The biogenic content in the surface sediments from the deep South Aegean basins = Το βιογενές περιεχόμενο των επιφανειακών ιζημάτων στις βαθιές λεκάνες του Νοτίου Αιγαίου.
Περίληψη
Variations were observed in the concentration of the biogenic content between the sampling stations:
Samples collected from the stations towards the northwestern Levantine basin (2MSFD6 and 2MSFD7) presented the highest concentration of biogenic component compared to all the other samples. These samples presented also the highest participation rates of planktonic foraminifera and the lowest ones of benthic foraminifera (mainly agglutinated) and ostracods, while pteropods were particularly abundant. The biogenic component of samples 2MSFD9 and 2MSFD10, which were sampled from the lower bathyal zone northern of Crete Island, present similar characteristics with samples 2MSFD6 and 2MSFD7. However, 2MSFD9 has a high concentration of biogenic component, while 2MSFD10 from the deepest station contained the lowest concentration of biogenic component compared to the other lower bathyal stations.
The biogenic component of sample 2MSFD5 (southeastern of Crete, lower bathyal zone) is comparable to the one of 2MSFD8 (southeastern of Peloponnese, upper bathyal zone), both in abundance and composition, presenting the highest participation rates of benthic calcareous foraminifera.
Finally, samples 2MSFD11 and 2MSFD12, the shallowest samples collected from the Cyclades plateaux area, presented the lowest concentrations of biogenic component. Their biogenic component is characterized by the low presence of pteropods, calcareous BF have higher relative abundances than agglutinated BF and the high participation rates of ostracods.
Concerning benthic foraminiferal assemblages, it is the first time that such deep-lower bathyal assemblages of agglutinated taxa are described from the broader area of the Aegean Sea.
The Shannon-Wiener diversity index (H') for benthic foraminifera exhibits a regular trend, decreasing from shallower to deeper environments. The participation rates of planktonic foraminifera versus agglutinated foraminifera indicate that agglutinated species prevail over the former in deeper samples (except 2MSFD5), while there is an opposite trend for shallower samples.
Three different assemblages of calcareous foraminifera were distinguished. The assemblage of upper bathyal samples (2MSFD8, 2MSFD11, 2MSFD12) consists of shallow infaunal species, while the assemblage of samples 2MSFD9 and 2MSFD10 (the deepest samples south of Crete) is dominated by the epifaunal species Gyroidina. Finally, the assemblage of the three sampling stations towards the Levantine Sea consists of both infaunal and epifaunal species.
At the agglutinated foraminifera, the species Saccorhiza ramosa is the most abundant, while other studied species include Rhabdamminella cylindrica, Rhizammina algaeformis, Glomospira charoides, and Psammosiphonella spp., as well as Psammosphaera fusca and species of Bathysiphon, Marsipella, Hyperammina, Reophax, Cribrostomoides, Ammoscalaria, and Ammodiscus. These taxa are mainly epifaunal species, except of Reophax, which lives in oligotrophic conditions.
The abundance of epifaunal agglutinated foraminifera and the dominance of Gyroidina species in deeper samples north of Crete indicate oligotrophic conditions with high oxygen levels.
Finally, the study of polycyclic aromatic hydrocarbons (PAHs) was conducted by HCMR to assess any chemical pollutants in the marine environment. The total concentrations of PAHs can be compared to those reported in non-polluted coastal sites of the Mediterranean and offshore open deep sea locations in the Aegean Sea, as well as in other areas of the northwestern, central, and eastern Mediterranean.
Η παρούσα διπλωματική εργασία, πραγματοποιήθηκε σε επιφανειακά ιζήματα σε βάθη από 335m-2150m, στην θαλάσσια περιοχή του Κεντρικού-Νοτίου Αιγαίου και τη βορειοδυτική θάλασσα του Λεβάντε. Ανέδειξε βιογενές περιεχόμενο, αποτελούμενο από πλαγκτονικά, βενθονικά τρηματοφόρα, οστρακώδη, ωτόλιθους και πτερόποδα.
Παρατηρήθηκαν διακυμάνσεις στη συγκέντρωση του βιογενούς περιεχομένου μεταξύ των σταθμών δειγματοληψίας: Τα δείγματα που συλλέχθηκαν από τους σταθμούς 2MSFD6 και 2MSFD7 παρουσιάσαν την υψηλότερη συγκέντρωση βιογενούς περιεχομένου σε σύγκριση με όλα τα άλλα δείγματα. Τα δείγματα αυτά παρουσίασαν επίσης τα υψηλότερα ποσοστά συμμετοχής των πλαγκτονικών τρηματοφόρων και τα χαμηλότερα ποσοστά των βενθονικών τρηματοφόρων (κυρίως συμφυρματοπαγών) και των οστρακωδών ενώ τα πτερόποδα ηταν ιδιαίτερα άφθονα.
Στα δείγματα 2MSFD9 και 2MSFD10, τα οποία συλλέχθηκαν δειγματοληπτικά από τη κατώτερη βαθύαλη ζώνη βόρεια της Κρήτης, παρουσίασαν παρόμοια χαρακτηριστικά στο βιογενές περιεχόμενο με τα δείγματα 2MSFD6 και 2MSFD7. Ωστόσο ο σταθμός 2MSFD9, έχει υψηλή συγκέντρωση βιογενούς περιεχομένου ενώ ο σταθμός 2MSFD10, οποίος είναι ο βαθύτερος σταθμός δειγματοληψίας, περιείχε τη χαμηλότερη συγκέντρωση βιογενούς περιεχομένου σε σύγκριση με τους άλλους σταθμούς χαμηλότερου βάθους.
Το βιογενές περιεχόμενο του δείγματος 2MSFD5(νοτιοανατολικά της Κρήτης, κατώτερη βαθύαλη ζώνη), είναι συγκρίσιμο με αυτό του δείγματος 2MSFD8 (νοτιοανατολικά της Πελοποννήσου, ανώτερη βαθύαλη ζώνη), τόσο σε αφθονία όσο και σε σύνθεση, παρουσιάζοντας τα υψηλότερα ποσοστά συμμετοχής βενθονικών ασβεστολιθικών τρηματοφόρων.
Τέλος τα δείγματα 2MSFD11 και 2MSFD12,τα πιο ρηχά δείγματα που συλλέχθηκαν από την θαλάσσια περιοχή των Κυκλάδων παρουσίασαν τις χαμηλότερες συγκεντρώσεις βιογενούς περιεχομένου. Το βιογενές περιεχόμενο των σταθμών αυτών χαρακτηρίζεται από χαμηλή παρουσία πτεροπόδων. Τα βενθονικά ασβεστιτικά τρηματοφόρα παρουσίασαν την υψηλότερη σχετική αφθονία από τα συμφυρματοπαγή βενθονικά τρηματοφόρα. Επιπλέον στους σταθμούς αυτούς τα οστρακώδη παρουσίασαν υψηλά ποσοστά συμμετοχής.
