Εξώφυλλο

Συνοπτική, δυναμική και αριθμητική μελέτη ενός έντονου βαρομετρικού χαμηλού στη Μεσόγειο = Synoptic, dynamic and numerical study of an intense Mediterranean cyclone.

Σωτήριος - Θεοχάρης Παντελής Φωτιάδης

Περίληψη


Η Μεσόγειος θάλασσα αποτελεί μία από τις βασικές περιοχές κυκλογένεσης παγκοσμίως. Πολλές από αυτές τις υφέσεις συνοδεύονται από έντονα καιρικά φαινόμενα, με σημαντικές επιπτώσεις τόσο στην ανθρώπινη ζωή, δραστηριότητα και περιουσία όσο και στο φυσικό περιβάλλον. Στην παρούσα εργασία θα μελετηθεί ένα έντονο βαρομετρικό χαμηλό που επηρέασε την Ελλάδα στις 14-16 Οκτωβρίου 2021. Ο λόγος για τον οποίο επιλέχθηκε να μελετηθεί το συγκεκριμένο σύστημα είναι οι έντονες πλημμύρες που προκάλεσε καθώς και η μεγάλη έκταση που επηρέασε. Πιο αναλυτικά, οι περιοχές που δέχτηκαν τα μεγαλύτερα ύψη βροχής ήταν τα νησιά του Ιονίου Πελάγους, η δυτική Στερεά Ελλάδα και Πελοπόννησος, η Κεντρική-Ανατολική Μακεδονία, η Χαλκιδική, η Αττική, καθώς και τμήμα της Νότιας Εύβοιας. Η ραγδαιότητα των βροχοπτώσεων ήταν ιδιαίτερα έντονη, προκαλώντας πολλές κατολισθήσεις, καταστροφές σε σπίτια καθώς και έναν θάνατο. Στις 14 Οκτωβρίου, οι μετεωρολογικοί σταθμοί του Εθνικού Αστεροσκοπείου Αθηνών στην Ιθάκη και στην περιοχή Πατήσια της Αθήνας κατέγραψαν 343.4 mm και 147.4 mm υετού, αντίστοιχα. Από την ΕΜΥ για το διάστημα από τις 13/10 06 UTC έως τις 17/10 06 UTC, μετρήθηκαν 190.6 mm βροχής στον σταθμό της Κεφαλονιάς, 148.9 mm στον σταθμό της Κέρκυρας και 136 mm στον σταθμό της Ανδραβίδας. Στο υπό μελέτη σύστημα δόθηκε η ονομασία «Μπάλλος». Επίσης, σημαντικό είναι να αναφερθεί ότι κατά την περίοδο εμφάνισης αυτής της έντονης ύφεσης, παρατηρήθηκαν στην Κεντρική και Ανατολική Μεσόγειο σχετικά υψηλότερες επιφανειακές θερμοκρασίες θάλασσας (ΕΘΘ) από τις κανονικές. Αυτό αποτελεί σημαντικό κίνητρο διερεύνησης του ρόλου τους στην ανάπτυξη του βαρομετρικού χαμηλού και της ευαισθησίας των προσομοιώσεων σε διαφορετικά δεδομένα ΕΘΘ. Ο σκοπός της παρούσας μελέτης είναι η συνοπτική και δυναμική ανάλυση αυτού του συστήματος, καθώς και η αριθμητική μελέτη της ευαισθησίας του στις διαφορετικές πηγές ΕΘΘ. Στην εργασία χρησιμοποιήθηκαν δεδομένα παρατηρήσεων, δορυφορικές εκτιμήσεις, επιχειρησιακές πλεγματικές αναλύσεις από το Ευρωπαϊκό Κέντρο Μεσοπρόθεσμων Προγνώσεων Καιρού (ECMWF) και διαφορετικά προϊόντα ΕΘΘ. Αυτά τα δεδομένα συνδυάστηκαν με προσομοιώσεις που πραγματοποιήθηκαν με το μη υδροστατικό αριθμητικό μοντέλο πρόγνωσης καιρού Weather Research and Forecasting (WRF) με τον δυναμικό πυρήνα Advanced Research σε δύο πλέγματα με χωρική διακριτοποίηση 6km x 6km και 2km x 2km. Αρχικά, πραγματοποιήθηκαν προσομοιώσεις με διαφορετικές παραμετροποιήσεις ανωμεταφοράς και χωρίς παραμετροποίησής της. Τα αποτελέσματα της στατιστικής αξιολόγησης ανέδειξαν πιο αξιόπιστο σχήμα ανωμεταφοράς το Kain-Fritsch, το οποίο χρησιμοποιήθηκε στα πειράματα ευαισθησίας. Στη συνέχεια, διενεργήθηκαν πειράματα ευαισθησίας με δεδομένα ΕΘΘ από διαφορετικές πηγές και μεθοδολογίες δημιουργίας (NCEP RTG, CMEMS και ECMWF). Με βάση την σημειακή στατιστική αξιολόγηση των προσομοιώσεων των διαφορετικών δεδομένων ΕΘΘ, κρίθηκαν καλύτερες οι ΕΘΘ του NCEP με μικρή διαφορά από το CMEMS για τις συνεχείς μεταβλητές. To ECMWF αναδείχθηκε ως δεύτερο πιο αξιόπιστο πείραμα στη σημειακή στατιστική αξιολόγηση του υετού. Σύμφωνα με τη συνοπτική ανάλυση των αποτελεσμάτων του μοντέλου, μεγαλύτερη ευαισθησία παρουσιάζει η θερμοκρασία και το γεωδυναμικό ύψος στα 850 hPa, οι αισθητές και λανθάνουσες ροές θερμότητες καθώς και ο υετός στα διαφορετικά δεδομένα ΕΘΘ. Αντίθετα, μικρότερη ευαισθησία εμφανίζει η θερμοκρασία στα 500 hPa και η ταχύτητα του ανέμου.

