Βερμικουλίτης: ιδιότητες, χρήσεις, κοιτάσματα = Vermiculite: Propertiew, uses, deposits.
Περίληψη
Στη συγκεκριμένη διπλωματική εργασία θα δοθεί έμφαση στις ιδιότητες, στη χημεία, στις χρήσεις, στην προέλευση, στην εξόρυξη και στην επεξεργασία του βερμικουλίτη καθώς και στα διάφορα κοιτάσματα που έχουν εντοπιστεί σε αρκετές περιοχές του κόσμου. Ο βερμικουλίτης είναι ένα φυσικό ορυκτό, το οποίο είναι γνωστό για τις μοναδικές του ιδιότητες και αποτελείται κυρίως από πυρίτιο, μαγνήσιο, σίδηρο και αργίλιο. Η δυνατότητά του να διογκώνεται κατά τη θέρμανση, η χαμηλή πυκνότητα του και η ικανότητά του να απορροφά νερό, τον καθιστούν χρήσιμο υλικό σε πολλές βιομηχανίες. Αυτές οι ιδιότητες αποδίδονται στη στρωματοποιημένη δομή του ορυκτού και στην παρουσία μορίων νερού ενδιάμεσα στων στρώσεών του. Μάλιστα, γίνεται αναφορά τόσο σε μεταμορφωμένους και χαμηλής φόρτισης βερμικουλίτες, όσο και στους τρόπους με τους οποίους μπορεί να πραγματοποιηθεί η αναγνώρισή του συγκεκριμένου βιομηχανικού ορυκτού. Η παγκόσμια αγορά βερμικουλίτη παρουσιάζει ανάπτυξη, λόγω της αυξανόμενης κατασκευαστικής δραστηριότητας και της αναζήτησης για βιώσιμα οικοδομικά υλικά αλλά και της αυξανόμενης ζήτησης στην κηπουρική και τη μόνωση. Είναι γνωστό ότι οι βιομηχανικές μονάδες που βρίσκονται κοντά σε πόλεις έχουν προκαλέσει αρκετά περιβαλλοντικά προβλήματα και τα βαρέα μέταλλα έχουν οδηγήσει στην ρύπανση των υδάτινων και εδαφικών περιβαλλόντων. Έτσι, η χρήση του βερμικουλίτη στον καθαρισμό των λυμάτων είναι σημαντική, αφού απορροφάει τα ιόντα των βαρέων μετάλλων.
This diploma thesis focuses on the properties, chemistry, uses, origin, mining, and processing of vermiculite, as well as the various deposits that have been identified in different parts of the world. Vermiculite is a natural mineral, known for its unique properties, and is primarily composed of silicon, magnesium, iron, and aluminum. Its ability to expand when heated, its low density, and its capacity to absorb water make it a useful material in many industries. These properties are attributed to the layered structure of the mineral and the presence of water molecules between its layers. Certainly, there is reference to both metamorphic and low-charge vermiculites, as well as to the ways in which the identification of this specific industrial mineral can be carried out. The global vermiculite market is experiencing growth due to increasing construction activity and the search for sustainable building materials, but else rising demand in gardening and insulation. It is well known that industrial plants located near cities have caused several environmental problems, and heavy metals have led to the pollution of water and soil environments. Thus, the use of vermiculite in wastewater treatment is significant, as it can absorb heavy metal ions.
Πλήρες Κείμενο:
PDFΑναφορές
April, R. H., Hluchy, M. M., and Newton, R.M. (1986) The nature of vermiculite in Adirondack soils and till: Clays & Clay Minerals 34, 549-556.
Baes CF., Mesmer R.E., 1976. The hydrolysis of cations. ln: J. and S. Wiley (Editors).
Bain, D. C., Mellor, A., and Wilson, M. J. (1990) Nature and origin of an aluminous vermiculitic weathering product in acid soil from upland and catchments in Scotland: Clay Miner. 25, 467-475.