Όσον αφορά τη μελέτη των συνανθροίσεων των βενθονικών τρηματοφόρων , είναι η πρώτη φορά που περιγράγονται οι συνανθροίσεις των βενθονικών συμφυρματοπαγών τρηματοφόρων, της βαθύαλης ζώνης, σε βάθη έως και 2150m στην θαλάσσια περιοχή του Νοτίου Αιγαίου Πελάγους.
Ο δείκτης διαφοροποίησης Shannon-Wiener (H’), για τα βενθονικά τρηματοφόρα παρουσιάζει κανονική τάση, καθώς μειώνεται από τα ρηχότερα στα βαθύτερα περιβάλλοντα. Τα ποσοστά συμμετοχής των υαλωδών έναντι των συμφυρματοπαγών τρηματοφόρων υποδεικνύουν πως τα συμφυρματοπαγή είδη επικρατούν έναντι των πρώτων, στα βαθύτερα δείγματα (με εξαίρεση το δείγμα 2MSFD5), ενώ υπάρχει αντίθετη τάση για τα ρηχότερα δείγματα.
Στα δείγματα διακρίθηκαν τρεις διαφορετικές συναθροίσεις ασβεστολιθικών τρηματοφόρων. Η συνάθροιση των ανώτερων βαθύαλων δειγμάτων (2MSFD8, 2MSFD11, 2MSFD12) η οποία αποτελείται από τα ρηχά ενδοπανιδικά είδη, Bolivina, Bulimina, Cassidulina and Globocassidulina. Η συνάθροιση των δειγμάτων 2MSFD9 and 2MSFD10 (τα βαθύτερα δείγματα νότια της Κρήτης), στην οποία κυριαρχεί το επιφανειακό είδος Gyroidina. Τέλος, η συνάθροιση των τριών σταθμών δειγματοληψίας προς τη θάλασσα του Λεβάντε, η οποία αποτελείται από τους σταθμούς (2MSFD5, 2MSFD6, 2MSFD7) και αποτελείται από ενδοπανιδικά και επιφανειακά είδη, Gyroidina, Melonis, Uvigerina Bolivina and Bulimina.Τα συμφυρματοπαγή τρηματοφόρα παρουσίαζουν δενδροειδή, σωληνοειδή και σφαιρικά είδη και συνολικά 13 γένη και 9 είδη έχουν αναγνωριστεί μέχρι στιγμής.
Στα συμφυρματοπαγή τρηματοφόρα, το είδος Saccorhiza ramosa είναι το πιο άφθονο ενώ τα άλλα είδη που μελετήθηκαν είναι τα Rhabdamminella cylindrica, Rhizammina algaeformis, Glomospira charoides και Psammosiphonella spp. Επίσης το Psammosphaera fusca και είδη Bathysiphon, Marsipella, Hyperammina, Reophax, Cribrostomoides, Ammoscalaria και Ammodiscus. Τέλος τα συγκεκριμένα τάξα είναι επιφανειακά είδη εκτός του Reophax, το οποίο ζει σε ολιγοτροφικές συνθήκες.
Η αφθονία των των επιφανειακών συμφυρματοπαγών τρηματοφόρων και η κυριαρχία των ειδών Gyroidina, στα βαθύτερα δείγματα βόρεια της Κρήτης, υποδηλώνουν ολιγοτροφικές συνθήκες υψηλόυ οξυγόνου.
Τέλος, η μελέτη των πολυκυκλικών αρωματικών υδρογονανθράκων (PAHs), πραγματοποιήθηκε από το ΕΛΚΕΘΕ προκειμένου να εκτιμηθούν τυχόν χημικοί ρύποι στο θαλάσσιο περιβάλλον. Οι συνολικές συγκεντρώσεις των (PAHs), μπορούν να συγκριθούν με εκείνες που αναφέρονται σε μη μολυσμένες παράκτιες τοποθεσίες της Μεσογείου και υπεράκτιες τοποθεσίες ανοιχτής/ βαθιάς θάλασσας στο Αιγαίο Πέλαγος, καθώς και σε άλλες περιοχές της βορειοδυτικής, κεντρικής και ανατολικής Μεσογείου.
Πλήρες Κείμενο:
PDFΑναφορές
Alavi S.N. (1988). Late Holocene Deep-Sea Benthic Foraminifera from the Sea of Marmara. Marine Micropaleontology, 13 (1988) 213-237. Elsevier Science Publishers B.V., Amsterdam -Printed in The Netherlands.
Alekseychik-Mitskevich L. S. (1973). К классификации фораминифер семейства Haplophragmiidae - Towards the classification of the foraminiferal family Haplophragmiidae. In: Subbotina N.N. (ed.), Исследования в области систематики фораминифер. Труды ВНИГРИ - Proceedings of the Oil Research Geological Institut (VNIGRI). 343: 12-44.
Allen, K., Roberts, S., Murray, J.W., 1998. Fractal grain distribution in agglutinated foraminifera. Paleobiology 24 (3), 349–358.
Allen, K., Roberts, S., Murray, J.W. (1999). Marginal marine agglutinated foraminifera:
affinities for mineral phases. J. Micropalaeontol. 18, 183–191.
Altenbach A.V (1992). Short term processes and patterns in the foraminiferal response
to organic flux rates. Marine Micropaleontology, 19 (1992) 119-129. Elsevier Science Publishers B.V., Amsterdam
Alve, E. & Goldstein, S.T. 2003. Propagule transport as key method of dispersal in benthic foraminifera (Protista). Limnology and Oceanography, 48: 2163–2170.
Anastasakis G., Piper D. J.W (2005). Late Neogene evolution of the western South Aegean volcanic arc: sedimentary imprint of volcanicity around Milos. Marine Geology 215 (2005) 135 – 158.
Astrahan P., Silverman J., Gertner Y., Herut B. (2017). Spatial distribution and sources of organic matter and pollutants in the SE Mediterranean (Levantine basin) deep water sediments. Mar. Pollut. Bull. 116,521-527.
Avnimelech, M. (1952). A revision of the tubular Monothalamia. Contributions from the Cushman Foundation for Foraminiferal Research. 3(2): 60-68.
Bender H. (1995). Test structure and classification in agglutinated foraminifera. Geologisch-Palaontologisches Institut der Christian-Albrechts-Universitat zu Kiel, Ludwig-Meyn-Str. 12, D-24118 Kiel, Germany.
Bernhard J.M., Buck K. R., Barry J.P. (2001). Monterey Bay cold-seep biota: Assemblages, abundance,and ultrastructure of living foraminifera. Deep-Sea Research I 48 (2001) 2233–2249.
