[Εξώφυλλο]

Ανασκόπηση των τραβερτινικών σπηλαίων με έμφαση στην παγκόσμια κατανομή και τις διεργασίες δημιουργίας τους = Overview of travertine caves with emphasis on their global distribution and processes of development

Πηγή Θεόδωρος Αργυριάδου

Περίληψη


Αυτή η εργασία αποτελεί ανασκόπηση των τραβερτινικών σπηλαίων με βάση την διαθέσιμη βιβλιογραφία και επιχειρεί να παρουσιάσει τις διεργασίες σχηματισμού και την ταξινόμησή τους. Από τη διερεύνηση του θέματος προκύπτει ότι υπάρχουν σπήλαια σε τραβερτίνη είτε με πρωτογενή χαρακτήρα, είτε με δευτερογενή. Αυτό σημαίνει ότι έχουν δημιουργηθεί ταυτόχρονα ή μετέπειτα από τη δημιουργία του πετρώματος που τα περιβάλλει, αντίστοιχα. Επιπλέον, έχουν αναφερθεί και μικτές δομές σπηλαίων με πιο πολύπλοκη εξέλιξη. Ο αριθμός των μελετών για τα σπήλαια αυτά, φαίνεται ότι είναι σχετικά μικρός αν και η γεωγραφική εξάπλωσή τους είναι σημαντική, εφόσον η μόνη ήπειρος που δεν έχει τραβερτινικά σπήλαια είναι η Ανταρκτική. Τα ευρήματα διαφόρων κλάδων των επιστημών στα σπήλαια αυτά (π.χ. παλαιοντολογία) τα καθιστούν σημαντικές θέσεις έρευνας. Επιπλέον μελέτες, χρειάζονται για την ευστάθεια των υπόγειων δομών από τραβερτίνη. Επίσης, πολλά από αυτά αποτελούν σημαντικούς γεώτοπους και συμβάλλουν στη γεωτουριστική ανάπτυξη.

This thesis reviews the travertine caves based on available literature and attempts to present their formation and classification processes. The investigation of the subject reveals that there are travertine caves either primary or secondary. This means that they have been created at contemporaneously with or after the formation of the surrounding rock, respectively. In addition, mixed cave structures with more complex evolution have been reported. The number of studies on these caves seems to be relatively small, although their geographical distribution is significant, as the only continent without travertine caves is Antarctica. The findings of various disciplines of science in these caves (e.g. paleontology) make them important research sites. Special studies are needed for the stability of underground travertine structures. Many of them are also important geosites and contribute significantly to geotourism.

Πλήρες Κείμενο:

PDF

Αναφορές


Ali, A. A., Carcaillet, C., Guendon, J.-L., Quinif, Y., Roiron, P., &Terral, J.-F. (2003). The Early Holocene treeline in southern French Alps: new evidence from travertine formations. Global Ecology and Biogeography, 12, 411–419.

Arp, G., Hofmann, J., &Reitner, J. (1998). Microbial fabric formation in spring mounds (“microbialites”) of alkaline salt lakes in the Badain Jaran Sand Sea, PR China. Palaios, 13, 581–592.

Bates, R. L., & Jackson, J. A. (1987). Glossary of Geology. 3rd Ed., Alexandria, Va. (American Geological Institute).

Bayari, C. S. (2002). A rare landform: Yerköprü travertine bridges in the Taurids karst range, Turkey. Earth Surface Processes and Landforms, 27(6), 577–590. https://doi.org/10.1002/esp.337

Bella, P., Gaál, Ľ., &Papáč, V. (2010). Jelenecká Cave in the travertine terrace of constructive waterfall, Starohorská Valley, central Slovakia.

Bella, P., &Vlček, L. (2011). Morphogenetic types of travertine crater caves: a case study from Slovakia (in Slovak, with English abstract). Aragonit, 16, 11–16.

Beraldi-Campesi, H. (2012). Cuexcomate: from the smallest volcano to the biggest geyser on Earth. In Geological Society of America, 108th Annual Meeting, Abstract with Programs (Vol. 44, pp. 57–63).

Bögli, A. (1980). Karst hydrology and physical speleology.Springer-Verlag. Berlin-Heidelberg. https://doi.org/10.1016/0012-8252(82)90030-7

Camuera, J., Alonso-Zarza, A.M., Rodríguez-Berriguete, Á.,& Rodriguez-Gonzalez, A. (2014). Origin and palaeo-environmental significance of the Berrazales carbonate

spring deposit, North of Gran Canaria Island, Spain. Sedimentary Geology, 308, 32–43.

Capezzuoli, E., Gandin, A., &Pedley, M. (2014). Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology, 61(1), 1–21.