The Mediterranean Sea is one of the most cyclogenetic regions worldwide. Many of these depressions are accompanied by severe weather events, with significant impacts on human life, activity and property as well as on the natural environment. In this work, an intense low that affected Greece on October 14-16, 2021 will be studied. The reason why this particular system was chosen to be studied is the intense floods it caused as well as the large area it affected. More specifically, the areas that received the highest amounts of rain were the islands of the Ionian Sea, western Central Greece and Peloponnese, Central-Eastern Macedonia, Halkidiki, Attica, as well as part of Southern Evia. The rapidity of the rainfall was particularly intense, causing many landslides, destruction of houses and one death. On October 14, the weather stations of the National Observatory of Athens recorded 343.4 mm and 147.4 mm of rain in Ithaca and the Patisia area of Athens, respectively. According to EMY measurements, the rainfall reached 190.6 mm in Kefalonia, 148.9 mm in Corfu and 136 mm in Andravida from 13/10 06 UTC to 17/10 06 UTC. The system under study was named "Ballos". Also, it is important to mention that during the period of occurrence of this intense depression, relatively higher sea surface temperatures (SST) than normal were observed in the Central and Eastern Mediterranean. This is an important motivation to investigate their role in the development of the barometric low and the sensitivity of the simulations to different SST data. The aim of this study is the synoptic and dynamic analysis of this system, as well as the numerical investigation of its sensitivity to SSTs. In this work used observational data, satellite estimates, operational gridded analyses from the European Center for Medium-Range Weather Forecasts (ECMWF) and different products of SSTs. These data were combined with simulations performed with the Weather Research and Forecasting (WRF) non-hydrostatic numerical model with the Advanced Research dynamical core on two grids with a spatial resolution of 6km x 6km and 2km x 2km. In the first place, simulations were performed with different cumulus schemes parameterizations and without cumulus scheme. The results of the statistical evaluation showed a more reliable cumulus scheme Kain-Fritsch, which was used in the sensitivity experiments. Next, sensitivity experiments were performed with SST data from different sources and generation methodologies (NCEP RTG, CMEMS, ECMWF). Based on the pointwise statistical evaluation of the simulations of the different SSTs data, the NCEP SSTs were judged better with a small difference than CMEMS for continuous variables. The dataset ECMWF emerged as the second most reliable experiment in the point statistical assessment of precipitation. According to the synoptic analysis of the model results, the temperature and geopotential height at 850 hPa, the sensible and latent heat fluxes as well as the precipitation show a greater sensitivity to the different SST datasets. Conversely, the temperature at 500 hPa and the wind speed show a lower sensitivity.


Πλήρες Κείμενο:

PDF

Αναφορές


ΞΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

Anagnostopoulou, C., Tolika, K. and Maheras, P. (2009). Classification of circulation types: a new flexible automated approach applicable to NCEP and GCM datasets. Theoretical and Applied Climatology, 96, 3-15. doi: https://doi.org/10.1007/s00704-008-0032-6.

Betts, N.L. (2003). Analysis of an anomalously severe thunderstorm system over Northern Ireland. Atmospheric Research, 67-68, 23-34. doi: https://doi.org/10.1016/S0169-8095(03)00044-9.

