Εξώφυλλο

Processing and Interpretation of Seismic Profiles with the Use of Paradigm Software = Επεξεργασία και ερμηνεία σεισμικών τομών με τη χρήση του λογισμικού Paradigm.

Melina Dirithea Christos Gkari

Περίληψη


Using PARADIGM software to process and interpret the 2D (two -way-time and depth) seismic reflection profiles from PGS ( Petroleum Geo- Services) in the  Cyprus EEZ (Exclusive Economic Zone).
This particular software is used by a lot of petroleum companies and was based on the seismic stratigraphy of the Messinian Salinity Crisis (MSC) sequence and salt- deformation patterns as proposed in recent studies for the deep basins and slopes of the Eastern Mediterranean.
Great scientific interest has been drawn to the Eastern Mediterranean since the discovery of  natural gas fields in the sedimentary basins of Herodotus and Levantine in Cyprus and  Egypt’s EEZ as well as in Israel. The continental block of  Eratosthenes also plays its part in the development  of the wider Eastern Mediterranean region. Likewise the Zohr gas field which is only 4-6 km away from  block 11 of Cyprus’ EEZ holds an  important part in our study area.
KEYWORDS : PARADIGM SOFTWARE, MESSINIAN SALINITY CRISIS ,SEISMIC INTERPRETATION, EASTERN MEDITERRANEAN,ZOHR GAS FIELD

Πλήρες Κείμενο:

PDF

Αναφορές


A.Mousouliotis, S. Pechlivanidou, K. Albanakis, A. Georgakopoulos1, B. Medvedev. Salt deformation patterns in the Eastern Mediterranean: Insights from the Messinian evaporite in the Herodotus Basin. Third EAGE Eastern Mediterranean Workshop 2021

A.Mousouliotis. Simulation of the development of the pre-deltaic depositional strata of the Nile River in the Herodotus Basin and comparison with seismic stratigraphic data within the Exclusive Economic Zone of Cyprus. Thessaloniki 2021

Cozzi A., Cascone A., Bertelli L., Bertello F., Brandolese S., Minervini M., Ronchi P., Ruspi R., Harby H. .Zohr Giant Gas Discovery – A paradigm shift in Nile Delta and East Mediterranean exploration .Discovery Thinking Forum, AAPG/SEG International Conference & Exhibition 2017, London 16th October 2017

Konstantinos A. Nikolaou.The Discovery of Zohr Gas Field in Egypt ‘’… A Game Changer…’ Impacts – Opportunities.9th SE Europe Energy Dialogue, June 2016

A.G. Mousouliotis, K. Albanakis , A. Georgakopoulos , G. Papatheodorou, E.K. Tripsanas , B. Medvedev .Pre-salt clastic systems in the Herodotus Basin, SE Mediterranean Sea . Marine and Petroleum Geology 122 (2020)

https://hydrocarbons.gov.cy/en/geological-data/area-description-geology © 2022 Republic of Cyprus, Hydrocarbon Service, Ministry of Energy, Commerce and Industry.

https://www.pgs.com/data-library/hotspots/easternmediterranean/geology/ PGS seismic data from the East Mediterranean support new exploration activities offshore Greece, Cyprus, Egypt, and in the Levant Basin.

A. El-Bassiony , J. Kumar , and T. Martin. Velocity model building in the major basins of the eastern Mediterranean Sea for imaging regional prospectivity. Special Section: Spotlight on the Mediterranean. (p.519-520)

J. Kumar, M. Bell , M. Salem , T. Martin and S. Fairhead. Mode conversion noise attenuation, modelling and removal: case studies from Cyprus and Egypt . FIRST BREAK I VOLUME 36 I DECEMBER 2018 (p.113-114)

Huahua Gaoa, Zhixin Wenb, Buqing Shia, Zhaoming Wangb, Chengpeng Song. Tectonic characteristics of the Eratosthenes Seamount and its periphery:Implications for evolution of the eastern Mediterranean. Marine Geology 2020

A.H.F. Robertson. Tectonic significance of the Eratosthenes Seamount: a continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (Ocean Drilling Program Leg 160)

Z. Garfunkel. Origin of the Eastern Mediterranean basin: a reevaluation Author links open overlay panel.Tectophysics.Vol.391.October 2004.

Walley, C.D., 1998. Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region. Tectonophysics 298 (1–3), 37–62.

Hawie, N., Gorini, C., Deschamps, R., Nader, F.H., Montadert, L., Granjeon, D., Baudin, F., 2013. Tectono-stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Mar. Petrol. Geol. 48, 392–410.

Hsü, K.J., Montadert, L., Bernoulli, D., Cita, M.B., Erickson, A., Garrison, R.E., Kidd, R.B., M`elier´es, F., Müller, C., Wright, R., 1977. History of the Mediterranean salinity crisis. Nature 267 (5610), 399–403.

Montadert, L., Nicolaides, S., Semb, P.H., Lie, Ø., 2014. Petroleum systems offshore Cyprus. In: Marlow, L., Kendall, C., Yose, L. (Eds.), Petroleum Systems of the Tethyan Region,vol. 106.AAPG Memoir, pp.301-334

Robertson, A.H., 1998. Tectonic significance of the Eratosthenes Seamount: a continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (Ocean Drilling Program Leg 160). Tectonophysics 298 (1), 63–82.

Van Hinsbergen, D.J., Torsvik, T.H., Schmid, S.M., Mat¸enco, L.C., Maffione, M., Vissers, R.L., Gürer, D., Spakman, W., 2019. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 81, 79–229.

Robertson, A.H.F., Dixon, J.E., 1984. Introduction: aspects of the geological evolution of the Eastern Mediterranean, 17. Geological Society, London, Special Publications, pp. 1–74, 1.