BANFIELD J.F. & EGGLETON R.A. (1988) Transmission electron microscope study of biotite weathering. Clays Clay Miner. 36, 47-60.
Banfield, J. F. and Eggleton, R. A. (1988) Transmission electron microscope study of biotite weathering: Clays & Clay Minerals 36, 47-60.
BARSKA, S. (1972a). Vermiculite Deposits from the Sredna Gora Mountain, Bulgaria. L Pe9matites and hyperbasites. Rev. Bulg. Geol. Soc., XXXIII/2, 154-178.
BARSKA, S. (1972b). Vermiculite Deposits from the Sredna Gora Mountain, Bulgaria. 11. Vermiculite veins. Rev. Bulg. Geol. Soc. XXXIII/3, 297-310.
Basset, W.A., 1963. The geology of vermiculite occurrences. Clays Clay Miner. 10, 61-69.
Black, P.M.: Mineralogy of New Caledonian metamorphic rocks IV sheet silicates from Ouegoa district. Contrib. Mineral. Petrol. 49, 269-284 (1975).
Boettcher, A.L. (1966) Vermiculite, hydrobiotite, and biotite in the Rainy Creek igneous complex near Libby, Montana: Clay Minerals 6, 283-296.
Bradi Η.Β., 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, In Press.
Brindley, G. W. and de Souza, J.V. (1975) A golden-colored, ferri-nickel chloritic mineral from Morro do Niquel, Minas Gerais, Brasil: Clays & Clay Minerals 23, 11-15.
Brindley, G.W. (1966) Ethylene glycol and glycerol complexes of smectites and vermiculites: Clay Minerals 6. 237-59.
Brindley, G.W., and Brown, G., eds., 1980, Crystal Structures of Clay Minerals and Their X-Ray Identification, Mineralogical Society Monograph No.5, Mineralogical Society, London, 495 pp.
BROWN, T. J., SHAW, R. A., BIDE, T., RAYCRAFT, E. R. & WALTERS, A. S. 2013. World mineral production 2007-2011. In: National Environment Research Council (1st ed.) First ed. keyworth, Nottingham: British Geological Survey.
BURGATH, K., and WEISER, TH.: Primary Features and Genesis of Greek Podiform Chromite Deposits. Proc. Int. Ophiolite Symp., Nicosia (1980), 675-690.
Buurman, P., Meijer, E. L., and van Wijck, J. H. (1988) Weathering of chlorite and vermiculite in ultramafic rocks of Cabo Ortegal, Northwestern Spain: Clays & Clay Minerals 36, 263-269.
CALLE C. DE LA, SUQUET H. & PONS C.H, (1988) Stacking order in a 14•30 Å Mg-vermiculite. Clays Clay Miner. 36, 481-490.
CAMPOS, A., MORENO, S. & MOLINA, R. 2009. Characteristics of Vermiculite by XRD and Spectroscopic Techniques. Earth Science Resources, 13, 17.
CHANTRET F., DESPRAIRES A., DOUILLET P., JACOB C., STEINBERG M. & TRAUTH N. (1971) Bull. gr.fr. Argiles. XXIII, 2, 141.
Coleman, N. T., Le Roux, F. H., and Cady, K. G. (1963) Biotite-hydrobiotite-vermiculite in soils: Nature 198, 409- 410.
CORDIER, D. J. 2010. Mineral Commodity Summaries 2010. In: INTERIOR, U. S. D. O. T. & SURVEY, U. S. G. (eds.). Washington: United States Government Printing Office.
Couderc, P. and Douillet, Ph., 1973. Les vermiculites industrielles: exfoliation, caractdristiques mindralogiques et chimiques. Bull. Soc. Fr. Ceram., 99:51-59.
Curtis, C. D. and Brown, P. E. (1969) The metasomatic development of zoned ultrabasic bodies in Unst, Shetland: Contrib. Mineral Petrol. 24, 275-292.
