Εφαρμογή της αντίστροφης κατανομής Gauss και της λογαριθμοκανονικής κατανομής για την μελέτη των σεισμών στην Κεντρική και Νότια Αμερική = Application of inverse Gaussian and lognormal distribution to study earthquakes in Central and South America.
Περίληψη
Στην συγκεκριμένη εργασία εξετάζονται δύο περιοχές της Περί-Ειρηνικής ζώνης, με πολύ υψηλή σεισμικότητα και σεισμού τεραστίου μεγέθους, την Κεντρική και την Νότια Αμερική. Σε ένα δείγμα μεγάλων σεισμών με μέγεθος Μw≥6.5 εφαρμόστηκε έλεγχος καλής προσαρμογής σε δύο κατανομές, με στόχο εντέλει να υπολογιστούν οι υπό συνθήκη πιθανότητες για να εκτιμηθεί η σεισμική επικινδυνότητα. Η συνολική περιοχή χωρίσθηκε σε δέκα σεισμικές ζώνες. Στις ζώνες αυτές έχουν συμβεί μεγάλοι και καταστροφικοί σεισμοί. Ο πλέον χαρακτηριστικός ο σεισμός του 1960 με μέγεθος Μw=9.5. Είναι ο μεγαλύτερος καταγραμμένος σεισμός που γνωρίζουμε. Υπό αυτές τις συνθήκες η ανάγκη για μετριασμό της σεισμικής επικινδυνότητας και του σεισμικού κινδύνου κρίνεται αναγκαία. Έγινε εφαρμογή δύο στατιστικών κατανομών στα δεδομένα: α) της λογαριθμοκανονικής και β) της αντίστροφης Gauss. Εφαρμόσθηκαν διάφορα κριτήρια για να ελεγχθεί ποια κατανομή ταίριαζε καλύτερα στους σεισμούς που επιλέχθηκαν. Όλοι οι υπολογισμοί και οι τροποποιήσεις των δεδομένων έγιναν μέσω της γλώσσας προγραμματισμού R. Αναφορικά, στους υπολογισμούς συγκαταλέγονται οι υπολογισμοί των εκτιμητών για τις δύο κατανομές, ο έλεγχος καλής προσαρμογής τόσο για το Kolmogov-Smirnov όσο και για το Anderson-Darling καθώς και οι δεσμευμένες πιθανότητες. Τελικά δημιουργήθηκε ένας οδηγός στον οποίο μπορεί κάποιος να στηριχθεί και να λάβει μέτρα για την μείωση του σεισμικού κινδύνου στις περιοχές αυτές.
The Peri-Pacific zone is the most seismic region on Earth. In this zone one can locate all the new mountain ranges, island arcs, all the Andesitic volcanoes, all the hotbeds of depth earthquakes and most of the foci of surface earthquakes. The energy released in all areas around the Pacific Ocean makes up 77% of the Earth's total annual seismic energy.
This paper examines two regions of the Peri-Pacific zone, with very high seismicity and earthquakes of enormous magnitude, Central and South America. In a sample of large earthquakes with magnitude Mw≥6.5, a goodness of fit test was applied to two distributions, in order to calculate the conditional probabilities and to eventually estimate the seismic hazard. The total area was divided into ten seismic zones. Large and destructive earthquakes have occurred in these zones. The most characteristic being the earthquake of 1960 with magnitude Mw=9.5. It is the largest recorded earthquake known to us. Under these circumstances, the need to mitigate seismic hazard and seismic risk is deemed necessary. Two statistical distributions were applied to the data: a) the lognormal and b) the inverse Gauss. Various criteria were applied to check which distribution best suited the earthquakes selected. All calculations and modifications of the data were done through the R programming language. The calculations include the parameters calculations for the two distributions, the goodness of fit test, both Kolmogov-Smirnov and Anderson-Darling, and the conditional probabilities. Eventually, a guide was created on which one can rely and take measures to reduce seismic risk in these areas.
Πλήρες Κείμενο:
PDFΑναφορές
Aki, K., 1968. Seismicity and Seismological Method. Tectonophysics, 6, 41-58.
Anderson, I.G, Savage, M and Quaas, R, 1985. Strong ground motion in North America of from the Bolivia earthquake of June 9, 1994 (Mw=8.3). Geophys.Res Lett., 22, 293-296.
Bath, M., 1953. Seismicity of Fennoscandia and Related Problems. Gerl, Beitr. Z. Geophysik, 63, 173-208
Bayrak, Y., Yadav R.B.S., Kalafat D., Tsapanos T.M., Çınar H., Singh A.P., Bayrak E., Yılmaz Ş., Öcal
F., Koravos G., 2013. Seismogenesis and earthquake triggering during the Van (Turkey) 2011 seismic sequence. Tectonophysics, 601, pp.163-176.