Binczewska, A., Polovodova Asteman, I., Farmer, E.J. (2015). Foraminifers (Benthic). In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Springer, Dordrecht.
Bonsignore M., Salvagio Manta D., Al-Tayeb Sharif E.A., D’ Agostino F., Traina A., Quinci E.M., Giaramita L., Monastero C., Benonthman M., Sprovieri M., (2018). Marine pollution in the Libyan coastal area: environmental and risk assessment. Mar. Pollut. Bull.128,340-352.
Bouloubassi I., Roussiez V., Azzouf M., Lorre A., (2012). Sources, dispersal pathways and mass budget of sedimentary polycyclic aromatic hydrocarbons(PAH) in the NW Mediterranean margin, Gulf of Lions. Mar.Chem. 142-144, 18-28.
Bowser, S.S., Bernhard, J.M. (1993). Structure, Bioadhesive Distribution and Elastic Properties of the Agglutinated Test of Astrammina rara (Protozoa: Foraminiferida). Euk. Microbiol, 40(2), 1993, pp. 121-131.
Brady H. B. (1878). On the reticularian and Radiolarian Rhizopoda (Foraminifera and Polycystina) of the North-Polar Expedition of 1875–76. Annals and magazine of Natural History. (5) 1(6): 425-440.
Brady H. B. (1879). Notes on some of the reticularian Rhizopoda of the "Challenger" Expedition; Part I. On new or little-known arenaceous types. Quarterly Journal of Microscopical Sciences. 19: 20-67.
Brady H.B. (1881). Notes on some reticularian Rhizopoda of the "Challenger" expedition, Part 3. Quaternary Journal of the Microscopical Science, 21 (new series):31-71.
Brady H.B, Le Coze, F., Vachard, D., Gross, O. (2023). World Foraminifera Database. Rhabdamminella cylindrica (Brady, 1882)
Brady H. B. (1884). Report on the Foraminifera dredged by H.M.S. Challenger during the Years 1873-1876. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–76. Zoology. 9 (part 22): i-xxi, 1-814; pl. 1-115.
Capotondi L., Mancin N., Cesari V., Dinelli E., Ravaioli M., Riminucci F. (2019) Recent agglutinated foraminifera from the North Adriatic Sea: What the agglutinated tests can tell. https://doi.org/10.1016/j.marmicro.2019.01.006
Casford J.S.L., Rohling E.J., Abu-Zied R., Cooke S., Fontanier C., Leng M., Lykousis V. (2002). Circulation changes and nutrient concentrations in the late Quaternary Aegean Sea: A nonsteady state concept for sapropel formation. Paleoceanography, Vol. 17 No. 2, 1024, 10.1029/2000PA000601, 2002.
Chatelet E.A., Armynot, R., Roumazeilles V., Coccioni R., Frontalini F., Guillot F., Kaminski M. A., Recourt P., Riboulleau A., Trentesaux A., Tribovillard N., Ventalon
S., (2013). Environmental control on shell structure and composition of agglutinated foraminifera along a proximal–distal transect in the Marmara Sea. Marine Geology 335 (2013) 114-128.
Chatelet E.A., Frontalini F., Guillot F., Recourt P., Ventalon S., (2013). Surface analysis of agglutinated benthic foraminifera through ESEM–EDS and Raman analyses: An expeditious approach for tracing mineral diversity. Marine Micropaleontology 105 (2013) 18–29.
Chendes C., Kaminski M. A., Filipescu S., Aksu A., Yasar D., (2004). The response of modern benthic foraminiferal assemblages to water-mass properties along the Southern Shelf of the Marmara Sea. Acta Palaeontologica Romaniae v.4 (2004), P. 69-80.
Cushman J. A. (1910). A monograph of the Foraminifera of the North Pacific Ocean. Part I. Astrorhizidae and Lituolidae. Bulletin of the United States National Museum. 71(1): 1-134.
Cushman J.A. (1927). An outline of a re-classification of the foraminifera. Contributions from the Cushman Laboratory for Foraminiferal Research, 3:1-105.
Cushman J.A. (1933a). Foraminifera their classification and economic use. Special Publications Cushman Laboratory for Foraminiferal Research, 4:1-349.
Cushman J.A. (1933b). Some new foraminiferal genera. Contributions from the Cushman Laboratory for Foraminiferal Research, 9:32-38.
Cushman J.A. (1933c). The foraminifera of the tropical Pacific collections of the "Albatross," 1899-1900, Part 2: Lagenida to Alveolinellidae. Bulletin of the United States National Museum, 161:1-79.
Corliss, B.H., (1985). Microhabitats of benthic foraminifera within deep-sea sediments: Nature, v. 314, p. 435-438.
Corliss B.H. & Chen C., (1988). Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Department of Geology, Duke University, Durham, North Carolina 27706.Atlantic Ocean. Marine Micropaleontology, 17, 195-236.
Corliss B.H and Fois E., (1990). Morphotype Analysis of Deep-Sea Benthic Foraminifera from the Northwest Gulf of Mexico. PALAIOS, Vol. 5, No. 6 (Dec. 1990), pp. 589-605 (17 pages).
Corliss B. H. (1991) Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Marine Micropaleontology, 17, 195-236.
Corliss B. H., Brown C.W., Sun X., Showers W.J. (2009). Deep-sea benthic diversity linked to seasonality of pelagic productivity. Deep-Sea Research I 56 (2009) 835–841.
Cornuault, M., Vidal, L., Tachikawa, K., Licari, L., Rouaud, G., Sonzogni, C., Revel, M., (2016). Deep water circulation within the eastern Mediterranean Sea over the last 95kyr: New insights from stable isotopes and benthic foraminiferal assemblages, Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 1-14, https://doi.org/10.1016/j.palaeo.2016.06.038Nolet, G.J., Corliss, B.H., 1990. Benthic foraminiferal evidence for reduced deep-water circulation during sapropel deposition in the eastern Mediterranean. Mar. Geol. 94, 109–130.
Darilmaz E., ., Alyuruk H., Kontas A., Altay O., Uluturhan E., Bilgin M.(2019). Distributions and sources of PAHs and OCPs in surficial sediments of Edremit Bay (Aegean Sea). Arch. Environ. Contam. Toxicol.77, 237-248.Debenay, J.P. (2000). Foraminifers of paralic environments. Micropaleontology 46(1), 153e160.
De Lazzari A., Rampazzo G., Pavoni B., (2004). Geochemistry of sediments in the Northern and Central Adriatic Sea. Estuar. Coast. Shelf Sci. 59, 429-440.
