L., Katsaounis, N.K., Filippidis, A. and Kassoli-Fournaraki, A., 1997. Some interior egg characteristics as influenced by addition of Greek clinoptilolitic rock material in the hen diet. Archiv fur Geflugelkunde, 61(6), 291-296.

Tsirambides, A. and Filippidis, A., 2012. Exploration key to growing Greek industry. Industrial Minerals, 533, 44-47.

Tsitsishvili, G.N., Andronikashvili, T.G., Kirov, G.N. and Filizova, L.D., 1992. Natural zeolites. Ellis Horwood, New York.

Vogiatzis D., Kantiranis N., Filippidis A., Tzamos E., Sikalidis C. (2012). Hellenic Natural Zeolite as a replacement of sand in mortar: Mineralogy monitoring and evaluation of its influence on mechanical properties. Geosciences, 2, 298-307.

Wajima, T., Haga, M., Kuzawa, K., Ishimoto, H., Tamada, O., Ito, K., Nishiyama, T., Downs, R.T. and Rakovan, J.F., 2006. Zeolite synthesis from paper sludge ash at low temperature (90 °C) with addition of diatomite. Journal of Hazardous Materials, B 132, 244–252.

Wang, C.F., Li, J.S., Wang, L.J. and Sun, X.Y., 2008. Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method. Journal of Hazardous Materials, 155, 58–64.

Wang, C. F., Li, J. S., Sun, X., Wang L.J. and Sun, X.Y., 2009. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals. Journal of Environmental Sciences, 21, 127–136.

Wang, H.P., Lin, K.S., Huang, Y.J., Li, M.C. and Tsaur, L.K., 1998. Synthesis of zeolite ZSM-48 from rice husk ash. Journal of Hazardous Materials, 58, 147–152.

Warchol, J., Matlok, M., Misaelides, P., Noli, F., Zamboulis, D. and Godelitsas, A., 2012. Interaction of UVIaq with CHA-type zeolitic materials. Microporous and Mesoporous Materials, 153, 63-69.

Wu, D., Sui, Y., He, S., Wang, X., Li, C. and Kong, H., 2008. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. Journal of Hazardous Materials, 155, 415–423.

Yang, G.C.C. and Yang, T.T., 1998. Synthesis of zeolites from municipal incinerator fly ash. Journal of Hazardous Materials, 62, 75-89.

Yannakopoulos, A., Tserveni-Gousi, A., Kassoli-Fournaraki, A., Tsirambides, A., Michailidis, K., Filippidis, A. and Lutat, U., 2000. Effects of dietary clinoptilolite-rich tuff on the performance of growing-finishing pigs. In: Collella and Mumpton (eds) Natural Zeolites for the Third Millennium. De Frede Editore, Napoli, 471-481.

Yaping,Υ., Xiaoqiang, Z., Weilan, Q. and Mingwen, W., 2008. Synthesis of pure zeolites from supersaturated silicon and aluminum alkali extracts from fused coal fly ash. Fuel, 87, 1880–1886.

Zhang, B., Wu, D., Wang, C., He S., Zhang, Z. and Kong, H., 2007. Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment. Journal of Environmental Sciences, 19, 540–545.

Zhang, M., Zhang, H., Xu, D., Han, L., Niu, D., Tian, B., Zhang, J., Zhang, L. and Wu, W., 2011a. Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination, 271, 111–121.

Zhang, M., Zhang, H., Xu, D., Han, L., Niu, D., Zhang, L., Wu, W. and Tian, B., 2011b. Ammonium removal from aqueous solution by zeolites synthesized from low-calcium and high-calcium fly ashes. Desalination, 277, 46–53.

Zouboulis, A.I and Goultonas, A., 1995. Use of Fly ash as conditioning agent for improving biological sludge dewaterability by filter press. Fres. Envir. Bull., 4: 387-392.

Zouboulis, A.I. and Mavros, P., 1992. Use of fly ash for the removal of nickel ions from wastewaters. Fres. Envir. Bull., 1(6), 457-462.

Zouboulis, A.I., Papadoyannis, I.N. and Matis, K.A., 1989. Possibility of germanium recovery from fly ash. Chim. Chronika N.S., 18, 85-97.

Zouboulis, A.I and Tzimou-Tsitouridou, R., 1990. Fly ash utilization in environmental engineering: The case of Geece. In: Reclamation, Treatment and Utilization of Coal Mining Wastes (A.K.M. Rainbow, Editor), A.A. Balkema Publ. Rotterdam, Netherlands, pp. 493-499.

Zussman, J., 1977. Physical Methods in determinative mineralogy. Academic Press, New York.

