[Εξώφυλλο]

Εκπλυσιμότητα περιβαλλοντικά σημαντικών κύριων στοιχείων και ιχνοστοιχείων από μίγματα ιπτάμενης τέφρας-μάργας του Λιγνιτικού Κέντρου Δ. Μακεδονίας σε διαφορετικές συνθήκες pH. = Leachability of environmental important major and trace elements of fly ash-marl mixtures from the Lignite Center of W. Macedonia, Greece, in different pH conditions.

Μαρία Νεφέλη Ιωάννης Γεωργάκη

Περίληψη


Πραγματοποιήθηκε μελέτη σε δείγματα ιπτάμενης τέφρας και μάργας που προέρχονταν από τον ΑΗΣ Αγίου Δημητρίου και Νοτίου Πεδίου, αντίστοιχα. Προετοιμάστηκαν πέντε δείγματα (Μ1-Μ5) σε διαφορετικά  επί της εκατό ποσοστά κατά βάρος, ώστε να αναλυθούν τα περιεχόμενα στοιχεία τους, τα οποία μπορεί να έχουν αρνητικό περιβαλλοντικό αντίκτυπο όταν έρχονται σε επαφή με το νερό. Η αρχική ιπτάμενη τέφρα συνίσταται από 30% κ.β. άσβεστο, άμορφο υλικό 25% κ.β., 12% κ.β. ανυδρίτη, 8% κ.β. ασβεστίτη, 8% κ.β. χαλαζία, 6% κ.β. γκαιλενίτη, 5% κ.β. πορτλανδίτη, 4% κ.β. αιματίτη, 1% κ.β. πλαγιόκλαστο και 1% κ.β. μαρμαρυγία και αργιλικά ορυκτά. Mε την ολοκλήρωση της διαδικασίας της έκπλυσης, δημιουργήθηκαν νέες ορυκτολογικές φάσεις ανάλογα με τις συνθήκες pH, όπως ο εττρινγκίτης, το monosulfate (Ca4Al2O6(SO4)_14H2O), η γύψος, ο βασσανίτης και ο βατερίτης. Η ορυκτολογική σύσταση της μάργας πριν την έκπλυση περιέχει 47% κ.β. αραγωνίτη, άμορφο υλικό 24% κ.β., 12% κ.β. ασβεστίτη, 6% κ.β. χαλαζία, 4% χλωρίτη(+/- καολινίτη), μαρμαρυγίες + αργιλικά ορυκτά 3% κ.β., 2% κ.β. δολομίτη, 1% κ.β. τάλκη και 1% κ.β. πλαγιόκλαστο, ενώ μετά την έκπλυση παρέμεινε αμετάβλητη. Λόγω της αύξησης του ποσοστού της μάργας, μεταβλήθηκε η περιεκτικότητα σε αραγωνίτη, ασβεστίτη,  ανυδρίτη, εττρινγκίτη, , γκαιλενίτη,  βασσανίτη, χαλαζία και σε άμορφου υλικού. Οι χημικές αναλύσεις έδειξαν, ότι η αρχική ιπτάμενη τέφρα αποτελείται κυρίως από CaO, SiO2, Al2O3, Fe2O3, MgO και SO3, ενώ η αρχική μάργα αποτελείται από CaO, SiO2 και Al2O3. Η εξεταζόμενη ιπτάμενη τέφρα είναι πολύ έως σημαντικά επιβαρυμένη ως προς τη μέση σύσταση του ηπειρωτικού φλοιού σε CaO και σε SO3, ενώ η εξεταζόμενη μάργα παρουσιάζεται πολύ επιβαρυμένη ως προς το CaO και πτωχευμένη σε όλα τα υπόλοιπα κύρια στοιχεία. Όσον αφορά τα ιχνοστοιχεία Br, Cd, Ni, Sb, U, Mo και W, η ιπτάμενη τέφρα εμφανίζεται πολύ έως σημαντικά επιβαρυμένη, ενώ η μάργα πολύ επιβαρυμένη σε Ni και πτωχευμένη έως μέτρια επιβαρυμένη σε όλα τα υπόλοιπα ιχνοστοιχεία. Σε τιμές pH 6 έως 12, η ιπτάμενη τέφρα αποβάλλει κυρίως στην υγρή φάση υψηλές συγκεντρώσεις ασβεστίου, μαγνησίου, χρωμίου και νικελίου, ενώ μικρότερες συγκεντρώσεις καλίου, στροντίου, νατρίου, κοβαλτίου, σιδήρου, ρουβιδίου και ψευδαργύρου. Η μάργα αποβάλλει υψηλές συγκεντρώσεις ασβεστίου, μαγνησίου, νικελίου και χρωμίου, μικρότερες συγκεντρώσεις  καλίου, στροντίου, νατρίου κοβαλτίου, σιδήρου,  χαλκού και ψευδαργύρου,  ενώ τα μίγματα ιπτάμενης τέφρας και μάργας αποβάλλουν υψηλές συγκεντρώσεις ασβεστίου, μαγνησίου, νικελίου, χρωμίου και ρουβιδίου και μικρότερες συγκεντρώσεις καλίου, στροντίου, νατρίου, κοβαλτίου, σιδήρου και ψευδαργύρου. Οι μεγαλύτερες συγκεντρώσεις ασβεστίου και χρωμίου εντοπίζονται στην  ιπτάμενη τέφρα και η μεγαλύτερη συγκέντρωση νικελίου στο μίγμα Μ5. Συμπερασματικά, σε όλα τα δείγματα και σε όλες τις τιμές pH 6 έως 12, τα ιχνοστοιχεία μαγγανίου, μολύβδου, και κασσίτερου, παρόλο που μετρήθηκαν, βρέθηκαν σε συγκεντρώσεις κάτω του ορίου ανίχνευσης.