Bilek, S.L, 2010. Seismicity along the South America subduction zone: Review of largeearthquakes, tsunamis and subduction zone complexity. Tectonophysics. 495 (1-2)
-14.
Bloom, E., D., Erdmann, R., C., 1980. The observation of a universal shape regularity in earthquake frequency-magnitude distributions. Bulletin of the Seismological Society of America. 70 (1): 349–362.
Carr, M J. and Stoiber, E.E., 1977. Geologic setting of some destructive earthquakes in Central America. Geol. Soc. American Bulletin, 88, 151-156.
Comninakis, P.E. and Papazachos, B.C., 1977. Completeness, accuracy and homogeneity of the data for seismicity studies in the Mediterranean and the surrounding area for the period 1901-1975. Proc. of the Symp. Analysis of Seismicity and on Seismic Risk, Liblice 1977, 139-149.
Coban, K. H. and Sayil N., 2020. Conditional Probabilities of Hellenic Arc Earthquakes Based on Different Distribution Models. Pure Appl. Geophys. 177, 5133-5145
Coral, A., 2007. Statistical features of earthquake temporal occurrence. Lect. Notes Phys. 705, 191-221
Cernadas, D., Osella, A. and Sabbione, N., 1998. Self-similarity in the Seismicity of the South-American Subduction Zone. Pure Appl. Geophys. 152, 57-73
Dean, B.W., and Drake, C.L., 1978. Focal mechanism solutions and tectonics of Middle America arc. The Journal of Geology, 86 (1), 111-128.
Engdahl, E.R., R. van der Hilst and R. Buland. 1998 Global tele seismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seismol. Soc. Am. 88, no. 3, 722–743.
Engdahl E.R, Villaseñor A., 2002 Global Seismicity: 1900-1999, in International Handbook of Earthquake and Engineering Seismology, Part A, chapter 41, pp. 665-690, eds Lee WHK, Kanamori H, Jennings PC, Kisslinger C, Academic Press.
Gardner, J.K. and Knopoff, L. 1974. Is the sequence of earthquakes in Southern California with aftershocks removed, Poissonian? Bull. Seismol. Soc. Am., 64 (5), 1363-1367.
Gumbel, E. J., 1958. Statistics of extremes, Columbia Univ. Press, New York, 375pp
Gutenberg, B. and Richter, C.F., 1944. Frequency of earthquakes in California. Bull. Seismol. Soc. Am., 34, 185-188.
Gutenberg, B. and Richter, C.F., 1954. Seismicity of the Earth and Associated Phenomena. (Princeton Univ. Press, Princeton, New York), 310pp
Jarrant, R.D., 1986. Relations among subduction parameters. Rev. Geoph., 24, 217 284.
Jones, L.M. and Molnar, P, 1976. Frequency of foreshocks. Nature, 262, 677-679.
Kaila, K.L., Madhava Rao, N. and Narain, H., 1974. Seismotectonic maps of southwest Asia region comprising eastern Turkey, Caucasus, Persian plateau, Afghanistan and Hindukush. Bull. Seismol. Soc. Am., 64(3-1), pp.657-669.
Kagan, Y.Y. and Houston, H., 2005, Relation between mainshock rupture process and Omori’s law for aftershock moment release rate., Geophys. J intern, 163 (3), 1039-1048
Kelleher, J. A., 1972. Rupture zones of south American earthquakes and some predictions. J. Geophys. Res., 84, 2087-2103.
Kijko, A., Graham, G., 1999. " Parametric-historic" Procedure for Probabilistic Seismic Hazard Analysis Part II: Assessment of Seismic Hazard at Specified Site.
pure and applied geophysics, 154, pp.1-22.
Kisslinger, C., and Jones L.M. 1991. Properties of aftershocks in southern California, J. Geophys. Res., 96, 11947-11958
Lemoine, A., Madariaga, R, and Campos, J., 2002. Slab-pull and slab push earthquakes in the Mexican, Chilean and Peruvian subduction zones, Phys. Earth Planet. Interiors, 132, 157-175.
Lolli, B. and Gasperini, P., 2006. Correlation between the parameters of the aftershock rate equation: Implications for the forecasting of future sequences. PEPI, 156, 41-58
Lomnitz, C., 1970. Major earthquakes and tsunamis in Chile during the period 1535 to 1955. Geologische Rundschau, 59, pp.938-960.