Ελληνική Βιβλιογραφία

Βουτά, Ν.Σ., 2018. Μελέτη της έκπλυσης βαρέων μετάλλων από μίγματα ιπτάμενης τέφρας-ζεολιθικού τόφφου τύπου HEU (Κλινοπτιλόλιθος-Ευλανδίτης). Μεταπτυχιακή Διπλωματική Εργασία, Τμήμα Γεωλογίας, ΑΠΘ, 102 σελ.

Δ.Ε.Η., 1988. Η εκμετάλλευση του λιγνίτη στη λιγνιτοφόρο λεκάνη Πτολεμαΐδας. Εσωτ. Έκθεση, Λιγνιτικό κέντρο Πτολεμαΐδας-Αμυνταίου, Πτολεμαΐδα, 19 σελ.

Δ.Ε.Η., 1997. Στοιχεία για τη διαχείριση της τέφρας και της ιλύος των λιγνιτικών Α.Η.Σ. της Δ.Ε.Η.. Εσωτ. έκθεση, Δ.Ε.Η., Αθήνα, 63 σελ.

Δ.Ε.Η., 1998. Η ποιότητα του λιγνίτη των ορυχείων του ΛΚΠ-Α. Εσωτ. Έκθεση, Ομάδα ποιοτικού ελέγχου ορυχείου κυρίου πεδίου, ΛΚΠ-Α, Πτολεμαΐδα, 30 σελ.

Δ.Ε.Η., 2018. Απολογισμός Εταιρικής Κοινωνικής Ευθύνης και Βιώσιμης Ανάπτυξης ΄18. Αρχείο στο Site της Δ.Ε.Η. (https://dei.gr/el/i-dei/etairiki-koinwniki-euthuni/entupa-gia-etairiki-koinwniki-euthuni/apologismos-etairikis-kinonikis-efthinis-2018), 194 σελ.

Εκτελεστικός Κανονισμός ΕΕ αριθ. 651/2013 της επιτροπής της 9ης Ιουλίου 2013 για την έγκριση του κλινοπτιλόλιθου ιζηματογενούς προέλευσης ως πρόσθετης ύλης ζωοτροφών για όλα τα ζωικά είδη και για την τροποποίηση του κανονισμού (ΕΚ) αριθ. 1810/2005.

Ίτσκος, Σ., 2000. Ιπτάμενη τέφρα, οι δύο όψεις, βιομηχανικό απόβλητο ή παραπροϊόν. Πτολεμαΐδα, Τυπογρ. Γ. Τσαβδαρίδη, σελ. 169.

Καντηράνης, Ν., Στεργίου, Α., Φιλιππίδης, Α. και Δρακούλης, Α., 2004. Υπολογισμός του ποσοστού του άμορφου υλικού με τη χρήση περιθλασιογραμμάτων ακτίνων-Χ. 10ο Διεθνές Συνέδριο Ε.Γ.Ε., Θεσσαλονίκη. Δελτ. Ελλ. Γεωλ. Εταιρ., 36, 1, 446-453.

Κατσάρα Δ. Α., 2019. Μελέτη της έκπλυσης βαρέων μετάλλων απο μίγματα ιπτάμενης τέφρας – μαργαϊκού ασβεστόλιθου – ζεολιθικού τόφφου τύπου HEU (κλινοπτιλόλιθος – ευλανδίτης). Μεταπτυχιακή Διπλωματική Εργασία, Τμήμα Γεωλογίας Α.Π.Θ., 51 σελ.

Μισαηλίδης, Π., Γκοντελίτσας, Α. και Φιλιππίδης, Α., 1994. Δέσμευση Καισίου από ζεολιθοφόρο πέτρωμα της περιοχής Μεταξάδων (Ν. Έβρου, Θράκη). 15ο Πανελλήνιο Συνέδριο Χημείας, Θεσσαλονίκη, 6-10 Δεκ. 1994, Πρακτ., Τόμ. Α, 218-221.

Μουχτάρης, Θ., 1999. Μετατροπή της ιπτάμενης τέφρας του Λιγνιτικού Κέντρου Πτολεμαΐδας-Αμυνταίου σε Ζεόλιθο με την επίδραση διαλυμάτων NaOH. Διατριβή Ειδίκευσης, Α.Π.Θ., 47 σελ.

Μουχτάρης, Θ., Φιλιππίδης, Α., Κασώλη-Φουρναράκη, Α. και Χαριστός, Δ., 1999. Σύνθεση ζεολίθου από ιπτάμενη τέφρα του Α.Η.Σ. Αμυνταίου - Φιλώτα με επίδραση NaOH 0,5 M. Δελτ. Ελλην. Γεωλ. Εταιρ., ΧΧΧΙΙΙ, 69-74.