De Mets, C., Gordon, R.G., Argus, D.F., and Stein, S. (1990). Current plate motions: Geophysical Journal International, v. 101, p. 4
De Montfort D. de, (1808). Conchyliologie Systematique et Classification Methodique des Coquilles, Volume 1, F. Schoell, Paris.
De Rijk, S., Troelstra, S.R., Rohling, E.J., 1999. Benthic foraminiferal distribution in the Mediterranean Sea. J. Foraminifer Res.29, 93±103.
De Rijk, Jorissen F.J., Rohling E.J., Troelstra., (2000). Organic flux control on bathymetric zonation of Mediterranean benthic foraminifera. Marine Micropaleontology 40 (2000) 151-166.
Dermitzakis, M. & Georgiades-Dikeoulia. E. (1992). Contribution à l'étude de la géologie côtière de l'île de Rhodes. Annales géologiques des Pays Helléniques 35: 103-123
De Stigter H.C., Jorissen F.J. and Van Der Zwann (1998). Bathymetric distribution and microhabitat partitioning of live (Rose Bengal stained) benthic Foraminifera along a shelf to bathyal transect in the southern Adriatic Sea. Journal of Foraminiferal Research (1998) 28 (1): 40–65.
Dimiza MD, Triantaphyllou M V., Krasakopoulou E.(2010). Coccolithophores (calcareous nannoplankton) distribution in the surface waters of the western Cretan Straits (South Aegean Sea): productivity and relation with the circulation pattern. Hell J Geosci. 2008; 45:55–64.
Dimiza M, Triantaphyllou M, Malinverno E, Psarra S, Karatsolis B-T, Mara P, Lagaria A, Gogou A. (2015). The composition and distribution of living coccolithophores in the Aegean Sea (NE Mediterranean). Micropaleontology [Internet]. 2015;61(6):521-540.
Dinares-Turell J., Hoogakker B.A.A., Roberts A.P., Rohling E.J., Sagnotti L., (2003). Quaternary climatic control of biogenic magnetite production and eolian dust input in cores from the Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 190 (2003) 195-209.
d’Orbigny, A. 1826. Tableau Methodique de la Classe des Cephalopodes. Annales des Sciences Naturelles, 7:96-314.
d’Orbigny A. (1839a). Foraminiféres, 224 pp. In De la Sagra, R.M. (ed.), Histoire physique, politique et naturelle de L'ile de Cuba. Bertrand, A., Paris.
d’Orbigny A. (1839b.) Foraminiféres, p. 119-146. In Barker-Webb, P. and Berthelot, S. (eds.), Histoire Naturelle des Iles Canaries, Volume 2, Part 2, Bethune, Paris.
d’Orbigny A. (1839c). Voyage dans I'Amerique Meridonale - Foraminiferes, part 5(5), Paris and Strasbourg.
Doutsos, T., Piper, G., Boronkay, K., and Koukouvelas, I. (1993). Kinematics of the Central Hellenides: Tectonics, v. 12, p. 936–953.
Eimer G. H. T. Fickert, C. (1899). Die Artbildung und Verwandtschaft bei den Foraminiferen. Entwurf einer natuerlichen Eintheilung derselben. Zeitschrift für Wissenschaftliche Zoologie. 65: 599-708
Erez J., (2003). The Source of the Ions for the Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies. Reviews in Mineralogy and Geochemistry. January 2003.
Folin L. (1887). Les Rhizopodes Réticulaires (Suite). Le Naturaliste. n° 10 ser. 2 vol. 1: 113-115.
Fontanier C., Jorissen F.J., Licari L., Alexandre A., Anschutz P., Carbonel P. (2002). Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats. Deep-Sea Research I 49 (2002) 751–785.
Frontalini F., Kaminski M.A., Coccioni R., Bucci C., Asku A., (2011). 1. Bathymétrie distribution and ecological characterization of agglutinated foraminifera along an inner neritic to upper bathyal transect in the Marmara Sea. In: Kaminski, M. A. and Filipescu, S., Eds., Proceedings of the Eighth International Workshop on
Agglutinated Foraminifera, 37-52. Krakow: Grzybowski Foundation. Special Publication 16.
Frontalini F., Kaminski M.A., Coccioni R., Bucci C., Asku A., (2011). Bathymetric distribution and ecology of agglutinated foraminifera along an inner neritic to upper bathyal transect in the Marmara Sea.
Frontalini F., Chatelet E. A., Kaminski M.A., Coccioni R., Mikellidou I., Yasar D., Asku A.E. (2014). Distribution of modern agglutinated foraminifera along an inner neritic- to mid-bathyal transect in Saros Bay (northern Aegean Sea). Micropaleontology, 2014, Vol. 60, No. 1, Advances in agglutinated foraminiferal research: The
Ninth International Workshop on Agglutinated Foraminifera, IWAF-9 (2014), pp. 27-42 Published by: The Micropaleontology Project., Inc.
Frontalini F., Kaminski M.A., Mikellidou I., Chatelet E. A. (2015). Checklist of benthic foraminifera (class Foraminifera: d’Orbigny 1826; phylum Granuloreticulosa) from Saros Bay, northern Aegean Sea: a biodiversity hotspot. Received: 9 December 2013 /Revised: 2 May 2014 /Accepted: 2 May 2014 /Published online: 31 May 2014.
Frontalini F., Kaminski M.A., Coccioni R., Kowalewwsk M., (2018). Agglutinated vs. calcareous foraminiferal assemblages as bathymetric proxies. Source: Micropaleontology, 2018, Vol. 64, No. 5/6 (2018), pp. 403-415.Published by: The Micropaleontology Project., Inc.
Galloway J.J. (1933). A Manual of Foraminifera. Principal Press, Bloomington
Garfunkel Z. (2004). Origin of the Eastern Mediterranean basin: a reevaluation. Tectonophysics 391 (2004) 11 – 34.
Gooday AJ. (1988). A response by benthic foraminifera to phytodetritus deposition in the deep sea. Nature 332:70–73
Gooday A.J. and Turley C.M (1990). Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Phil. Trans. R, Soc. Lond. A 331,
-138 (1990). Printed in Great Britain.
Gooday, A.J., Levin, L.A., Linke, P., and Heeger, T. (1992a). The role of benthic foraminifera in deep-sea food webs and carbon cycling, in ROWE, G.T., and PARIENTE, V., eds., Deep-Sea Food Chains and the Global Carbon Cycle: Kluwe Academic Publishers, The Netherlands, p. 63-91.
Gooday, A.J., Levin, L.A., Thomas C.L., and Hecker, B. (1992b). The distribution and ecology of Bathysiphon filiformis Sars and B. major de Folin (Protista,Foraminiferida) on the continental slope off North Carolina: Journal of Foraminiferal Research, v. 22, p. 129-146
Gooday A. J. (1994). The biology of Deep-Sea Foraminifera: A Review of Some Advances and Their Applications in Paleoceanography.