Claes, H., Soete, J., Van Noten, K., El Desouky, H., Marques Erthal, M., Vanhaecke, F.,Özkul, M., Swennen, R., 2015. Sedimentology, three-dimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballik area (south-west Turkey). Sedimentology 62, 1408–1445Das, S., &Mohanti, M. (2005). Sedimentology of Holocene tufa carbonates in Orissa State, India. Carbonates Evaporites, 20, 8–33.

Eikenberg, J., Vezzu, G., Zumsteg, I., Bajo, S., Ruethi, M., &Wyssling, G. (2001). Precise two chronometer dating of Pleistocene travertine: the 230Th/234U and 226Raex/226Ra(0) approach. Quaternary Science Reviews, 20, 1953.

Emig, W. H. (1917). The travertine deposits of the Arbuckle Mountains, Oklahoma. Oklahoma Geological Survey Bulletin (Vol. 29).

Fouke, B. W., Farmer, J. D., Des Marais, D. D., Pratt, L., Sturchio, N. C., Burns, P. C., … M.K. (2000). Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). Journal of Sedimentary Research, 70, 565–585.

Ford, T.D., Pedley, H.M., 1996. A review of tufa and travertine deposits of the world. Earth-Sci. Rev. 41, 117–175.

Garcia delCura, M. A., Pedley, H. M., Ordoρez, S., & Gonzalez Martin, J. A. (2000). Petrology of a barrage tufa system (Pleistocene to Recent) in the Ruidera Lakes Natural Park (Central Spain). Geotemas, 1, 359–363.

Glover, C., &Roberston, A. F. H. (2003). Origin of tufa (cool water carbonate) and related terraces in the Antalya area, SW Turkey. The Journal of Geology, 38, 329–358.

Gradziński, M., Bella, P., &Holúbek, P. (2018). Constructional caves in freshwater limestone: A review of their origin, classification, significance and global occurrence. Earth-Science Reviews, 185(February), 179–201.

Gradziński, M., Wróblewski, W., & Bella, P. (2015). Cenozoic freshwater carbonates of the Central Carpathians (Slovakia): Facies, environments, hydrological control and depositional history. In G. Haczewski (Ed.), Guidebook for Field Trips Accompanying 31st IAS Meeting of Sedimentology Held in Kraków. Polish Geological Society, Kraków.

Gundacker, T., & Fischer, W. (2008). Die Eibenmühlenhöhle (1836/182) in den VorderenTormäuern. Höhlenkd. Mitt. Landesver. Höhlenkd Wien Niederösterr., 64(9), 97.

Gunn, J. (n.d.). Regaining a cave in tufa. Descent, 247, 8.

Halliday, W. R. (2011). Karst and pseudokarst at mammoth Hot Springs, Yellowstone National Park, USA. International Commission on Pseudokarst of the UIS, 22, 10–19.

Hancock, P. L., Chalmers, R. M. L., Altunel, E., &Cakir, Z. (1999). Travitonics: using travertines in active fault studies. Journal of Structural Geology, 21, 903–916.

Jedynak, M. (2016). Calcareous tufa in historic gravestones at the Rakowicki Cemetery in Kraków. BSc Thesis. Institute of Geological Sciences, Jagiellonian University,

Kraków (in Polish, with English summary).

Kanellopoulos, C. (2013). Various morphological types of thermogenic travertines in Northern Euboea and Eastern Central Greece. In Bulletin of the Geological Society of Greece (Vol. XLVII, pp. 1929–1938).

Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A., &Lipp, A. (1991). Largest known microbialites discovered in Lake Van, Turkey. Nature, 349, 605–608.

Koban, C. G., &Schweigert, G. (1993). Microbial origin of travertine fabrics- two examples from Southern Germany. Facies, 29, 251–264.

Lazaridis, G., (2019). Report on the collapse of a travertine bridge

Lazaridis, G., Trimmis, K., &Pappa, S. (2017). Travertine caves in Almopia, Greece. Cave and Karst Science, 44(2), 58–63.

Lazaridis, G., Vavliakis, E., &Pennos, C. (2005). Temporal earthpyramids. An example from Zestanera cave of Sidirokastro, Serres (Macedonia, Greece). In Proceedings of the 14th International Congress of Speleology, 21–28 August 2005, Athens, Kalamos, Hellas. vol. 2. Hellenic Speleological Society (pp. 579–58).

López-Garcia, J. M., Soler, N., Marota, J., Soler, J., Alcalde, G., Galobart, A., …Burjachs, F. (2015). Palaeoenvironmental and palaeoclimatic reconstruction of the latest Pleistocene of L’Arbreda cave (Serinyà. Girona, northeastern Iberia) inferred from the small-mammal (insectivore and rodent) assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 435(244-253).