A study was contacted using fly ash and marl samples from the sites of Agios Dimitrios Power Station and South Field, respectively. Five samples (M1-M5), with different percentages of fly ash and marl by weight, were prepared, so to analyze their content elements. It should be noted that when they are in contact with water, they can have a very negative environmental impact. The initial fly ash sample consists of 30 wt% lime, 25 wt% amorphous material, 12 wt% anhydride, 8 wt% calcite, 8 wt% quartz, 6 wt% gehlenite, 5 wt% portlandite, 4 wt% hematite, 1 wt% plagioclase and 1 wt% micas and clay-minerals. Following the process of leaching, new mineralogical phases were formed, depending on the pH conditions, such as ettringite, monosulfate (Ca4Al2O6(SO4)_14H2O), gypsum, basanite, and vaterite. The mineralogical composition of the pre-leaching marl contained 47 wt% aragonite, 24 wt% amorphous material, 12 wt% calcite, 6 wt% quartz, chlorite (-/+kaolinite) 4%, 3 wt% mica + clay minerals, 1 wt% dolomite, 1 wt% talc and 1 wt% plagioclase, however, after leaching, it was unchanged. Due to the increase in the percentage of marl, the amount of aragonite, calcite, ettringite, anhydrite, gehlenite, basanite, quartz, and amorphous material had changed. According to chemical analyses, the initial fly ash consists mainly of CaO, SiO2, Al2O3, Fe2O3, MgO and SO3, while the initial marl consists of CaO, SiO2 and Al2O3. The fly ash is overburdened in terms of the average composition of the continental crust in CaO and significantly burdened in SO3, while the examined marl is overburdened in terms of CaO and it appears inadequate in all the other main elements. The fly ash is overburdened in the trace elements Br, Cd, Ni, Sb, U, and significantly burdened in Mo and W. The marl appears overburdened in Ni, while in all other trace elements it is poor to moderately burdened. At pH values, 6 to 12, fly ash mainly leaches high concentrations of calcium, magnesium, chromium and nickel in the liquid phase, lower concentrations of potassium, strontium, sodium, cobalt, iron, rubidium and zinc. Likewise, from the sample of marl were leached mainly high concentrations of calcium, magnesium, nickel and chromium, lower concentrations of potassium, strontium, sodium, cobalt, copper and zinc, while the mixtures of fly ash and marl had high concentrations of calcium, magnesium, nickel, chromium, rubidium and lower concentrations of potassium, strontium, sodium, cobalt, iron and zinc. The higher concentrations of calcium and chromium are found in the fly ash and the higher concentration of nickel in the mixture M5. In conclusion, at all samples and at all pH values 6 to 12, the trace elements manganese, lead, and tin, although being measured, were found in concentrations below the detection limit.

Πλήρες Κείμενο:

PDF

Αναφορές


Adamidou, K., Kassoli-Fournaraki, Filippidis, A., Christanis, K., Amanatidou, E., Tsikritzis, L. and Patrikaki O. 2007. Chemical investigation of lignite samples and their ashing products from Kardia lignite field of Ptolemais, Northern Greece. Fuel, 86, 2502-2508.

Ainsworth, C.C. and Rai, D., 1987. Chemical Characterization of Fossil Fuel ash in aqueous solution. Environmental Science Technology, 11, 1096-1100.

ASTM C618, 1996. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars Using 2-in. or (50mm) Cube Specimens.

Brake., S.S., Jensen R.R., and Mattox, J.M., 2004. Effects of coal fly ash amended soils on trace element uptake in plants. Environmental Geology, 45, 680-689.

Cetin, B., Aydilek ,A., Benson, C. and Tuncer, E., 2015. Effects of pH on the leaching mechanisms of element from fly ash mixed fosils. Fuel, 140,788.

Christensen., A.N., Jensen., T.R. and Hanson., J. C., 2004. Formation of ettringite, Ca6Al2(SO4)3(OH)12 x 26H2O, AFt, and monosulfate, Ca4Al2O6(SO4)x14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide-calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder

diffraction. Journal of Solid State Chemistry, 177, 1944-1951.

Chen, P.-C., Clifford, Y. and Tai, K.C., Lee., 1997., Morphology and growth rate of calcium carbonate crystals in a gas-liquid-solid reactive crystallizer. Chemical Enginnerring Science, 4171-4177.

Cooper, G.R.C., 2002. Oxidation and toxicity of chromium in ultramafic soils in Zimbabwe. Applied Geochemistry, 178, 981-986.

Cornelis, G., Johnson, C.A., Van Gerven, T. and Vandecasteele, C., 2008. Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes. Applied Geochemistry, 23, 955-976.

Davison, R.L., Natusch, D.F.S., Wallace, J.R. and Evans, Jr. C.A., 1974. Trace elements in fly ash dependence of concentration on particle size. Environmental Science and Technology, 8, 1107-1113.

de Groot, G.J., Wijkstra, J., Hoede, D. and Van der Sloot, H.A., 1989. Leaching characteristics of selected elements from coal fly ash as a function of the acidity of the contact solution and 88 the liquid/solid ratio. In: Cote, P.L., Gilliam, T.M. (eds.), Environmental aspects of stabilization and solidification of hazardous and radioactive wastes. American Society for Testing and Materials, USA, 170–183.

Demir, I., Hughes, R.E. and DeMaris, P.J., 2001. Formation and use of coal combustion residues from three types power plants burning Illinois coals. Fuel, 80, 1659-1673.

Dreesen, D.R., Gladney, E.S. and Owens, J.W., 1977. Comparison of levels of trace elements extracted from fly ash and levels found in effluent waters from a coal-fired power plant. Environmental Science and Technology, 11, 1017-1019.