Gooday, A.J., Nott, J.A., Davis, S., Mann, S. (1995). Apatite particles in the test wall of the large, agglutinated foraminifer Bathysiphon major (Protista). J. Mar. Biol. Assoc. U. K. 75, 469–481
Gooday A.J. (1999). Biodiversity of foraminifera and other protists in the deep sea: scales and patterns. Belgian J. Zool. 129:61–80
Gooday, A. J. Hughes, J. A. and Levin, L. A. (2001). The foraminiferan macrofauna from three North Carolina (U.S.A.) slope sites with contrasting carbon flux: a comparison with the metazoan macrofauna. Deep-Sea Research I 48, 1709-1739.
Gooday, A.J. (2002). Structure, taxonomy, and ecology of Astrammina triangularis (Earland), an allogromiid-like agglutinated foraminifer from explorer’s cove. Antarctica. J. Foraminifer. Res. 32 (4), 364–374. https://doi.org/10.2113/032036
Gooday A. J. (2002). Organic-walled allogromiids: aspects of their occurrence, diversity, and ecology in marinehabitats. J. Foraminifer. Res. 32:384–99
Gooday A.J. (2003). Benthic Foraminifera (Protista) as Tools in Deep-water Palaeoceanography: Environmental Influences on Fauna1 Characteristics. Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UK.
Gooday, A.J., da Silva, A.A., Koho, K.A., Lecroq, B., Pearce, R.B. (2010). The “mica sandwich”; a remarkable new genus of Foraminifera (Protista, Rhizaria) from the Nazaré Canyon (Portugues margin, NE Atlantic). Micrpaleontology 56 (3–4),345–357.
Gogou A., Bouloubassi I., Stephanou E.G.(2000). Marine organic geochemistry of the Eastern Mediterranean: 1. Aliphatic and polycyclic aromatic hydrocarbons in Creatan Sea surficial sediments. Mar. Chem.68, 265-282.
Groussin M., Pawlowski J., Yang Z. (2011). Bayesian relaxed clock estimation of divergence times in foraminifera. Molecular Phylogenetics and Evolution 61 (2011) 157–166.
Guidi-Guilvard LD, Thistle D, Khripounoff A, Gasparini S (2009). Dynamics of benthic copepods and other meiofauna in the benthic boundary layer of the deep NW Mediterranean Sea. Mar Ecol Prog Ser 396:181-195. https://doi.org/10.3354/meps08408.
Haeckel E. (1894). Systematische Phylogenie. Entwurf eines Natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte, Theil 1, Systematische Phylogenie der Protisten und Pflanzen. Georg Reimer, Berlin.
Hatzianestis, I., Parinos, C., Bouloubassi, I., Gogou, A. (2020). Polycyclic aromatic hydrocarbons in surface sediments of the Aegean Sea (eastern Mediterranean Sea). Mar. Pollut. Bull. 153, 111030. https://doi.org/10.1016/j.marpolbul.2020.111030
Hayward B. (1982). Foraminifera and Ostracoda in Nearshore sediments, little barrier island, Northern New Zealand. New Zealand Geological Survey. P.O. Box 30368. Lower Hutt.
Hemleben, C. and Kaminiski, M. (1990): Agglutinated foraminifera: an introduction, in: Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera, Hemleben, C.,Kaminski, M. A., Kuhnt, W., and Scott, D. B., Kluwer, Dordrecht, 3–11, 1990
Heinz P., Kitazato H., Schmiedl G., Hemleben C. (2001). Response of deep-sea benthic foraminifera from the Mediterranean Sea to simulated phytoplankton pulses under laboratory conditions. Journal of Foraminiferal Research, v. 31, no. 3, p. 210-227, July 2001.
Herguera J.C. (1992). Deep-sea benthic foraminifera and biogenic opal: Glacial to postglacial productivity changes in the western equatorial Pacific. Marine Micropaleontology, 19 (1992) 79-98. Elsevier Science Publishers B.V., Amsterdam.
Hess S. (1998). Verteilungsmuster rezenter benthischer foraminiferen im Sudchinesischen Meer. Ber. -Rep., Geol.-Palaontol. Inst. Univ. Kiel 91, 1-173.
Hyams-Kaphzan, O., Lubinevsky, H., Crouvi, O., Harlavan, Y., Herut, B., Kanari, M., Tom, M., Almogi-Labin, A. (2018). Live and dead deep-sea benthic foraminiferal macrofauna of the Levantine basin (SE Mediterranean) and their ecological characteristics. Deep-Sea Res. Part I Oceanogr. Res. Pap. 136, 72–83. doi.org/10.1016/j.dsr.2018.04.004.
Hofker J. (1956). Tertiary foraminifera of coastal Ecuador: Part II, Additional notes on Eocene species. Journal of Paleontology, 30:891-958.
Höglund H. (1947). Foraminifera in the Gullmar Fjord and the Skagerak. Zoologiska bidrag från Uppsala. 26: 1-328.
Holbourn A., Henderson A.S., MacLeod Norman. (2013). Atlas of Benthic Foraminifera. Natural History Museum.
Holzmann M. Pawlowski, J. (2017). An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. Marine Micropaleontology.
Holzmann M., Gooday A., Siemensma F., Pawlowski J. (2021). Review: Freshwater and Soil Foraminifera – A Story of Long-Forgotten Relatives. Journal of Foraminiferal Research. 51. 318-331. 10.2113/gsjfr.51.4.318
Honjo S., Manganini S. J., & Cole J.J. (1982). Sedimentation of biogenic matter in deep ocean. Deep-Sea Research, Vol. 29, No. 5A, pp. 609 to 625, 1982. Printed in Great Britain.
Hottinger, L. (2006). Illustrated glossary of terms used in foraminiferal research. Carnets de Géologie —Notebooks on Geology, Brest, Memoir 2006/02 (CG2006_M02) (126 pp.).
Jones G. W., and A. Henfrey (1875). The Micrographic Dictionary, vol. 1, 3rd ed. London: van Voorst.
Jones, T. R., & Parker, W. K. (1860). On some Fossil Foraminifera from Chellaston near Derby. Quarterly Journal of the Geological Society, 16(1-2), 452–458.
Jorissen F.J. (1987). The distribution of benthic foraminifera in the Adriatic Sea. Marine Micropaleontol., 12: 21-48.
Jorissen F.J., De Stigter H.C., Widmark J.G.V. (1995). A conceptual model explaining benthic foraminifera microhabitats. Marine Micropaleontology 26, 3–15.