DABITZIAS, S. and PERDIKATSIS, V. (1990). Vermiculite deposits of economic interest in the Ascos area. Thessaloniki county. Bull. Geol. Soc. Greece. XXV/2, 355-367.
DE GENNARO M. & FRANCO E. (1971) Studio preliminare sulle vulcaniti dei Monti Ernici e della Media Valle Latina. Rend. Acc. Sc. Fis. Mat., Soc. Naz. Sc. Lett. Arti in Napoli, Serie 4 XXXVII, 215-242.
DE GENNARO M. & FRANCO E. (1975) Su alcuni casi di alterazione della biotite in vermiculite. Rend. Acc. Sc. Fis. Mat., Soc. Naz. Sc. Lett. Arti in Napoli, Serie 4 XLII, 1-18.
De Kimpe, C. R., Miles, N., Kodama, H., and Dejou, J. (1987) Alteration of phlogopite to corrensite at Sharbot Lake, Ontario: Clays & Clay Minerals 35, 150-158.
de la Calle, C., and Suquet, H., 1988, ‘‘Vermiculite,’’ Hydrous Phyllosilicates, Reviews in Mineralogy, Vol. 19, pp. 455-496.
de la Calle, C., Dubermat, J., Suquet, H., Pezerat, H., Gaultier, J., and Mamy, J. (1976) Crystal Structure of two-layer.
Do Campo, M. and Nieto, F. (2005) Origin of mixedlayered (R1) muscovite-chlorite in an anchizonal slate from Puncoviscana Formation (Salta Province, Argentina). Clay Minerals, 40, 317-332.
Douglas, L.A., 1977. Vermiculites. In: J.B. Dixon and S.B. Weed (Editors), Minerals in Soil Environments. Soil Science Society of America, pp. 259-292.
Doutsos, T., Kontopoulos, N. and Poulimenos, G. (1988) The Corinth-Patras rift as the initial stage of continental fragmentation behind an active island arc (Greece). Basin
Research, 1, 177190.
Engstrom, G.G., and Bain, D.I., 1983, ‘‘Vermiculite as a Deposit Modifier in Coal Fired Boilers,’’ US Patent 4,369,719, Jan. 25.
Fordham, A. W. (1990a) Weathering of biotite into dioctahedral clay minerals: Clay Miner. 25, 51-63.
Fordham, A. W. (1990b) Treatment of microanalyses of intimately mixed products of mica weathering: Clays & Clay Minerals 38, 179-186.
Fordham, A. W. (1990c) Formation of trioctahedral illite from biotite in a soil profile over granite gneiss: Clays & Clay Minerals 38, 187-195.
Franceschelli, M., Mellini, M., Memmi, I. and Ricci, C.A. (1986) Fine-scale chlorite-muscovite association in low-grade metapelites from Nurra (NW Sardinia), and the possible misidentification of metamorphic vermiculite. Contributions to Mineralogy and Petrology, 93, 137-143.
GHABRU S.K., MERMUT A.R. & ST. ARNAUD R.J. (1989) Layer-charge and cation-exchange characteristics of vermiculite (weathered biotite) isolated from a gray luvisol in northeastern Saskatchewan. Clays Clay Miner. 37, 164-172.
Goldstein, A.G., Jr., 1946, ‘‘The Vermiculites and Their Utilization,’’ Quarterly, Colorado School of Mines, Golden, Vol. 41, No. 4, 64 pp.
GRAF VON REICHENBACH H., WACHSMUTH H. & MARCKS C. (1988) Observations at the mica-vermiculite interface with HRTEM. Coll. Polym. Sci. 266, 652-656.
GRAF, H., REICHENBACH, V. & BEYER, J. 1994. Dehydration and Rehydration of Vermiculit: I. Phlogopitic MG- Vermiculite. Clay Minerals, 29, 327-340.