Dubikova, M., Jankowski, J., Ward, C.R. and French, D., 2006. Modelling element mobility in water-fly ash interactions. Co-operative Research Centre for Coal in Sustainable Development. QCAT Technology Transfer Center, 61.

Dudas, M.J., 1981. Long-term leachability of selected elements from fly ash. Environmental Science and Technology, 15, 840-843.

Dutta, B.K., Khanra S. and Mallick, D., 2009. Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines. Fuel, 88, 1314-1323.

Eary, L.E., Rai, D., Mattigod, S.V. and Ainsworth, C.C., 1990. Geochemical factors controlling the mobilization of inorganic constituents from fussil fuel combustion residues. Review of the minor elements. Journal Environmental Quality, 19, 202-214.

El Amrani Paaza, N., Lama, F., Irigaray, C. and Chacon, J., 1998. Engineering geological characterization of Neogene marls in the Southeastern Granada Basin, Spain. Engineering Geology, 50, 165-175.

ΕΝ 197-1, 2000. Cement - Part 1: Composition, specifications and conformity criteria for common cements, 24.

ΕΝ 14927-1, 2001. Cable Trunking and Ducting Systems for Electrical Installations. Part 1: General Requirements, 22.

EΝ 14997, 2006. Characterization of waste. Leaching behaviour tests. Influence of pH on leaching with continuous pH-control, 32p.

ΕΝ 450, 2005. Fly ash for concrete. Conformity evaluation. British – Adopted European Standard, 28p.

ΕΝ-12457/1-4, 2003. Characterisation of waste - Leaching- Compliance test for leaching of granular waste materials and sludges. Part 1: One stage batch test at a liquid to solid ratio of 2 l/kg for materials with high solid content and with particle size below 4 mm (without or with size reduction), 27p.

ENV 12506, 2003. Characterization of waste. Analysis of eluates. Determination of pH, As, Cd, Cr VI, Cu, Ni, Pb, Zn, Cl-, NO2-, SO42-,V and Zn, 24p.

EPRI (Electric Power Research Institute), 2008a. Chemical Constituents in Coal Combustion Product Leachate: Thallium, Technical Report, 94.

EPRI (Electric Power Research Institute), 2008b. The Leaching Behavior of Arsenic and Selenium from Coal Fly Ash, EPRI, Palo Alto, CA, 2008.

Fassina, V., 2000. Proceedings of the 9th International Congress on Deterioration and Conservation of stone, Volume 1, Venice June 19-24, 284-286, 929.

Ferraiolo, G., Zilli, M. and Converti A., 1990. Fly ash disposal and utilization. Journal of Chemical Technology and Biotechnology, 41, 281-305.

Filippidis Α. and Georgakopoulos, A., 1992. Mineralogical and chemical investigation of fly ash from the Main and Northern lignite fields in Ptolemais, Greece. Fuel, 71(4), 373-376.

Filippidis, Α., Georgakopoulos, Α. and Kassoli-Fournaraki, A., 1992. Mineralogical components from ashing at 600°C to 1000°C of the Ptolemais lignite, Greece. Trends in Mineralogy, 1, 295-300.

Filippidis, A., Georgakopoulos, A., and Kassoli–Fournaraki, A., 1996a. Mineralogical components of some thermally decomposed lignite and lignite ash samples from the Ptolemais basin, Greece. International Journal of Coal Geology, 30, 303–314.

Filippidis, A., Georgakopoulos, A., Kassoli–Fournaraki A., Misaelides, P., Yiakkoupis, P., and Broussoulis J., 1996b. Trace element contents in composited samples of three lignite seams from the central part of the Drama lignite deposit, Macedonia, Greece. International Journal of Coal Geology 29, 219–234.

Filippidis, A., Georgakopoulos, A., Kassoli–Fournaraki, A., Blondin, J., and Fernández-Turiel., J. L., 1997. The sulfocalcic coal fly ashes of Ptolemais (Macedonia, Greece) and Gardanne (Provence, France), Coal Fly Ash: A Secondary Raw Material. European Seminar-Directorate General for Energy (DG XVII), Marseilles, France, 149–158.

Finkelman, R.B., 1994. Modes of occurrence of potentially hazardous elements in coal: levels of confidence. Fuel Proc. Techn., 39, 21-34

Finkelman, R.B., 1995. Modes of occurrence of environmentally-sensitive trace elements in coal. In: Swaine, D.J., and Goodarzi, F. (eds), Environmental Aspects of Trace Elements in Coal, Springer.

Foscolos, A.E., Goodarzi, F., Koukouzas, C.N. and Hatziyannis, G., 1989. Reconnaissance study of mineral matter and trace elements in Greek lignites. Chemical Geology, 76, 107–130.

Fruchter, J.S., Rai, D. and Zachara, J.M., 1990. Identification of solubility-controlling solid phases in a large fly ash field lysimeter. Environmental Science and Technology, 24, 1173-1179.

Georgakopoulos, A., Filippidis, A. and Kassoli-Fournaraki, A., 1994. Morphology and trace element contents of the fly ash from main and northern lignite fields, Ptolemais, Greece. Fuel, 73(11), 1802-1804.

Georgakopoulos, A., Filippidis, A., Fernadez-Turiel, J.L., Llorens, J.F., Kassoli-Fournaraki, A., Querol, X. and Lopez-Soler, A., 1995. Trace element contents of the Lava

xylite and Ptolemais lignite deposits, Macedonia County, Greece. Coal Science, 24, 163-166.

Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A., Fernadez-Turiel, J.L. and Llorens, J.F., 1996. The content of some trace elements in surface soils and fly ash of Ptolemais lignite basin, Macedonia, Greece. In the Third International Conference on Environmental Pollution, Thessaloniki, 114-118.

Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A., Fernández-Turiel, J.L., Llorens, J.F. and Mousty, F., 2002b. Leachability of major and trace elements of fly ash from Ptolemais power station, Northern Greece. Energy Sources, 24, 103–113.

Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A., Iordanidis, A., Fernández-Turiel, J.-L., Llorens, J.-F. and Gimeno, D., 2002a. Environmentally important elements in fly ashes and their leachates of the power stations of Greece. Energy Sources, 24, 83-91.

Georgakopoulos, A., Kassoli-Fournaraki, A. and Filippidis, A., 1992. Morphology, mineralogy and chemistry of the fly ash from Ptolemais lignite basin (Greece) in relation to some problems in human health. Trends in Mineral, 1, 301-305.

Goodarzi, F., Huggins, F.E. and Sanei, H., 2008. Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. International Journal of Coal Geology ,74, 1–12.

Guinier, A., 1963. X-Ray diffraction in crystals, imperfect crystals and amorphous bodies, Freeman H.W. and Company, San Francisco.

Håkanson, L. 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975-1001.

Hansen, L.D and Fisher, G.L., 1980. Elemental distribution in coal fly ash particles. Environmental Science and Technology, 9, 1111-1117.

Hansford, S. and Boerngen, J., 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. United States Government Printing Office, Washington.

Hassett, D.J., Pflughoeft-Hassett, D.F. and Heebink, L.V., 2005, Leaching of CCBs: observations from over 25 years of research. Fuel, 84, 1378-1383.

Howayek, A., Santagata, M., Bobet, A. and Siddiki , Z.N., 2015. Engineeiring Properties of Marls. Joint Transportation Research Program, 150.

Huggins, F.E. and Huffman, G.P., 2004. How do lithophile elements occur in organic association in bituminous coals? International Journal of Coal Geology 58, 193-204.

Huggins, F.E., Najih, M. and Huffman, G.P., 1999. Direct speciation of chromium in coal combustion by-products by X-ray absorption fine-structure spectroscopy. Fuel, 78, 233-242.

Iordanidis, A., Georgakopoulos, A., Filippidis, A. and Kassoli-Fournaraki, A. 2001a. A correlation study of trace elements in lignite and fly ash generated in a power station. Int. J. Env. Anal. Chem., 79, 133-141.

Iordanidis, A., Georgakopoulos, A., Markova, K., Filippidis, A. & Kassoli-Fournaraki, A., 2001b. Application of TGDTA to the study of Amynteon lignites, Northern Greece. Thermochim. Acta, 371, 137-141.

Iwashita, A., Sakaguchi, Y., Nakajima, T., Takanashi, H., Ohki, A. and Kambara, S., 2005. Leaching characteristics of boron and selenium for various coal fly ashes. Fuel, 84, 479-485.

Izquierdo, M. and Querol, X., 2012. Leaching behavior of elements from coal combustion fly ash: An Overview. Institute of Environmental Assessment and Water Research, Barcelona, Spain, 18‐26.

Izquierdo, M., Koukouzas, N., Touliou, S., Panopoulos, K.D., Querol, X. and Itskos, G., 2011. Geochemical controls on leaching of lignite-fired combustion by-products from Greece. Applied Geochemistry, 26, 1599–1606.

Jankowski, J., Ward, C.R. and French, D., 2004. Preliminary assessment of trace element mobilisation from Australian fly ashes. Research report 45 (Cooperative Research Centre for Coal in Sustainable Development (Australia)).

Janos P., Buchtova, H. and Ryznarova, M., 2003. Sorption of dyes from aqueous solutions onto fly ash. Water Research, 37, 4938-4944.

Jones, D.R., 1995. The leaching of major and trace elements from coal ash. In: Swaine, D.J., Goodarzi, F. (eds.), Environmental Aspects of Trace Elements in Coal, Springer.

Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants. CRC Press, Boca Raton, 201-213, 505.

Kantiranis, N., Tsirambides, A., Filippidis, A. and Christaras, B., 1999. Technological characteristics of the calcined limestone from Agios Panteleimonas, Macedonia, Greece. Materials and Structures, 32, 546-551.

Kantiranis, N., Georgakopoulos, A., Filippidis, A., and Drakoulis A., 2004. Mineralogy and organic matter content of bottom ash samples from Agios Dimitrios power

plant, Greece. 10ο Διεθνές Συνέδριο Ε.Γ.Ε., Θεσσαλονίκη, Δελτ. Ελλ. Γεωλ. Εταιρ., 36/1, 320-326.

Kantiranis, N., Filippidis, A. and Georgakopoulos, A., 2005. Investigation of the uptake ability of fly ashes produced after lignite combustion. Journal of Environmental Management, 76, 119-123.

Kantiranis, N., Filippidis, A., Mounhtaris, T., Paraskevopoulos, K.M., Zorba, T., Squires, C. and Charistos, D., 2006. EPI-type zeolite synthesis from Greek sulphocalcic fly ashes promoted by H2O2 solutions. Fuel, 85, 360-366.

Kassoli-Fournaraki, A., Georgakopoulos, A., Michailidis, K. and Filippidis, A., 1993. Morphology, mineralogy and chemistry of the respirable-size (<5μm) fly ash fraction from the Main and Northern lignite fields in Ptolemais, Macedonia, Greece. Second Biennial SGA Meeting, Granada, Spain, 9-11/09/1993. In: Current Research in

Geology Applied to Ore Deposits, P. Fenoll Hach-Ali, J. Torres-Ruiz, F. Gervilla (eds), La Guioconda, Granada, 727-730.

Kassoli-Fournaraki, A.. Georgakopoulos, A. and Filippidis, A., 1992. Heating experiments of the Ptolemais lignite in the temperature range from 100° to 500°C. Neues Jahrb. Mineral. Monatsh., 11, 487-493.