Μουχτάρης, Θ., Φιλιππίδης, Α., Κασώλη-Φουρναράκη, Α. και Χαριστός, Δ., 2000. Σύνθεση Ζεολίθου από Ιπτάμενη Τέφρα του Α.Η.Σ. Αγίου Δημητρίου με Επίδραση Διαλυμάτων NaOH. 1ο Συνέδρ. Επιτρ. Οικον. Γεωλ., Ορυκτολ. & Γεωχ., Ελλην. Γεωλ. Εταιρ. (Kozani, 12-13/2), Πρακτ., 308-318.

Τριανταφύλλου, Α., Φιλιππίδης, Α., Πάτρα Α., Παυλίδης, Α. και Καντηράνης, Ν., 2000. Συγκεντρώσεις, ορυκτολογία και μορφολογία αιωρούμενων σωματιδίων PM10 στην πόλη της Κοζάνης. 1ο Συν. Επιτρ. Οικον. Γεωλ. Ορυκτ. Γεωχ. της ΕΓΕ, Κοζάνη, Πρακτ., 452-462.

Φιλιππίδης, Α., 2007. Ζεόλιθοι Δήμου Τριγώνου του Νομού Έβρου στη βιομηχανική, αγροτική, κτηνοτροφική και περιβαλλοντική τεχνολογία. Ημερίδα: Δυνατότητες Ανάπτυξης στο Βόρειο Έβρο, Πετρωτά, Πρακτ., 89-107.

Φιλιππίδης, Α., 2015α. Ποιοτικά χαρακτηριστικά και πολυάριθμες εφαρμογές των πολύ υψηλής ποιότητας ζεολιθικών τόφφων τύπου-HEU. Επιστ. Επετηρίδα Τμήματος Γεωλογίας, ΑΠΘ, 103, 73-76.

Φιλιππίδης Α. 2015β. Η χρήση ζεολιθικών τόφφων Μεταξάδων-Αβδέλλας ως δομικοί λίθοι στη βιομηχανία κατασκευών. Επιστ. Επετηρίδα Τμήματος Γεωλογίας, ΑΠΘ, 103, 77-80.

Φιλιππίδης, Α., 2016. Δέσμευση και καθήλωση νιτρικών (NO3-) με τη χρήση του Ελληνικού Φυσικού Ζεολίθου (ΕΛΦΥΖΕ). Επιστ. Επετηρίδα Τμήματος Γεωλογίας, ΑΠΘ, 105, 81-87.

Φιλιππίδης, Α., 2019. Εφαρμοσμένη και Περιβαλλοντική Γεωχημεία. Τμήμα Γεωλογίας, ΣΘΕ, ΑΠΘ, 153 σελ.

Φιλιππίδης, Α. and Καντηράνης, Ν., 2016. Προδιαγραφές για τις διάφορες χρήσεις των ζεολιθικών τόφφων. Επιστ. Επετηρίδα Τμήματος Γεωλογίας, ΑΠΘ, 105, 89-95.

Φιλιππίδης, Α. και Κασώλη-Φουρναράκη, Α., 2000. Δυνατότητα χρήσης Ελληνικών φυσικών ζεολίθων στην ανάπλαση λιγνιτωρυχείων του Λιγνιτικού Κέντρου Πτολεμαΐδας Αμυνταίου. 1ο Συν. Επιτρ. Οικον. Γεωλ. Ορυκτ. Γεωχ. της ΕΓΕ, Κοζάνη, Πρακτ., 506-515.

Φιλιππίδης, Α. και Κασώλη-Φουρναράκη, Α., 2002. Διαχείριση υδάτινων οικοσυστημάτων με τη χρήση Ελληνικών φυσικών ζεολίθων. 12ο Σεμ. Προστασία του Περιβάλλοντος, Θεσσαλονίκη, Πρακτ., 75-82.

Φιλιππίδης, Α. και Τσιραμπίδης, Α., 2012. Ποιοτικά χαρακτηριστικά των Ελληνικών ζεόλιθων, περιβαλλοντικές, αγροτικές και υδατικές χρήσεις του Ελληνικού φυσικού ζεολίθου: Ανασκόπηση. Επιστημονική Επετηρίδα Τμήματος Γεωλογίας, ΑΠΘ, 101, 125-133.

Φιλιππίδης, Α. και Τσιραμπίδης, Α., 2015. Μάρμαρα και Ζεόλιθοι: Ποιοτικά χαρακτηριστικά – Αποθέματα και αξία – Βιομηχανικές, περιβαλλοντικές και αγροτικές εφαρμογές. Επιχειρηματική Ανακάλυψη της Αλυσίδας Αξίας των Μη Μεταλλικών Ορυκτών στην Ανατολική Μακεδονία και Θράκη. Επιχειρησιακό Πρόγραμμα «Μακεδονία-Θράκη» 2007-2013, ΕΣΠΑ, Δράμα, 12 σελ.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.