HARRAZ, H. Z. & HAMDY, M. M. 2010. Interstratified vermiculite-mica in the gneiss-metapelite-serpentinite rocks at Hafafit area, Southern Eastern Desert, Egypt: From metasomatism to weathering. Journal of African Earth Sciences, 58, 305-320.
Hindman, J.R., 1990, ‘‘Vermiculite Mining at Elk Gulch [Montana],’’ Vermiculite Technology Newsletter, Vol. 1, pp. 18-22.
Hindman, James R., 1994, Vermiculite, Industrial Minerals and Rocks.
Ildefonse P., Manceau, A., Proust, D., and Groke, M. C. T. (1986) Hydroxy-Vermiculite formed by the weathering of Fe-biotites at Salobo, Carajas, Brazil: Clays & Clay Minerals 34, 338-345.
ILDEFONSE PH. (1978) Mecanismes de l'alteration d'une roche gabbroique du Massif du Pallet (Loire-Atlantique). These 3eme cycle, Univers. Poitiers, 142 pp.
Inoue, A. (1987) Conversion of smectite to chlorite by hydrothermal and diagenetic alterations, Hokuruku Kuroko Mineralization Area, northeast Japan: Proc. Int. Clay Conf. Denver 1985, L. G. Schultz, H. van Olphen, and F. A. Mumpton, eds., The Clay Minerals Society, Bloomington, Indiana, 158-164.
Inoue, A. and Utada, M. (1991) Smectite to chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita Area, northern Honshu, Japan: Amer. Mineral 76, 628-649.
Irwing Sax N., 1951. Handbook of dangerous materials, Reinhold, New York, 218-222, 236 pp.
J.A. KITTRICK, 1973, Clays and Clay Minerals, Vol. 21. pp. 479-488.
Jedrysek, M. O. and Hakas, S. (1990) The origin of magnesite deposits from the Polish Foresudetic Block ophiolites: Preliminary b~3C and 6~so investigations: Terra Nova. 2, 154- 159.
JUNG, D., MUSSALLAM, K., BURGATH, K., KOCKEL, F., MOHR, F., and RASCHKA, H.: Ultramafic and related rocks of Chalkidiki (northern Greece). UNESCO, Int. Symp. on Mafic and
Ultramafic Complexes, Athens. 3, 196-210 (1980).
JUSTO A. (1984) Estudio Fisicoquimico y Mineralogico de Vermiculitas de Andalucia y Badajoz. Thesis. Universidad de Sevilla, 408 pp.
Justo, A. , Maqueda, C., Perez-Rodriguez, J.L. and Morillo, E. , 1989. Expansibility of some vermiculites. Appl. Clay Sci„ 4: 509-519.
Kittrick, J.A. (1969a) Interlayer forces in montmorillonite and vermiculite: Soil Sci. Soc. Am. Proc. 33, 217-222.
Kittrick, J.A. (1969b) Soil minerals in the Al 2 O 3 -SiO 2 -H 2 O system and a theory of their formation: Clays and Clay Minerals 17, 157-167.
Kittrick, J.A. (1973), Clays and Clay Minerals, Vol.21, pp. 479-488.
KOCKEL, F.- MOLLAT, H. und WALTHER, H.W. (1977): Erlauterungen zur Geologischen Karte der Chalkidiki und angrenzender Gebiete 1:100.000 (Nord-Griechenland); Hannover, Bundesanstalt fur Geowissenscaften und Rohstof.
KOMARNENI S. & ROY R. (1981) Hydrothermal transformations in candidate overpack materials and their effects on cesium and strontium sorption. Nucl. Technol. 54, 118 122.
LAGALY G. & WEISS A. (1969) Determination of the layer charge in mica-type layer silicates. Proc. Int. Clay Conf. Tokyo 1, 61-80.
LAGALY G. (1982) Layer charge heterogeneity in vermiculites. Clays Clay Miner. 30, 215-222.