Kazakis, N., Kantiranis, N., Kailatzidou, K., Kaprara, E., Mitrakas, M., Frei, R., Vargemezis, G., Tsourlos, P., Zouboulis, A. and Filippidis, A., 2017. Origin of hexavalent chromiumin groundwater: The example of Sarigkiol Basin, Northern Greece, Science of the Total Environment, 593–594, 552–566.

Kazakis, N., Kantiranis, N., Kalaitzidou, K., Kaprara, E., Mitrakas, M., Frei, R, Vargemezis, G., Vogiatzis, D., Zouboulis, A., Filippidis, A., 2018. Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece). Environmental Pollution, 235, 632-641.

Kim, A.G., Kazonich, G. and Dahlberg, M.. 2003. Relative solubility of cations in class F fly Ash. Environmental Science and Technology, 37, 4507-4511.

Kim, A.G. and Kazonich, G., 2004. The silicate/non-silicate distribution of metals in fly ash and its effect on solubility. Fuel, 83, 2285-2292

Kim, A.G., 2006. The effect of alkalinity of Class F PC fly ash on metal release. Fuel, 85 (10-11), 1403-1410.

Kim, A.G. and Hesbach, P., 2009. Comparison of fly ash leaching methods. Fuel, 88, 926-937.

Kolovos, N., Georgakopoulos, A., Filippidis, A. and Kavouridis, C., 2002a. Environmental effects of lignite and intermediate steriles coexcavation in the southern lignite

field mine of Ptolemais, northern Greece. Energy Sources, 24(6), 561-573.

Kolovos, N., Georgakopoulos, A., Filippidis, A. and Kavouridis, C., 2002b .The effects on the mined lignite quality characteristics by the intercalated thin layers of carbonates in Ptolemais mines, Northern Greece. Energy Sources, 24(8), 761-772.

Kolovos, N., Georgakopoulos, A., Filippidis, A. and Kavouridis, C., 2002c. Utilization of lignite reserves and simultaneous improvement of dust emissions and operation efficiency of a power plant by controlling the calcium (total and free) content of the fed lignite. Application on the Agios Dimitrios power plant, Ptolemais, Greece. Energy and Fuels, 16(6), 1516-1522.

Kosson, D.S., Van der Sloot, H.A., Sanchez, F. and Garrabrants, A.C. (2002). An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science,19(3), 159-204.

Kostakis, G., 2009. Characterization of the fly ashes from the lignite burning power plants of northern Greece based on their quantitative mineralogical composition. Journal of Hazardous Materials, 166, 972-977.

Koukouzas, N., Ketikidis, C. and Itskos, G., 2011. Heavy metal characterization of CFB derived coal fly ash. Fuel Process. Technol., 92, 441–446.

Krauskopf, K. and Bird, D., 1995. Introduction to geochemistry. Third Edition, New York, 647.

Kukier, U., Ishak, C.F., Sumner, M.E. and Miller, W.P., 2003. Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environmental Pollution, 123, 255-266.

Llorens, J.F., Fernandez, J.L. and Querol ,X., 2000. The fate of trace elements in a large coal-fired power plant. Environ. Geol., 40, 409–446.

Mason, B. and Moore, C., 1982. Principles of Geochemistry. Wiley, New York,352.

Mattigod, S.V., Rai, D., Eary, L. E. and Ainsworth C.C., 1990. Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion

residues: 1. Review of the major elements. J. Environ. Qual., 19, 188-201.

Medina, A., Gamero, P., Querol, X., Moreno, N., De León, B., Almanza, M., Vargas, G., Izquierdo and M., Font, O., 2010. Fly ash from a Mexican mineral coal I:

Mineralogical and chemical characterization. Journal of Hazardous Materials 181, 82-90.

Megalovasilis, P., Papastergios, G., Filippidis, A., 2013. Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station,

Greece. Environ. Monit. Assess, 185, 6071–6076.

Megalovasilis, P., Godelitsas, A., Papastergios, G. and Filippidis, A., 2016. Environmental geochemistry of Ptolemais lignites,intermediate steriles, and combustion products. 14o International Congress, Thessaloniki, 2241-2250.

Misaelides, P., Godelitsas, A., Noli, F., Kokkoris, M. and Harissopulos S., 1998a. Application of radiochemical, accelerator-bases and surface analytical techniques to the

investigation of the U- and TH- interaction with tectosilicate minerals. In: Actinides and the Environment, Kluwer Acad. Publ., Dordrecht, 303-306.

Misaelides, P., Godelitsas, A., Stephan, A. Meijer, J., Rolfs, C., Harissopulos, S., Kokkoris, M. and Filippidis, A., 1998b. Application of proton microprobe and 12C-Rutherford backscattering spectroscopy to the identification of Hg(II)-cations sorbed by granite minerals. Radiochim.Acta,83,43-48.

Misaelides, P., Macasek, F., Pinnavaia, T. and Collela, C., 1999. Natural Microporous Materials. Environmental Technology, Kluwer Acad. Publ., Dordrecht.

Mitchell, R.S. and Gluskoter, H.J. 1976. Mineralogy of ash of some American coals: variations with temperature and source. Fuel, 55, 90-96.

Mittra, B.N., Karmakar, S., Swain, D.K. and Ghosh, B.C., 2005. Fly ash-a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel, 84, 1447-1451.

Mohan, D., Singh, K.P. and Singh, V.K. 2006. Trivalent chromium removal from wastewater using low cost activated carbo derived from agricultural waste material and

activated carbon fabric cloth. J. Hazard. Mater, 135, 280-295.

Molina, M., Aburto, F., Calderon, R., Cazanga, M. and Escudey, M. 2009. Trace element composition of selected fertilizers used in Chile: phosphorus fertilizers as a source of long-term soil contamination. Soil and Sediment Contamination, 18, 497-511.