Bolton, D. (1980). The Computation of Equivalent Potential Temperature. Monthly Weather Review, 180, 1046-1053. doi: https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

Bouin, M.-N. and Brossier, C.L. (2020). Impact of a medicane on the oceanic surface layer from a coupled, kilometre-scale simulation. Oceanic Science, 16, 1125-1142. doi: https://doi.org/10.5194/os-16-1125-2020.

Buric, D., Lukovic, J., Bajat, B., Kilibarda, M. and Ducic, V. (2015). Recent trends in daily rainfall extremes over Montenegro (1951-2010). Natural Hazards and Earth System Sciences. Discuss. 3 (4). doi: https://doi.org/10.5194/nhess-15-2069-2015.

Chen, F. and Dudhia, J. (2001). Coupling an Advanced Land Surface – Hydrology Model with the Penn State- NCAR MM5 Modeling System. Part I: Model Implementation and

Sensitivity. Monthly Weather Review, 129, 569-585. doi: https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

Cox, R., Swain, T. and Funk, T. (2004). Preliminary Results of a Heavy Snow Climatology Across Kentucky and Southern Indiana (1982-1996). National Weather Service, Louisville, Kentucky.

Cioni, G., Malguzzi, P. and Buzzi, A. (2016). Thermal structure and dynamical precursor of a Mediterranean tropical-like cyclone. Quarterly Journal of the Royal Meteorological Society, 142, 1757-1766. doi: https://doi.org/10.1002/qj.2773.

Doswell, C.A. and Bosart, L.F. (2001). Extratropical synoptic-scale processes and severe convection. In: Severe Convective Storms. Springer, pp. 27-69. doi: https://doi.org/10.1007/978-1-935704-06-5_2.

Elsner, J.B., Drag, W.H., Last, J.K. (1989). Synoptic Weather Patterns Associated with the Milwaukee, Wisconsin Flash Flood of 6 August 1986. Weather and Forecasting, 4, 537-554. doi: https://doi.org/10.1175/1520-0434(1989)004<0537:SWPAWT>2.0.CO;2.

Fairall, C.W., Bradley, E.F., Hare, J.E., Grachev, A.A. and Edson, J.B. (2003). Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm. Journal of Climate, 16, 571-591. doi: https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

Feidas, H., Noulopoulou, Ch., Makrogiannis, T. and Bora-Senta, E. (2007). Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955-2001. Theoretical and Applied Climatology, 87, 155-177. doi: https://doi.org/10.1007/s00704-006-0200-5.

Flaounas, E., Raveh-Rubin, S., Wernli, H., Drobinski, P. and Bastin, S. (2015). The dynamical structure of intense Mediterranean cyclones. Climate Dynamics, 44, 2411-2427. doi: https://doi.org/10.1007/s00382-014-2330-2.

Flaounas, E., Davolio, S., Raveh-Rubin, S., Pantillon, F., Miglietta, M., Gaertner, M.A., Hatzaki, M., Homar, V., Khodayar, S., Korres, G., Kotroni, V., Kushta, J., Reale, M. and Ricard, D. (2022). Mediterranean cyclones: current knowledge and open questions on dynamics, prediction, climatology and impacts. Weather and Climate Dynamics, 3, 173-208. doi: https://doi.org/10.5194/wcd-3-173-2022.

Founda, D., Giannakopoulos, C., Pierros, F., Kalimeris, A. and Petrakis, M. (2013). Observed and projected precipitation variability in Athens over a 2,5 century period. Atmospheric Sciences Letters, 14 (2), 72-78. doi: https://doi.org/10.1002/asl2.419.

Fowler, L.D., Skamarock, W.C., Grell, G.A., Freitas, S.R. and Duda, M.G. (2016). Analyzing the Grell-Freitas convection scheme from hydrostatic to nonhydrostatic scales within a global model. Monthly Weather Review, 144, 2285-2306. doi: https://doi.org/10.1175/MWR-D-15-0311.1.

Fritsch, J.M. and Chappell, C. F. (1980). Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. Part I: Convective Parametrization. Journal of the Atmospheric Sciences, 37 (8), 1722-1733. doi: https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.

Garratt, J. (1993). Sensitivity of climate simulations to land surface and atmospheric boundary-layer treatments - A review. Journal of Climate, 6, 419-449. doi: https://doi.org/10.1175/1520-0442(1993)006<0419:SOCSTL>2.0.CO;2.