Lomnitz, C., 1974, Global Tectonics and Earthquake Risk. Elsevier Scientific Publishing Company, Amsterdam, 320pp
Makropoulos K. C. 1978. The statistics of large earthquake magnitude and an evaluation of Greek seismicity, PhD thesis, Edinburgh University.
Makropoulos, K.C. and Burton, P.W. 1985, “Seismic hazard in Greece. II. ground acceleration”, Tectonophysics, 117, 259-294.
Matthews M.V., Ellsworth W.L. and Reasenberg P.A. 2002. A Brownian model for recurrent earthquakes. Bull. Seismol. Soc Am 92(6): 2233-2250
Moji, K., 1967, Study of Elastic Shocks Caused by the Fracture of Heterogenous Materials and its Relation to Earthquake Phenomenon, Bull. Earthq. Res. Inst., Tokyo Univ. 40, 125-173
Olasoglou, E.M., Tsapanos, T.M, Papadimitriou, E.E. and Drakatos G.N., 2016. Some preliminary results on the distribution of aftershocks sequences in Japan-Kuril Islands and Kamchatka., Proc. of the 14th Intern. Conf., Thessaloniki, Bull. Geol. Soc. Thessaloniki, Greece, vol XLVIII, 1212-1221
Pacheco JF, Sykes LR 1992 Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seism Soc Am 82,1306-1349
Papadimitriou, E. E., 1993. Long-term Earthquake Prediction along the Western Coast of South and Central America Based on a Time Predictable Model. Pageoph 140, 301-316.
Page, R., 1968. Aftershocks and micro-aftershocks of the great Alaska earthquake of 1964. Bull Seism Soc Am 58, 1131-1168
Papazachos, B. C., 1990, Seismicity of the Aegean and surrounding area, Tectonophysics, Volume 178, Issues 2–4, 287-308,
Papazachos, B.C., 1993. “Long-term prediction of intermediate depth earthquakes in southern Aegean region based on time predictable model”, Pure Appl. Geophys. 138, 287-308
Parsons, T., 2002. Global Omori law decay of triggered earthquake: Large aftershocks outside the classical aftershock zone. J. Geophys. Res. 107, B9, pp. ESE9.1 ESE9.20
Prince, R.A. and Scheweller, W.J., 1978. Dates, rates, and angles of faulting in Peru Chile trench. Nature 271, 743-745.
Ranalli, G., 1969. A statistical study of aftershock sequences. Ann. Geophisica, 22, 359-397
Richter, C.F., 1935. An instrumental earthquake scale. Bull. Seism. Soc. Am., 25, 1-32
Reasenberg, P., 1985. Second-order moment of central California seismicity. 1969-1982. J. Geophys. Res. ,90, no. B7, 5479–5495.
Rothe, J. P., 1969. The Seismicity of the Earth 1953-1965. UNESCO 1967 (Printed in Belgium), 336pp
Scordilis EM (2005) Globally valid relations converting Ms, mb and MJMA to Mw. Proc of NATO
Advanced Research Workshop on Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries, 11-17 September 2005, the Rila Mountains-Resort Village Borovetz, Bulgaria, Abstracts book, 158-161
Scordilis EM (2006) Empirical global relations converting Ms and mb to moment magnitude. J Seismol 10:225-236, doi: 10.1007/s10950-006-9012-4
Stacey, V., 1969. Physics of the Earth. John Wileey and Sons, Inc., New York, 4141pp.
Stein, S., Engeln, J.E., De Meto, C., Gordan, R.G., Woods, D.R., Lundgren, P., Argus, D.,
Quibble, D., Stein, C., Weistein, S. and Wiens, D.A., 1986. The Nazca South America convergence rate and the recurrence of the grate Chilean earthquakes. Geophys. res. Lett. 13, 713-716.
Scholtz, C.H., 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am., 58(1), 399-415 Tajima, F. and Kanamori, H., 1985. Global survey of aftershocks area expansion patterns. Phys. Erath Planet. Interiors, 40, 77-134.
Talbi, A., Nanjo, K., Satake, K., Zhuang, J. and Hamdache, M., 2013. Comparison of seismicity declustering methods using a probabilistic measure of clustering. J. Seismol., 17:1041–1061, DOI 10.1007/s10950-013-9371-6.
Teng, G. and Baker, J.W., 2019. Seismicity declustering and hazard analysis of the Oklahoma –Kansan region. Bull. Seismol. Soc. Am., 101 (6), 2346-2366. doi: 10.1785/0120190111
Tsampas, A.D., Scordilis E.M., Papazachos C.B. and Karakaisis G.F., 2016. Global magnitude scaling relations for intermediate-depth and deep-focus earthquakes, Bull. Seism. Soc. Am., doi: 10.1785/0120150201, 106, 2, 418 434.