Mondragon, F., Rincon, F., Sierra, L., Escobar, J., Ramirez, J. and Fernandez, J., 1990. New perspectives for coal ash utilization: synthesis of zeolitic materials. Fuel, 69,

-266.

Moreno, Q.X., Andres, J.M., Stanton Towler Nugteren, Janssen-Jurkovicova and Jones, R., 2005. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel, 84, 1351-1363.

Mouhtaris, Th., Charistos, D., Kantiranis, N., Filippidis, A., Kassoli-Fournaraki, A., Tsirambidis, A., 2003. GIS-type zeolite synthesis from Greek lignite sulphocalcic fly ashes promoted by NaOH solutions. Microporous and Mesoporous Materials, 61, 57-67.

Nugteren, H.W., Janssen-Jurkovícová, M., Scarlett, B., 2001. Improvement of environmental quality of coal fly ash by applying forced leaching. Fuel, 80, 873-877.

Oates, J.A.H. (1998). Lime and Limestone. Wiley-VCH, Germany, 455.

Praharaj, T., Powell, M.A., Hart, B.R. and Tripathy, S., 2002. Leachability of elements from subbituminous coal fly ash from India. Environment International, 27, 609-615.

Querol, X., Fernandez, Turiel, J. L. and Lopez-Soler, A., 1995, Trace elements in coal and their behaviour during combustion in a large power station., Fuel, 74, 331–343.

Querol, X., Alastuey, A., Lopez-Soler, A., Mantilla, E. and Plana, F., 1996. Mineral composition of atmospheric particulates around a large coal-fired power station. Atmospheric Environment, 30(21), 3557–3572.

Querol, X., Alastuey, A., Lopez-Soler, A., Plana, F., Fernandez-Turiel, J.L., Zeng, R. Xu W., Zhuang X. and Spiro B., 1997a. Geological controls on themineral matter

andtraceelements of coals fromthe Fuxin basin, Liaoning Province, northeast China. International Journal of Coal Geolog, 34, 89–109.

Querol, X., Whateley, M.K.G., Fernαndez-Turiel, J.L. and Tuncali, E., 1997b. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology, 33, 255–271.

Querol, X., Umana, J.C., Alastuey, A., Bertrana, C., Lopez-Soler, A. and Plana F., 2000. Extraction of water-soluble impurities from fly ash. Energy Sources 22, 733-750.

Querol, X., Umaña, J.C., Alastuey, A., Ayora, C., Lopez-Soler, A. and Plana, F., 2001. Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. Fuel, 80, 801-813.

Riley, K.W., French, D.H., Lambropoulos, N.A., Farrell, O.P., Wood, R.A. and Huggin, F.E., 2007. Origin and occurrence of selenium in some Australian coals. International Journal of Coal Geology, 72, 72–80.

Ruppert, L., Finkelman, R., Boti, E., Milosavljevic, M., Tewalt, S., Simon, N. and Dulong, F., 1996. Origin and significance of high nickel and chromium concentrations in pliocene lignite of the Kosovo Basin, Serbia. International Journal of Coal Geology, 29, 235–258.

Sachanidis, Ch., Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki A., Iordanidis, A. and Kantiranis, N., 2000. Environmental aspects of trace elements in Ptolemais-Amynteo lignites, Northern Greece. In: Proceedings of the Fifth International Conference on Environmental Pollution, A. Anagnostopoulos (eds),Thessaloniki, Greece, 533-540.

Sadasivan and Negi 1991. Chemical characterization of fly ash from coal fired thermal power plants in Indian. Science of the Total Environment, 103(2-3), 151-158.

Shah, P., Strezov, V. and Nelson, P. 2007. Trace element speciation under coal fired power station conditions. Proceeding EE'07 Proceedings of the 2nd IASME/WSEAS international conference on Energy and environment, 194-202.

Shah, P.S., Strezov, V., Prince, K. and Nelson, P. F., 2008. Speciation of As, Cr, Se and Hg under coal fired power station conditions. Fuel, 87, 1859-1869.

Spanos, Nikos and Petros, G. Koutsoukos, 1998. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase., Journal of Crystal Growth, 783-7901.

Sturchio, C.N., Chiarello, P.R., Cheng, L., Lyman, F.P., Bedzyk, J.K., Oian, Y., Geissbuhler, P., Sorensen, B.L., Liang, Y. and Baer, R.D, 1997. Lead adsorption at the calcite-water interface: Synchrotron X-ray standing wave and X-ray reflectivity studies. Geochim. Cosmochim. Acta, 61, 251-263.

Suloway, JJ, Roy, WR, Skelly, TM, Dickerson, TR, Schuller, RM, Griffin, RA., 1983. Chemical and toxicological properties of coal fly ash. Environ Geol Notes, 105, 1–70.

Theis, T. L. and Wirth, J. L. (1977). Sorptive behavior of trace metals on fly ash in aqueous systems. Environmental Science Technology, 11, 12, 1096-1100.

Tucker M.E., 2009. Sedimentary Petrology: An Introduction on the Origin of Sedimentary Rocks. Edition 3, 1-2, 272.

Turekian, K.K. and Wedepohl, K.H., 1961. Distribution of the Elements in some major units of the Earth's crust. Geological Society of America, 72, 175-192.

Van der Sloot, H. A., 1991. Systematic leaching behaviour of trace elements from construction materials and waste materials. In J.J.J.R., Goumans, H.A., Van der Sloot and Th.G., Aalbers (eds.), Waste Materials in Construction, Elsevier, Amsterdam, 19-36.

Van der Hoek, E.E., Bonouvrie, P.A. and Comans, N.J., 1994. Sorption of As and Se on mineral components of fly ash: relevance for leaching processes. Applied

Geochemistry, 9, 403-412.