Langer, R.L., and Marlor, A.J., 1981, ‘‘Intumescent Sheet Material,’’ US Patent 4,305,992, Dec. 15.
Lee, J.H. and Peacor, D.R. (1985) Ordered 1:1 interstratification of illite and chlorite: a transmissionβ and analytical electron microscopy study. Clays and Clay Minerals, 33, 463-537.
Lehman M., Zouboulis A.I., Matis K.A., 1999. Removal of metal ions from dilute aqueous solutions: a comparative study of inorganic sorbent materials. Chemosphere, 39, 6, 881-892.
Libby, S.C., 1975, ‘‘The Origin of Potassic Ultramafic Rocks in the Enoree Vermiculite District, South Carolina,’’ PhD thesis, Pennsylvania State University, University Park, 136 pp.
Lvova, I. A. and Dyakonov, Y. C. (1973) Geological and mineralogical criteria of estimation of vermiculite raw material occurrences related to ultrabasic rocks (in Russian): Non-metallic Raw Materials in Ultramafic Rocks, Nauka, Moscow, 207-210.
LVOVA, LA. (1974). Vermiculite deposits in the USSR (Formation types and distribution regularities). Nedra, Leningrad, 231p.
MACEWAN D.M.C. (I948) Proc. Int. Geol. Congr. Great Britain, XIII, 128.
MACKENZIE R.C. & BERGGREN G. (1970) In: Differential Thermal Analysis. (R.C. Mackenzie, editor) Academic Press, London, New York, 1.
MACKENZIE, C.R.: The Differencial Thermal Investigation of Clays. Mineralogical Society, London 1957.
MARCKS C., WACHSMUTH H. & GRAF VON REICHENBACH H. (1989) Preparation of vermiculites for HRTEM. Clay Miner. 24, 23-32.
MARCOS, C., ARANGO, Y. C. & RODRIGUEZ, I. 2009. X-ray diffraction studies of the thermal behaviour of commercial vermiculites. Applied Clay Science, 42, 368-378.
Maresch, W.V., Massonne, H.J. and Czank, M. (1985) Ordered and disordered chlorite/biotite interstratification as alteration products of chlorite. Neues Jahrbuch fur Mineralogie Abhandlungen, 152, 79-100.
Mathieson, A. McL., and Walker, G.F., 1954, “Crystal Structure of Magnesium-Vermiculite,” American Minerologist, Vol. 39, pp. 231-255.
Mellini, M., Nieto, F., Alvarez, F. and Gomez-Pugnaire, M.T. (1991) Mica-chlorite intermixing and altered chlorite from the Nevado-Fila΄bride micaschists, southern Spain. European Journal of Mineralogy, 3, 27-38.
Meunier, A. and Velde, B. (1979) Biotite weathering in granites of western France: in Proc. Int. Clay Conf., Oxford, 1978, M. M. Mortland and V. C. Farmer, eds., Elsevier, Amsterdam, 405-415.
Midgley, H.G. and Midgley, C.M., 1960. The mineralogy of some commercial vermiculites. Clay Miner. Bull., 4(23): 142-150.
Nagasawa, K., Brown, G., and Newman, A. C. D. (1974) Artificial alteration of biotite into a 14A-layer silicate with hydroxy-aluminium interlayers: Clays & Clay Minerals 22, 241-252.
Nelson, S.G., 1988, “Toxic Gas Absorbent and Processes for Making Same.” US Patent 4,721,582, Jan. 26.
Newman, A.C.D. and Brown, G. (1966) Chemical changes during the alteration of micas: Clay Minerals 6, 297-310.
NEWMAN A.C.D. & BROWN G. (1987) The chemical constitution of clays. Pp. 1-128 in: Chemistry of Clays and Clay Minerals (A.C.D. Newman, editor). Mineralogical Society, London.
Nicot, E. (1981) Les phyllosilicates des terrains precambriens du Nord-Ouest du Montana (USA) dans la transition anchizone - epizone. Bulletin de Mineralogie, 104, 615-624.