Macaluso, D., &Scapoletti, G. (2015). Textural features and isotope geochemistry of the Scillato travertine (north-central Sicily): genetic implictaions. Italian Journal of Geosciences, 134, 77–85.

Martin-Algarra, A., Martin-Martin, M., Andreo, B., Julià, R., & González-Gómez, C. (2003). Sedimentary patterns in perched spring travertines near Granada (Spain) as indicators of the palaeohydrological and palaeoclimatological evolution of a karst massif. Sedimentary Geology, 161, 217–228.

Mitchell, R. S. (1985). Dictionary of Rocks.

Monarca Serrano, J. A., De JesúsCirilio, M., Vázquez-López, C., Zendejas-Leal, B. E., Golzarri, J. I., & Espinosa, G. (2016). Emanation study of gas radon on the ancient Cuexcomate geyser in Puebla City, Mexico. The Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 4, 277–284.

Nuñez Jimenez, A., Viña Bayes, N., Acevedo Gonzalez, M., Mateo Rodriguez, J., Iturrald Vinent, M., Graña Gonzalez, M., 1984. Cuevas y Carsos. Editioora Militar, La Habana.

Pavuza, R. (2015). Spring tufa caves in Austria. In 13th International Symposium on Pseudokarst. Department of Physical Geography and Geoecology. University of Ostrava, Ostrava, (pp. 32–34).

Pedley, M. (2009). Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology, 56, 221–246.

Pentecost, A. (2005). Travertine. Berlin Heidelberg: Springer-Verlag.

Pentecost, A., &Viles, H. (1994). A review and reassessment of travertine classification. Geographie Physique etQuatemaire, 48(3), 305–314.

Pilous, V., 1985. Morfogentic types of pramenite, porolithe and travertine forms of the relief. Rozpr. Čes. Akad. Ved 95 (4), 3–106 (in Czech with English summary).

Pisarowicz, J. (2003). Beneath yellowstone. Rocky Mt. Caving, 20(4), 12–18.

Riding, R. (1991). Classification of microbial carbonates. In R. Riding (Ed.), Calcareous Algae and Stromatolites (pp. 21–51). Berlin: Springer- Verlag.

SallunFilho, W., Almeida, L. H. S., Boggiani, P. C., &Karmann, I. (2012). Characterization of quaternary tufas in the Serra do André lopes karst, southeastern Brazil.

Carbonates Evaporites, 27, 357–373.

Török, Á. (2003). Facies analysis and genetic interpretation of travertine, Buda Vár-hedy, Hungary. Acta Geol. Hung, 46, 177–193.

Vázquez-Urbez, M., Arenas, C., Sancho, C., Auqué, L., Osácar, C., & Pardo, G. (2011). Quaternary and present-day tufa systems of the Piedra and Añamaza rivers (Iberian Ranges). In C. Arenas, L. Pomar, & F. Colombo (Eds.), Post Meeting Field Trips 28th IAS Meeting, Zaragoza. SociedadGeológica de España, Zaragoza (pp. 241–274).

Whitten, D. A., & Brooks, J. V. R. (1972). The Penguin Dictionary of Geology.

Ελληνική βιβλιογραφία:

Βαβλιάκης, Ε. (1998). Σχηματισμός-Εξέλιξη του Σπηλαίου της Έδεσσας και η Θετική Μετατόπισή του Μετώπου των Καταρρακτών.

Λαζαρίδης, Γ., (2004). Μελέτη των σπηλαιομορφών της λεκάνης του Κρουσοβίτη ποταμού (Ν. Σερρών).Διπλωματική εργασία– Τμήμα Γεωλογίας Α.Π.Θ. (σελ.39-42).

Λαζαρίδης, Γ., (2016). Σπήλαιο στον Στανό, Χαλκιδική. Προκαταρκτική γεωλογική έκθεση. Αδημοσίευτη έκθεση.

Ρεϊζοπούλου, Α. (2013). Καρστική γεωμορφολογία της Αν. Όθρυος. Η περιοχή Μεγα-Λάκκου, Νεροσπηλιάς. Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας Α.Π.Θ, (σελ. 96).

Ιστοσελίδες:

http://www.turkeyportal.com/caves-of-turkey.html

http://antalya.bel.tr/i/caverns-and-caves

https://www.wondermondo.com/spring-tufa-travertine-and-other-formations/

https://www.showcaves.com/english/hu/showcaves/Anna.html

https://www.lonelyplanet.com/china/guizhou/anshun/attractions/huangguoshu-falls/a/poi-sig/1240610/355936


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.