Jorissen F.J. (1999a). Benthic foraminiferal successions across Late Quaternary Mediterranean Sapropels. Marine Geology 153,91–103
Jorissen, F.J., Fontanier, C., Thomas, E. (2007). Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. In: Hillaire-
Marcel, C., De Vernal, A. (Eds.), Proxies in Late Cenozoic Paleoceanography. Elsevier Publishers, pp. 277–340.
Ignatiades, L., Psarra, S., Zervakis, V., Pagou, K., Souvermezoglou, E., Assimakopoulou, G., Gotsis-Skretas, O. (2002). Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean). J. Mar. Syst. 36, 11–28
Kaiho K. (1991). Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation:Palaeogeography ,Palaeoclimatology, Palaeoecology , V.83, p. 65-85.
Kaminski M.A. (2004). The year 2000 classification of agglutinated foraminifera. In:Bubik, M., Kaminski, M.A. (Eds.), Proceedings of the Sixth International Workshop on Agglutinated Foraminifera. vol. 8. pp. 237–255 Grzybowski Found., Spec. Pub.
Kaminski, M. A. and Gradstein, F. M., (2005). Atlas ofPaleogene cosmopolitan deep-water agglutinated foraminifera. Krakow: Grzy bowski Foundation. Special Publication 10, 547 pp.
Kaminski M. A (2014). The year 2010 classification of the agglutinated foraminifera. Source: Micropaleontology, 2014, Vol. 60, No. 1, Advances in agglutinated foraminiferal research: The Ninth International Workshop on Agglutinated Foraminifera, IWAF-9 (2014), pp. 89-108 Published by: The Micropaleontology Project., Inc
Kaminiski M. A., & Filipescu S. (2008). Proceedings of the Eighth International Workshop on Agglutinated Foraminifera. (Cluj-Napoca, Romania, September 7-13, 2008). The Grzybowski Foundation. Grzybowski Foundation Special Publication No. 16.
Kender S. & Kaminski M.A(2017). Modern deep-water agglutinated foraminifera from IODP Expedition 323, Bering Sea: ecological and taxonomic implications. https://doi.org/10.1144/jmpaleo2016-026.
Koho, K. A., Kouwenhoven, T. J., De Stigter, H. C. and van der Zwaan, G. J., (2007).Benthic foraminifera in the Nazaré Canyon, Portuguese continental margin: sedimentary environments and disturbance. Marine Micropaleontology, 66: 27
Kokkalas, S., Xypolias, P., Koukouvelas, I., Doutsos, T. (2006). Postcollisional contractional and extensional deformation in the Aegean region, in Dilek, Y., and Pavlides, S., eds., Postcollisional tectonics and magmatism in the Mediterranean region and Asia: Geological Society of America Special Paper 409, p. 97–123, doi: 10.1130/2006.2409(06).
Krasheninnikov V. A., Pflaumann U. (CRETACEOUS AGGLUTINATED FORAMINIFERA OF THE ATLANTIC OCEAN OFF WEST AFRICA (LEG 41, DEEP SEA DRILLING PROJECT), Geological Institute of the USSR Academy of Sciences, Moscow, USSR, and Uwe Pflaumann, Geologisch-Paleontologisches Institut der Universitat, Kiel, Germany (FRG).
Kreveld S.A., Knappertsbusch M., Ottens J., Ganssen G.M., Hinte J.E., (1996). Biogenic carbonate and ice-rafted debris (Heinrich layer) accumulation in deep-sea sediments from a Northeast Atlantic piston core. Marine Geology 131 (1996) 21-46.
Kuhnt W., Moullade M., Kaminski M.a. (1996). Ecological structuring and evolution of deep-sea agglutinated foraminifera- a review. Revue De Micropaleolontologie. Vol. 39, n 4, decembre 1996, pp271-281.
Lampadariou, N., Tselepides, A., & Hatziyanni, E. (2009). Deep-sea meiofaunal and foraminiferal communities along a gradient of primary productivity in the eastern Mediterranean Sea. Scientia Marina, 73(2), 337–345. https://doi.org/10.3989/scimar.2009.73n233.
Lejzerowicz F., Pawlowski J., Fraissinet T., Laurence., Marmeisse R. (2010). Molecular evidence for widespread occurrence of Foraminifera in soils. Environmental microbiology. 12. 2518-26. 10.1111/j.1462-2920.2010.02225. x.
Lin, C.-H., Taviani, M., Angeletti, L., Girone, A. & Nolf, D. (2017). Fish otoliths in superficial sediments of the Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 471, 134–143.
Linke P., Lutze G.F. (1993). Microhabitat preferences of benthic foraminifera a static concept or a dynamic adaptation to optimize food acquisition? Marine Micropaleontology, 20 1993 )234 215 Elsevier Science Publishers B.V., Amsterdam.
Lintner B., Lintner M., Bukenberger P., Witte U., Heinz P. (2021). Living benthic foraminiferal assemblages of a transect in the Rockall Trough (NE Atlantic). Deep–Sea Research I 171 (2021).
Lubinevsky H., Kaphzan O.H., Labin A.A., Silverman Y.H., Crouvi O., Herut B., Kanari M., Tom. (2017). Deep-sea soft bottom infaunal communities of the
Levantine Basin (SE Mediterranean) and their shaping factors. Marine Biology 164. Article number: 36(2017).
Lykousis V., Chronis G., Tselepides A., Price N.B., Theocharis A., Siokou-Frangou I., Wambeke F.V., Danovaro R., StavrakakisS., Duineveld G., Georgopoulos D., Ignatiades L., Souvermezoglou A., Voutsinou-Taliadouri F. (2002). Major outputs of the recent multidisciplinary biogeochemical researches undertaken in the
Aegean Sea. Journal of Marine Systems 33 – 34 (2002) 313 – 334.
Makled, W.A., Langer, M.R. (2010). Preferential selection of titanium–bearing minerals in
agglutinated foraminifera: ilmenite (FeTiO3) in Textularia hauerii d'Orbigny from the Bazaruto Archipelago, Mozambique. Revue de Micropaléontologie 53, 163–173.
Mandalakis M., Polymenakou P.V., Tselepides A., Lampadariou N. (2014). Distribution of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and organochlorinated pollutants in deep-sea sediments of the southern Cretan margin, eastern Mediterranean Sea:A baseline assessment. Chemosphere xxx (2014) xxx–xxx.
Mancin, N., Basso, E., Pirini, C., Kaminski, M.A. (2012). Selective mineral composition, functional test morphology and paleoecology of the agglutinated foraminiferal genus Colominella Popescu, 1998 in the Mediterranean Pliocene (Liguria, Italy). Geol. Carpath. 63 (6), 491–502.