NPI, N. P. I. 1999. Emission estimation technique manual for mining and processing of non-metallic minerals. Australia: National Pollutant Inventory.
O' Day P.A., Parks G.A., Brown G.E., 1994. Molecular structure and binding sites of Co(ll) surface complex on kaolinite from X-ray Adsorption Spectroscopy. Clays Clay Miner. 42, 337-355.
OBUT, A. & GIRGIN, I. 2002. Hydrogen peroxide exfoliation of vermiculite and phlogopite. Minerals Engineering, 15, 683-687.
Philip R. Strand, 1975, Vermiculite, Industrial Minerals and Rocks.
Proust, D., Eymery, J. P., and Beaufort, D. (1986) Supergene vermiculitization of a magnesian chlorite: Iron and magnesium removal processes: Clays & Clay Minerals 34, 572-580.
Rathossi, C. (2005) Ancient ceramics from NW Peloponnese and the provenance of their raw materials: a petrographic, mineralogical, geochemical and archaeometric approach. PhD thesis, University of Patras, Greece.
REEVES, G. M., SIMS, I. & CRIPPS, J. C. (eds.) 2006. Clay materials used in construction, Trowbridge: Cromell Press.
Rhoades, J. D. and Coleman, N.T. (1967) Interstratification in vermiculite and biotite produced by potassium sorption: I. Evaluation by X-ray diffraction pattern inspection: Soil Sci. Soc. Amer. Proc. 31, 366-372.
Rich, C. I. (1968) Hydroxy interlayers in expansible layer silicates: Clays & Clay Minerals 16, 15-30.
Ross, G.J. (1975) Experimental alteration of chlorites into vermiculites by chemical oxidation: Nature 255: 5504, 133-134.
Ross, G.J., C. Wang, A.I. Ozkan, and H.W. Rees 1982. Weathering of chlorite and mica in a New Brunswick Podzol developed on till derived from chlorite-mica schist. Geo-derma. 27: 255–267.
Roy, R., and Romo, L.A., 1957, “Weathering Studies. 1. New Data on Vermiculite,” Journal of Geology, Vol 65, pp. 603-610.
Ruiz Cruz, M.D. (1999) New data for metamorphic vermiculite. European Journal of Mineralogy, 11, 533-548.
Ruiz Cruz, M.D. (2001) Mixed-layer mica-chlorite in very low-grade metaclastites from the Mala΄guide Complex (Betic Cordilleras, Spain). Clay Minerals, 36, 307-324.
Ruiz Cruz, M.D. (2003) Two stages of ‘Metamorphic vermiculite’ growth in schists from the Mala΄guide guide Complex, Betic Cordillera, Spain. The Canadian Mineralogist, 41, 1397-1412.
Ruiz Cruz, M.D. and Nieto, J.M. (2006) Chemical and structural evolution of ‘metamorphic vermiculite’ in metaclastic rocks of the Betic Cordillera, Malaga, Spain; a synthesis. The
Canadian Mineralogist, 44, 249-265.
Ruiz Cruz, M.D., Puga, E., Aguirre, L., Vergara, M. and Morata, D. (2002) Vermiculite-like minerals in lowgrade metasediments from the Coastal Range of central Chile. Clay Minerals, 37, 221-234.
Scheidegger A.M., Lamble G.M., Sparks D.L., 1996. Investigation of Ni sorption on pyrophyllite: An XAFS study. Environ. Sci. Technol. 30, 548-554.
Shimoda, S. (1970) An expandable chlorite-like mineral from the Hanaoka Mine, Akita Prefecture, Japan: Clay Miner., 8, 352-359.
SKARPELIS, N. and DABITZIAS, S. (1987). The chrysotile asbestos deposits at Zidani, Northern Greece. Ophioliti, 12/2, 403-410.