Van der Sloot, H.A., Comans, R.N.J., and Hjelmar, O. ,1996. Similarities in the leaching behavior of trace contaminants from waste, stabilized waste, construction

materials and soils. The Science of the Total Environment, 178, 111-126.

Vassilev, S.V. and Vassileva, C.G., 1996. Mineralogy of combustion wastes from coal-fired power stations. Fuel, Processing Technology, 47, 261-280.

Vassilev, S.V., Menendez, R., Alvarez, D., Diaz-Somoano, M. and Martinez-Tarazona, M.R., 2003. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. Characterization of feed coals and fly ashes. Fuel, 82, 1793-1811.

Vassilev, S.V. and Vassileva C.G., 2005. Methods for characterization of composition of fly ashes from coal-fired power stations: A critical overview. Energy and Fuels, 19, 1084-1098.

Vassilev, S. V. and Vassileva, C.G., 2007. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel, 86, 1490-1512.

Vogiatzis D, Kantiranis N, Filippidis A, Tzamos E, Sikalidis C., (2012). Hellenic Natural Zeolite as a replacement of sand in mortar: Mineralogy monitoring and evaluation of its influence on mechanical properties. Geosciences 2 (4), 298-307.

Wang, S. and Zhu Z.H., 2007. Humic acid adsorption on fly ash and its derived unburned carbon. Journal of Colloid and Interface Science, 315, 41–46.

Ward, C.R., French, D. and Jankowski, J., 2004. Comparative evaluation of leachability test methods and element mobility for selected Australian fly ash samples. Pittsburgh Coal Conference, Japan 2004, 12.

Ward, C.R., French, D., Jankowski, J., Dubikova, M., Li, Z. and Riley, K.W., 2009. Element mobility from fresh and long-stored acidic fly ashes associated with an Australian power station. International Journal of Coal Geology, 80, 224-236.

Warren, C.J. and Dudas, M.J., 1988. Leaching behaviour of selected trace elements in chemically weathered alkaline fly ash. Science of The Total Environment, 76, 229-246.

Wilson. G., Gitari, Ojo O., Fatoba, Leslie F., Petrik and Viswanath R.K., Vadapalli, 2009. Leaching characteristics of selected South African fly ashes: Effect of pH on the release of major and trace species. Journal of Environmental Science and Health Part A., 44, 206-220.

Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J. and Sheng, C., 2003. Status of trace element emission in a coal combustion process: a review. Fuel Processing Technology, 85, 215-237.

Yudovich, Y.E. and Ketris, M.P., 2006. Selenium in coal: a review. International Journal of Coal Geology, 67, 112–126.

Zandi, M. and Russell, N., 2007. Design of a leaching test framework for coal fly ash accounting for environmental conditions. Environvental Monit. Assess., 131, 509–526.

Ελληνική Βιβλιογραφία

Βογιατζής, Δ., 2009. Χρήση ιπτάμενης τέφρας και φυσικού ζεόλιθου στην παρασκευή ελαφροβαρών κονιαμάτων. Διδακτορική Διατριβή, Τμήμα Γεωλογίας, ΑΠΘ.

Βόυτα, Ν., 2018. Μελέτη της έκπλυσης βαρέων μετάλλων από μίγματα ιπτάμενης τέφρας- ζεολιθικού τόφφου τύπου HEU( Κλινοπτιλόλιθος-Ευλανδίτης). Μεταπτυχιακή Διπλωματική Εργασία, Τμήμα Γεωλογίας, ΑΠΘ.

Γεωργακόπουλος, Α., Φιλιππίδης, Α., Κασώλη-Φουρναράκη, Α., 1992. Ορυκτολογία, χημεία και μορφολογία τέφρας από εργαστηριακή καύση σε 1000ο C και ιπτάμενης τέφρας του λιγνίτη Πτολεμαϊδας – Αξιοποίηση και περιβάλλον. Διημερίδα «Λιγνίτης και Ενεργειακό Ισοζύγιο», Κοζάνη, Περιλ. 35.

Γεωργακόπουλος, Α., Φιλιππίδης, Α., Fernandez-Turiel, J.L., Κασώλη-Φουρναράκη, Α., Ιορδανίδης, Α., 2002. Λιθογενής και ανθρωπογενής προέλευση των ιχνοστοιχείων σε επιφανειακά εδάφη της λιγνιτοφόρου λεκάνης Αμυνταίου-Πτολεμαϊδας-Κοζάνης. 6ο Πανελλήνιο Γεωγραφικό Συνέδριο, Θεσσαλονίκη, 3-6/10/2002, Πρακτικά, Τόμος ΙΙ, 335-342.

Γκοντελίτσας, Α., Μισαηλίδης Π., Φιλιππίδης, Α., Παυλίδου, Ε. , Καντηράνης, Ν., 2000. Διερεύνηση της αλληλεπίδρασης τοξικών συγκεντρώσεων βαρέων μετάλλων με τον μαργαϊκό ασβεστόλιθο του λιγνιτικού κέντρου Πτολεμαϊδας–Αμύνταιου. 1ο Συνέδριο της Επιτροπής Οικονομικής Γεωλογίας, Ορυκτολογίας & Γεωχημείας Ε.Γ.Ε, Κοζάνη, Πρακτικά, 96-110.

Δρακούλης, Α., Καντηράνης, Ν., Φιλιππίδης, Α. και Στεργίου, Α., 2005. Δεσμευτική ι-κανότητα πλούσιων σε άμορφες φάσεις βιομηχανικών υλικών της νήσου Μή-λου. 2ο Συνέδριο Επιτροπής Οικονομικής Γεωλογίας, Ορυκτολογίας & Γεωχημείας ΕΓΕ, Θεσσαλονίκη, 55-63.