Mancin, N., Basso, E., Lupi, C., Cobianchi, M., Hayward, B.W. (2015). The agglutinated foraminifera from the SW Pacific bathyal sediments of the last 550 kyr: relationship with the deposition of tephra layers. Mar. Micropaleontol. 115, 39–58. https://doi.org/10.1016/j.marmicro.2014.12.004.
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I.,Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze,G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M.,Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I.,Seeger, H., Tealeb, A.,
Toksöz, N., and Veis, G. (2000). Global positioningsystem constraints on the plate kinematics and dynamics in the eastern Mediterranean and Caucasus: Journal of Geophysical Research, v. 105, p. 5695–5719, doi: 10.1029/1999JB900351
Mikhalevich V.I. (1980). Sistematika i evolyutsiya foraminifer v svete novykh dannykh po ikh tsitologii i ul'trastrukture. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 94, 42-61
Milker Y. and Schmiedl G. (2012). A taxonomic guide to modern benthic shelf foraminifera of the western Mediterranean Sea. a. Palaeontologia Electronica Vol. 15, Issue 2;16A, 134.palaeoelectronica.org/content/2012-issue-2-articles/223-taxonomy-foraminifera.
Mohtadi M.,Max L., Hebbeln D., Baumgart A., Kruck N., Jennerjahn T. (2007). Modern environmental conditions recorded in surface sediment samples off W and SW Indonesia: Planktonic foraminifera and biogenic compounds analyses. Marine Micropaleontology 65 (2007) 96–112.
Montfort P. [Denys de]. (1808-1810). Conchyliologie systématique et classification méthodique des coquilles. Paris: Schoell. Vol. 1: pp. lxxxvii + 409 [1808]. Vol. 2: pp. 676 + 16 [1810 (before 28 May)]. Murray J.W. (1976). Comparative studies of living and dead benthic foraminiferal distributions. In:
Hedley R.H., Adams C.G. (Eds.), Foraminifera, Academic Press.Valchev, B. 2003. On the potential of Small Benthic Foraminifera as Palaeoecological Indicators: Recent Advances, Annual of University of Mining and Geology, 46, Geology and Geophysics, 189-194.
Murray, J.W. (2006). Ecology and Applications of Benthic Foraminifera. Cambridge University Press. New York. National Institute of Biological Resources (NIBR). 2012. National List of Species of Korea, Protozoa. NIBR, Ministry of Environment, Korea Nomaki H., Heinz P., Takeshi N., Shimanaga M., Kitazato H. (2005). Species-specific ingestion of organic carbon by deep-sea benthic foraminifera and meiobenthos: In situ tracer experiments. Limnol. Oceanogr., 50(1), 2005, 134–146q 2005, by the American Society of Limnology and Oceanography, Inc.
Norman A.M. (1878). On the Genus Haliphysema, with Descriptions of several Forms apparently allied to it. Annals and Magazine of Natural History. (5) 1(4): 265-284, pl. XVI
Ohga T.and Kitazato H. (1997). Seasonal changes in bathyal foraminiferal populations in response to the flux of organic matter (Sagami Bay, Japan). Institute of Geosciences, Shizuoka University, Oya 836, Shizuoka 422, Japan.
Parinos, C., Gogou, A., Bouloubassi, I., Pedrosa-Pàmies, R., Hatzianestis, I., Sanchez-Vidal, A., Rousakis, G., Velaoras, D., Krokos, G., and Lykousis, V. (2013). Occurrence, sources and transport pathways of natural and anthropogenic hydrocarbons in deep-sea sediments of the eastern Mediterranean Sea, Biogeosciences, 10, 6069–6089, https://doi.org/10.5194/bg-10-6069-2013.
Pawlowski J., Holzmann M., Berney C., Fahrni J., Goodat A.J., Cedhagen T., Habura A., Bowser S. S. (2003). The evolution of early Foraminifera. Proceedings of the National Academy of Sciences October 2003.
Pawlowski J., Fahrni J., Lecroq B., Longet D., Cornelius N., Excoffier L., Cedhagens T., Gooday A.J. (2007). Blackwell Publishing Ltd Bipolar gene flow in deep-sea benthic foraminifera. Molecular Ecology (2007) 16, 4089–4096.
Pawlowski, J., Majewski, W. (2011). Magnetite-bearing foraminifera from Admiralty Bay, West Antarctica, with description of Psammophaga Magnetica, sp. nov. J. Foram. Res. 41 (1), 3–13.
Pawlowski, J. (2012). Foraminifera. In Schaechter, M. (ed.), Eukaryotic Microbes. Amsterdam: Elsevier.
Pedrosa-Pàmies, R., Sanchez-Vidal, A., Canals, M., Lampadariou, N., Velaoras, D., Gogou, A., et al. (2016). Enhanced carbon export to the abyssal depths driven by atmosphere dynamics. Geophys. Res. Lett. 43, 8626–8636. doi:10.1002/ 2016GL06978.
Poulos, S. E., Drakopoulos P.G., Collins M.B. (1997). Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean): an overview. Journal of Marine Systems 13 (1997) 225-244
Poulos, S.E. (2009). Origin and distribution of the terrigenous component of the unconsolidated surface sediment of the Aegean floor: A synthesis. Continental Shelf Research, 29(16): 2045-2060.
Reuss, A. E. (1862). Entwurf einer systematischen Zusammenstellung der Foraminiferen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe. Abt. 1, Mineralogie, Botanik, Zoologie, Anatomie, Geologie und Paläontologie. (1861) 44(1).355-396
Robertson, A.H.F., Clift, P.D., Degnan, P., and Jones, G. (1991) Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 87, p. 289–344, doi: 10.1016/0031-0182(91)90140-M.
Rostami M.A., Frontalini F., Chatelet E.A., Francescangeli F., Martins M.V.A., Marco R., Dinelli E., Tramontana M., Dyer L., Abraham R., Bout-Roumazeilles V., Delattre M., Spagnoli F. (2023). Understanding the Distributions of Benthic Foraminifera in the
Adriatic Sea with Gradient Forest and Structural Equation Models.
Rhumbler L. (1895). Entwurf eines natürlichen Systems der Thalamophoren. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1895: 51-98.
Rzehak A., (1885). Bemerkungen über einige Foraminiferen der Oligocän Formation, Verhandlungen des Naturforschenden Vereins in Brünn (1884) 23:123-129.
Saidova Kh.M. (1981). O sovremennom sostoyanii sistemi nadvidovykh taksonov Kaynozoyskikh bentosnykh foraminifer. Institut Okeanologii P.P. Shirshova, Akademiya Nauk SSSR, Moscow. (In Russian)
Saraswar R., Nigam R., (2013). Benthic Foraminifera. This article is a revision of the previousedition article by P. Loubere and W. Austin, volume 2, pp. 1618–1627, ã 2007, Elsevier B.V.