SMYKATZ, KLOSS, W.: Differencial Thermal Analysis. Springer-Verlag, Berlin-Heidelberg-New York 1974.
Song, Y., Kwon, I. S., and Moon, H. S. (1990) Mineralogy of vermiculite occurring in the Cheongyang area: J. Miner. Soc. Korea 3, 60 (in Korean).
STEFANOV, D.D.: Crystallochemistry and Genesis of Vermiculites of Bulgaria. Geologica Balcania (in Print).
Stumm W., 1992. Chemistry of the Solid-Water Interface, Wiley, New York.
TANNER, A. O. 2013. 2011 Minerals Yearbook: Vermiculite. In: U.S. DEPARTMENT OF THE INTERIOR; & U.S. GEOLOGICAL SURVEY (ed.). U.S. Geological Survey.
TODOR, N.D.: Thermal Analysis of Minerals. Abacus Press 1976.
Tsirambides Α., Michailidis K., 1999. An X-ray, ΕΡΜΑ, and oxygen isotope study of vermiculitized micas in the ultramafic rocks at Askos, Macedonia, Greece. Applied Clay Science 14,121-140.
Tsoflias, P. (1980) Geological map of Greece, Patras sheet scale 1:50.000. Institute of Geology and Mineral Exploration, Athens.
Vaplon, G.G., Erickson, E., and Young, J.l., 1978, “Concentration of plate-shaped minerals,” US Patent 4,102,502, Jul 25
Velde, B. (1978) High temperature or metamorphic vermiculite. Contributions to Mineralogy and Petrology, 66, 319-323.
WACKERMANN J.M. (1975) L'alteration des massifs cristallins basiques en zone tropicale semi-humide. Etude mineralogique et geochimique des arches du Senegal oriental.
Consequences pour la cartographie et la prospection. These, Univ. Strasbourg, 373 pp.
WALKER G.F. (1950) Miner. Mag. 29, 72.
Zelilidis, A., Koukouvelas, I. and Doutsos, T. (1988) Neogene paleostress changes behind the forearc fold belt in the Patraikos Gulf area, Western Greece. Neues Jahrbuch fur Geologie und Palaeontology Monatshefte, 311325.
ZHELYASKOVA-PANAYOTOVA, H. (1989a). Serpentinized ultrabasites. In: Raw materials in Bulgaria, II. Endogenetical industrial minerals and rocks. Technica, Sofia, 7-41.
ZHELYASKOVA-PANAYOTOVA, M. (1989b). Vermiculite deposits in Bulgaria. In: Bul. Shkencave Gjelog., Tirana, 4,323-327.
ZHELYASKOVA-PANAYOTOVA, M. (1989c:). The Balkan peninsula A new vermiculite bearing Province. Compt. Rendus Academic Bulgare des Sciences. 42/11, 75-78.
ZHELYASKOVA-PANAYOTOVA, M., LASKOU, M., ECONOMOU-ELIOPOULOS, H. And STEFANOV, D. (1992). Vermiculite occurrences from the Vavdos and Gerakini areas of the W. Chalkidiki peninsula, Greece. Chem. Erde 52: 41-48.
ZHELYASKOVA-PANAYOTOVA, M.: The Balkan Peninsula – a New Vermiculite Bearing Province. Compt. rendus de I’ Academic Bulgare des Sciences 42 (1989) 11, 75-78.
Ελληνική Βιβλιογραφία
ΚΟΥΓΚΟΥΛΗΣ Χ. – ΝΤΑΜΠΙΤΖΙΑΣ Σ. και ΠΑΠΑΔΟΠΟΥΛΟΣ Χ. (1989). Γεωλογική μελέτη (προέλευση) των μεμονωμένων σερπεντινιτικών μαζών της Σερβομακεδονικής μάζας και η κοιτασματολογική τους σημασία. (Έκθεση στο Ι.Γ.Μ.Ε.-Δεύτερο μέρος)
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.