Ιορδανίδης, Α., 1998. Γεωχημεία του λιγνιτικού κοιτάσματςο Αμυνταίου, περιοχή Πτολεμαίδας. Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας, Θεσσαλονίκη.

Καντηράνης, Ν., Στεργίου, Χ.Α., Φιλιππίδης, Α. και Δρακούλης, Α., 2004. Υπολογισμός του ποσοστού του άμορφου υλικού με τη χρήση περιθλασιογραμμάτων ακτίνων-Χ. Δελτίο Ελληνικής. Γεωλογικής. Εταιρείας, 36(1), 446-453.

Κατσάρα, Α., 2019. Μελέτη της έκπλυσης βαρέων μετάλλων από μίγματα ιπτάμενης τέφρας-μαργαϊκού ασβεστόλιθου-ζεολιθικού τόφφου τύπου HEU (Κλινοπτιλόλιθος-Ευλανδίτης). Μεταπτυχιακή Διπλωματική Εργασία, Τμήμα Γεωλογίας, Θεσσαλονίκη.

Κολοβός, Ν., Γεωργακόπουλος, Α., Φιλιππίδης, Α., Καβουρίδης, Κ., Κασώλη- Φουρναράκη, Α., Καντηράνης, Ν., Σταμούλης, Κ., Σωτηρόπουλος, Δ. και Λάσκος, Κ., 2000.

Οικονομική και περιβαλλοντική σημασία της συνεξόρυξης των ενδιάμεσων στείρων υλικών του λιγνιτωρυχείου Νοτίου Πεδίου του ΛΚΠ-Α. 1ο Συνέδριο Επιτρ.

Οικονομικής Γεωλογίας, Ορυκτολογίας & Γεωχημείας της Ε.Γ.Ε., Κοζάνη Πρακτικά, 212-222.

Κούκουζας, Ν., Βασιλατος, Χ. και Γλαρακης, Ι., 2000. Ορυκτολογική και Πετρογραφική μελέτη σκυροδέματος με χρήση ιπτάμενης τέφρας της Πτολεμαΐδας. 1ο Συνέδριο της Επιτροπής Οικονομικής Γεωλογίας Ορυκτολογίας & Γεωχημείας, Κοζάνη, Ελλάδα, σελ. 261-272.

Μουχτάρης, Θ., Φιλιππίδης, Α., Κασώλη –Φουρναράκη, Α. και Χαριστός, Δ., 1999. Σύνθεση ζεολίθου από ιπτάμενη τέφρα του ΑΗΣ Αμυντάιου –Φιλώτα με επίδραση NaOH 0,5Μ. Πρακτ. Γεν. Επιστ. Συνεδρίας της Ε.Γ.Ε., Αθήνα, Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, 33, 69-74.

Μουχτάρης. Θ., Φιλιππίδης. Α., Κασώλη – Φουρναράκη. Α. και Χαριστός. Δ., 2000. Σύνθεση ζεολίθου από ιπτάμενη τέφρα του ΑΗΣ Αγίου Δημητρίου με επιδ΄ραση διαλυμάτων NaOH. 1ο Συν. Επιτρ. Οικονομικής Γεωλογίας, Ορυκτολογίας και Γεωχημείας της Ε.Γ.Ε., Κοζάνη, Πρακτικά, 308-318.

Σαχανίδης, Χ., Γεωργακόπουλους, Α., Φιλιππίδης, Α., Κασώλη-Φουρναράκη, Α., 2001. Περιεκτικότητα σε ιχνοστοιχεία των μαργαικών ενστρώσεων της λιγνιτοφόρου λεκάνης Πτολεμαΐδας-Αμύνταιου, Δ.Μακεδονίας. Πρακτ. Γεν. Επιστ. Συνεδρίας της Ε.Γ.Ε., Αθήνα, Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, 3,1115-1122.

Σταματάκης, Μ., Φραγκούλης, Δ. και Παπαγεωργίου, Α., 1997. Η διακύμανση της Ελληνικής Ιπτάμενης Τέφρας και η επίδραση της στην παραγωγή τεφροτσιμέντου.

Πρακτικά Διημερίδας. «Η χρήση των Ελληνικών Ιπτάμενων τεφρών στις κατασκευές». Κεντρο τεχνολογίας και εφαρμογών στερεών καυσίμων, Κοζάνη, πρακτ. 213-228.

Φιλιππίδης, Α., Γεωργακόπουλος, Α., Κασώλη-Φουρναράκη, Α., 1991. Ορυκτολογική μελέτη ιπτάμενης τέφρας Βόρειου και Κύριου πεδίου λιγνιτοφόρου λεκάνης Πτολεμαϊδας. 1ο Επιστημονικό Συνέδριο «Γεωεπιστήμες και Περιβάλλον», Πάτρα, Περιλ. 137.

Φιλιππίδης, Α., Κασώλη-Φουρναράκη Α., Γεωργακόπουλος, Α., 1997. Ορυκτολογία, κύρια στοιχεία και ιχνοστοιχεία ιπτάμενων τεφρών των ΑΗΣ του Λιγνιτικού Κέντρου Πτολεμαΐδας-Αμυνταίου. Διημερίδα: Χρήση της Ιπτάμενης Τέφρας στις Κατασκευές, Κοζάνη, 3-4/10/1997, Πρακτικά, Τόμος Β, 159-168.

Διαδικτυακές Πηγές

ΔΕΗ Α.Ε., Δημόσια Επιχείρηση Ηλεκτρισμού Α.Ε., https://www.dei.gr/el/oruxeia/mellontiki-anaptuksi (ανακτήθηκε 29/7/2020).

Standard Methods for the Examination of Water and Wastewater, https://www.standardmethods.org (ανακτήθηκε 10/8/2020)


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.