Sars, G. O. (1872). Undersøgelser over Hardangerfjordens fauna I. Förhadlingar i Videnskabsselskabet i Christiania. 1871: 246-286.
Samanta, S.K., Singh, O. V., Jain, R.K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 20, 243–248. https://doi.org/10.1016/S0167-7799(02)01943-1.
Schnitker D., (1980). Quaternary Deep-Sea Benthic Foraminifers and bottom water masses. Department of Oceanography, University of Maine-Orono, Walpole, Maine 04573. Ann. Rev. Earth Planet. Sci. 1980.8: 343-70.
Sgarella F., Moncharmont M. Z. (1993). Benthic Foraminifera of the Gulf of Naples (Italy): systematics and autoecology. Bollettino della Societa Paleontologica Italiana 32 (2), 1993. ISSN 0375-7633.
Shannon C.E., W. Weaver. (1963) The mathematical theory of communication, University of Illinois Press, Urbana, Illinois.
Schultze M.S. (1854). Über den Organismus der Polythalamien (Foraminiferen) nebst Bemerkungen über die Rhizopoden im Allgemeinen. Engelmann, W., Leipzig.
Schulze F.E. (1875). Zoologische Ergebnisse der Nordseefahrt vom 21. Juli bis 9. September 1872, I Rhizopoden. 2. Jahresberichte der Kommission zur Untersuchung der deutschen Meere in Kiel (1874), p. 99-114.
Skliris N., Mantziafou A., Sofianos S., Gkanasos A. (2010). Satellite-derived variability of the Aegean Sea ecohydrodynamics. Continental Shelf Research 30 (2010) 403–418.
Stefanoudis, P.V., Schiebel, R., Mallet, R., Durden, J.M., Bett, B.J., Gooday, A.J. (2016). Agglutination of benthic foraminifera in relation to mesoscale bathymetric features in the abyssal NE Atlantic (Porcupine Abyssal Plain). Mar. Micropaleontoly. 123, 15–28.
Taymaz, T., Westaway, R., Reilinger, R. (2004). Active faulting and crustal deformation in the Eastern Mediterranean region. Tectonophysics, 391(1–4): 1-9 https://doi.org/10.1016/j.tecto.2004.07.005.
Taymaz, T., Yilmaz, Y. & Dilek, Y. (2007). The geodynamics of the Aegean and Anatolia: introduction.Geological Society, London, Special Publications, 291, 1–16. doi: 10.1144/SP291.
Tapan H. and Loeblich A.R. (1987) [December 23]. Foraminiferal Genera and Their Classification, 2 Vols. Van Nostrand Reinhold Company, New York, 1182 p.
Tapan H. and Loeblich A.R. (1988). Foraminiferal evolution, diversification, and extinction. Department of Earth and Space Sciences, University of California Los Angeles, 90024.
Tapan H. and Loeblich A.R. (1989). Implications of wall composition and structure in agglutinated foraminifers. Department of Earth and Space Sciences, University of California Los Angeles, 90024.
Tapan H. and Loeblich A.R. (1992). Present status of foraminiferal classification. In: Takayanagi, Y. and Saito, T., Eds., Studies in benthic foraminifera, 93-102. Tokyo: Tokai University Press.
Tapan H. and Loeblich A.R. (1994). Foraminifera of the Sahul Shelf and Timor Sea. Washington, DC: Cushman Foundation for Foraminiferal Research. Special Publication 31, 661.
Tendal O.S., Hessle R.R. (1977). An introduction to the biology and systematics of Komokiacea (Textulariina, Foraminiferida). Galathea Report. 14: 165-194.,
Theocharis, A., Georgopoulos, D., Lascaratos, A., Nittis, K. (1993). Water masses and circulation in the central region of the Eastern Mediterranean: Eastern Ionian, South Aegean, and Northwest Levantine. Deep-Sea Research II 40, 1121–1142.
Theocharis, A., Balopoulos, E., Kioroglou, S., Kontoyiannis, H., Iona, A. (1999a). A synthesis of the circulation and hydrography of the South Aegean Sea and the Straits of the Cretan Arc (March 1994 – January 1995). In: Balopoulos, E., Collins, M.B. (Eds.), Insights into the Hydrodynamics and Biogeochemistry of the S. Aegean, E. Mediterranean: The Pelagos (EU)project. Prog. Oceanogr., vol. 44 (4), pp. 469 – 509.
Theocharis, A., Nittis, K., Kontoyiannis, H., Papageorgiou, E., Balopoulos, E. (1999b). Climatic changes in the Aegean Sea influence the Eastern Mediterranean thermohaline circulation (1986 –1997). Geophys. Res. Lett. 26 (11), 1617 – 1620.
Thunell R.C., Williams D.F., & Kennet J.P., (1977). Late Quaternary Paleoclimatology Statigraphy and sapropel history. Marine Micropaleontology, 2(1977): 371-388.
Thomsen, E., Rasmussen, T.L. (2008). Coccolith-agglutinating foraminifera from the Early Cretaceous and how they constructed their tests. J. Foraminifer. Res. 38 (3),193–214.
Triantaphyllou M.V., Dimiza M.D., Koukousioura O., Tsourou T. (2022). Benthic foraminifera assemblages and ostracod evidence from Alkyonides Bay Continental slope (Gulf of Corinth, NE Mediterranean). N.Jb.Geol. Palaont.Abh. 305/2 (2022), 199-223 Stuttgart, August 2022.
Van der Zwaan, G.J., Jorissen, F.J., De Stigter, H.C. (1990). The depth-dependency of planktonicrbenthic foraminiferal rations; constraints and applications. Marine Geology 95, 1–16.
Vyalov O. S. (1968). Certain considerations on classification of siliceous foraminifera. Доповіді Академії наук української РСР - Reports of the Academy of Sciences of the Ukrainian SSR. 1: 3-6.
Voloshinova, N. A. (1960). Uspekhi mikropaleontologii v dele izucheniya vnutrennego stroeniya foraminifer [Progress in micropaleontology in the work of studying the inner structure of Foraminifera], in Trudy Pervogo Seminara po Mikrofaune. Leningrad: Vsesoyuznyy Neftyanoy Nauchno-issledovatel'skii Geologo-razvedochnyy Institut (VNIGRI), pp. 48-87.
Wiesner H. (1931). Die Foraminiferen der deutschen Südpolar Expedition 1901-1903. Deutsche Südpolar-Expedition, Berlin (Zoology). 20: 53-165.
Zervakis, V., Georgopoulos, D., Drakopoulos, P. (2000). The role of the North Aegean in triggering the recent Eastern Mediterranean climatic changes. Journal of Geophysical Research 105 (C11), 26103–26116. https://doi.org/10.1029/2000JC900131.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.