Granot, R., 2016. Palaeozoic oceanic crust preserved beneath the eastern Mediterranean. Nat. Geosci. 9 (1038), 701–705, 10. Ben-Avraham, Z., Ginzburg, A., Makris, J., Eppelbaum, L., 2002. Crustal structure of the Levant basin, eastern Mediterranean. Tectonophysics 346 (1–2), 23–43.

Netzeband, G.L., Gohl, K., Hübscher, C.P., Ben-Avraham, Z., Dehghani, G.A., Gajewski, D., Liersch, P., 2006. The Levantine Basin—crustal structure and origin. Tectonophysics 418 (3–4), 167–188.

Said, R., 1981. The Geological Evolution of the River Nile. Springer Science & Business Media, pp. 13–17.

Aal, A.A., El Barkooky, A., Gerrits, M., Meyer, H., Schwander, M., Zaki, H., 2000. Tectonic evolution of the eastern Mediterranean basin and its significance for hydrocarbon prospectivity in the ultradeepwater of the nile delta. Lead. Edge 19 (10), 1086–1102.

Macgregor, D.S., 2012. The development of the Nile drainage system: integration of onshore and offshore evidence. Petrol. Geosci. 18 (4), 417–431.

Hsü, K.J., Montadert, L., Bernoulli, D., Cita, M.B., Erickson, A., Garrison, R.E., Kidd, R.B., Mèlierés, F., Müller, C. and Wright, R., 1977. History of the Mediterranean salinity crisis. Nature, 267(5610), pp.399-403.

Loncke, L., Gaullier, V., Mascle, J., Vendeville, B. and Camera, L., 2006. The Nile deepsea fan: an example of interacting sedimentation, salt tectonics, and inherited subsalt paleotopographic features. Marine and Petroleum Geology, 23(3), pp.297-315.

Macgregor, D.S., 2012. The development of the Nile drainage system: integration of onshore and offshore evidence. Petroleum Geoscience, 18(4), pp.417-431.

Garcia-Castellanos, D., Estrada, F., Jiménez-Munt, I., Gorini, C., Fernández, M., Vergés, J. and De Vicente, R., 2009. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature, 462(7274), pp.778-782.

Ryan, W.B., 2008. Modeling the magnitude and timing of evaporative drawdown during the Messinian salinity crisis. Stratigraphy, 5(1), pp.227-243.

Popescu, S.M., Dalibard, M., Suc, J.P., Barhoun, N., Melinte-Dobrinescu, M.C., Bassetti, M.A., Deaconu, F., Head, M.J., Gorini, C., Do Couto, D. and Rubino, J.L., 2015. Lago Mare episodes around the Messinian–Zanclean boundary in the deep southwestern Mediterranean. Marine and Petroleum Geology, 66, pp.55-70

Marzocchi, A., Flecker, R., Van Baak, C.G., Lunt, D.J. and Krijgsman, W., 2016. Mediterranean outflow pump: An alternative mechanism for the Lago-mare and the end of the Messinian Salinity Crisis. Geology, 44(7), pp.523-526.

Bache, F., Gargani, J., Suc, J.P., Gorini, C., Rabineau, M., Popescu, S.M., Leroux, E., Do Couto, D., Jouannic, G., Rubino, J.L., Olivet, J.L., 2015. Messinian evaporite deposition during sea level rise in the Gulf of Lions (Western Mediterranean). Mar. Petrol. Geol. 66, 262–277.

Krijgsman, W., Meijer, P.T., 2008. Depositional environments of the Mediterranean “Lower Evaporites” of the Messinian salinity crisis: constraints from quantitative analyses. Mar. Geol. 253 (3), 73–81

Gargani, J., Rigollet, C., 2007. Mediterranean Sea level variations during the Messinian salinity crisis. Geophys. Res. Lett. 34 (10), L10405.

ΡΑΦΑΕΛΛΑ Χ. ΟΘΩΝΟΣ .ΚΟΙΤΑΣΜΑΤΑ ΤΥΠΟΥ ΖΟΡ ΣΤΗΝ ΑΝΑΤΟΛΙΚΗ ΜΕΣΟΓΕΙΟ.ΘΕΣΣΑΛΟΝΙΚΗ 2020

ΜΠΕΛΛΙΟΥ Δ.ΑΠΟΘΕΜΑΤΑ ΥΔΡΟΓΟΝΑΝΘΡΑΚΩΝ ΣΤΗΝ ΑΝΑΤΟΛΙΚΗ ΜΕΣΟΓΕΙΟ. ΘΕΣΣΑΛΟΝΙΚΗ 2017

Eni: Zohr gas production reaches 2.7 bcfd. Press release.08/2019

Aphrodite gas field. https://en.wikipedia.org/wiki/Aphrodite_gas_field

Tamar gas Field. https://en.wikipedia.org/wiki/Tamar_gas_field

Leviathan gas field. https://en.wikipedia.org/wiki/Leviathan_gas_field

ENI begins producing from zohr the largest ever discovery of gas in the Mediterranean Sea. press release 2017

AspenTech Subsurface Science & Engineering . April 2017 Top 5 Paradigm SKUA-GOCAD Training Youtube Channels This entry was posted in computer, Education, Technology. By GEORGE BONET https://www.youtube.com/watch?v=MxR2j2mm7_A https://www.geoforce.com.tw/pdf/SKUA-GOCAD_2019.pdf

Paradigm SKUA-COGAD 22 build 2022.06.20 https://filecr.com/windows/paradigmskua-gocad/?id=381496082000 From Interpretation to Geology 19.10.2019


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.