Tsapanos, T.M., 1990a. Spatial distribution of the difference between the magnitude of the main shock and the largest aftershock in the circum-pacific belt. Bull. Seism. Soc. Am., 80, 1180-1189
Tsapanos, T.M., 1990b. b-Values of Two Tectonic Parts in the Circum-Pacific Belt. PAGEOPH, Vol 134 (No. 2), 239-241
Tsapanos, T.M., Burton, P.W., 1991, Seismic hazard evaluation for specific seismic regions of the world, Tectonophysics, Volume 194, Issues 1–2, 153-169,
Tsapanos, T.M., 1995. The temporal distribution of aftershock sequences in subduction zones of the pacific. Geophys. J intern, 123, 633-636
Tsapanos, T.M., 2000. The depth distribution of seismic parameters estimated for the South America area, Earth and Planet., 103-115.
Tsapanos, T.M. and Christova, C.V., 2000. Some preliminary results of a worldwide seismicity estimation: a case study of the seismic hazard evaluation in South America. Ann. di Geofis., 43, 11-22.
Tsapanos, T.M., 2001 “Evaluation of the seismic hazard parameters for selected regions of the world: the maximum regional magnitude”. Ann. di Geofisica, 44, 69-79
Tsapanos, T.M., Koravos, G.Ch., Plessa, A., Vythoulkas, N.K. and Pitsonis, I.S., 2010. Decay parameters of aftershock sequences globally distributed. Proc. of the 12th Intern. Conf., Thessaloniki, Bull. Geol. Soc. Patras, Greece., 1-7
Uhrhammer, R.A., 1986. Characteristics of northern and central California seismicity. Earthq. Notes, 57 (1), 21-37
Utsu, T., 1962. On the nature of three Alaskan aftershock sequences of 1957 and 1958. Bulletin of the Seismological Society of America, 52(2), pp.279-297.
Utsu, T., 1969. Aftershocks and earthquake statistics (I). J. Fac. Sci. Jokkaido Univ., Ser. VII, 2, 130-195.
Uyeda, S. and Kanamori, H. 1979. Back-arc opening and the mode of subduction. J. Geophys. Res., 84, 1049-1061.
Yadav, R. B. S., Tsapanos, T. M., Burton, P. W., Kumar, R., & Sandhu, M. (2022). Seismicity and magnitude recurrence hazard assessment in Eastern Nepal, Northeast India and Tibet Himalaya. Physics and Chemistry of the Earth, Parts A/B/C, 127, 103158.
Yamagishi, Y., Saito, K., Hirakara, K. and Ueda, N. 2021. Spatio-temporal clustering of earthquakes, on distribution of magnitudes. Appl Netw Sci. 6:71
Yegulalp, T., M., Kuo, J. T., 1974. Statistical prediction of the occurrence of maximum magnitude earthquakes. Bull. Seism. Soc. Am. 64 (2): 393–414
van Stiphout, T., Zhuang, J. and Marsan, D., 2012. Seismicity declustering, in Community Online Resource for Statistical Seismicity Analysis, Vol. 10, 1–25
Vinogradov, S.D., 2008. Aftershock sequences as evidence for relaxation process in a region containing an earthquake source. Izvestiya Physics of the Solid Earth 44, 138-141
Ελληνική Βιβλιογραφία
Γαλάνης, Οδυσσεύς, 2000. Πιθανολογικός προσδιορισμός της Σεισμικότητας των περιοχών του Μεξικού της Κεντρικής και της Νότιας Αμερικής με τη μέθοδο Bayes. Διατριβή ειδίκευσης, Τμήμα Γεωλογίας Α.Π.Θ.., σελ. 97.
Παπαζάχος, Β. Κ., 1990. Εισαγωγή στη Σεισμολογία, Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη, σελ. 382.
Τσάπανος, Θ. Μ., 1985. Συμβολή στη μελέτη της σεισμικότητας της Γης. Διδακτορική Διατριβή, 1985, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης , σελ.147.
Διαδικτυακές πηγές
https://en.wikipedia.org/wiki/File:Inverse_Gaussian_Probability_Densitiy_Function.svg
https://en.wikipedia.org/wiki/File:Inverse_Gaussian_Cumulative_Distribution_Function.svg
National Earthquake Information Center, (NEIC); 2011: Earthquake Hazards Program, URL: http://neic.usgs.gov/neis/epic/index.html.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.