Gerard, L. (2007). An integrated package for subgrid convection, clouds and precipitation compatible with meso-gamma scales. Quarterly Journal of the Royal Meteorological Society, 133, 711-730. doi: https://doi.org/10.1002/qj.58.

Grell, G.A. and Devenyi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29 (14), 38-1-38-4. doi: https://doi.org/10.1029/2002GL015311.

Grell, G.A. and Freitas, S.R. (2014). A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233-5250. doi: https://doi.org/10.5194/acp-14-5233-2014.

Groisman, P.Y., Karl, T.R., Easterling, D.R., Knight, R.W., Jamason, P.F., Hennessy, K.J., Suppiah, R., Page, C.M., Wibig, J., Fortuniak, K., Razuvaev, V.N., Douglas, A., Forland, E. and

Zhai, P.M. (1999). Changes in the probability of heavy precipitation. Important indicators of climate change. Climatic Change, 42, 243-283. In: Karl, T.R., Nicholls, N., Ghazi, A. (eds) Weather and Climate Extremes. Springer, Dordrecht. doi: https://doi.org/10.1007/978-94-015-9265-9_15.

Hakim, J. H. and L. W. Uccellini (1992). Diagnosing coupled jet-streak circulations for a Northern Plains snow band from the operational nested-grid model. Weather and Forecasting, 7, 26-48. doi: https://doi.org/10.1175/1520-0434(1992)007<0026:DCJSCF>2.0.CO;2.

Holton, J. R. (1992). An introduction to dynamic meteorology. 3rd edition. Academic press. pp. 511.

Homar, V., Romero, R., Stensrud, D.J., Ramis, C. and Alonso, S. (2003). Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: dynamical vs boundary factors. Quarterly Journal of the Royal Meteorological Society, 129, 1469-1490. doi: https://doi.org/10.1256/qj.01.91.

Hong, S.S. and Lim, J.-O.J. (2006). The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Journal of the Korean Meteorological Society, 42(2), 129-151.

Hong, S.Y., Noh, Y. and Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134, 2318-2341. doi: https://doi.org/10.1175/MWR3199.1.

Hoskins, B.J., McIntyre, M.E. and Robertson, A.W. (1985). On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111, 877-946. doi: https://doi.org/10.1002/qj.49711147002.

Huffman, G.J., Bolvin, D.T., Nelkin, E.J. and Tan, J. (2020). Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation, NASA/GSFC.

Huffman, G.J., Stocker, E.F., Bolvin, D.T., Nelkin, E.J. and Tan, J. (2023). GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), doi: 10.5067/GPM/IMERGDL/DAY/06.

Huschke, R.E. (1959). Glossary of Meteorology. American Meteorology Society, 638pp.

Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A. and Collins, W.D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research, 113, D13103. doi: https://doi.org/10.1029/2008JD009944.

Junker, N.W., Schneider, R.S. and Fauver, S.L. (1999). A study of Heavy Rainfall Events during the Great Midwest Flood of 1993. Weather and Forecasting, 14, 701-712. doi: https://doi.org/10.1175/1520-0434(1999)014<0701:ASOHRE>2.0.CO;2.

Kain, J.S. (2004). The Kain-Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43 (1), 170-181. doi: https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

Kallos, G. and Pytharoulis, I. (2005). Short-term predictions (weather forecasting purposes). In: Anderson, M.G. (Ed.), Encyclopedia of Hydrological Sciences. Wiley, London, pp. 2791-2811.

Karacostas, T.S., Flocas, A.A., Flocas, H.A., Kakaliagou, O., Rizou, C. (1992). A study of the synoptic situations over the area of Eastern Mediterranean. In: Proceedings, 1st Greek Conference on Meteorology, Climatology and Atmospheric Physics. pp. 21-23.

Katsafados, P., Mavromatidis, E., Papadopoulos, A. and Pytharoulis I. (2011). Numerical simulation of a deep Mediterranean storm and its sensitivity on sea surface temperature. Natural Hazards and Earth System Sciences, 11, 1233-1246. doi: https://doi.org/10.5194/nhess-11-1233-2011.

Katsanos, D., Lagouvardos, K., Kotroni, V. and Argiriou, A. (2007). Combined analysis of rainfall and lighting data produced by mesoscale systems in the Central and Eastern Mediterranean. Atmospheric research, 83, 55-63. doi: https://doi.org/10.1016/j.atmosres.2006.01.012.

Katsanos, D., Kotroni, V. and Lagouvardos, K. (2009). Lighting in the Mediterranean in Relation with Cloud Microphysical Parameters. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lighting: Principles, Instruments and Applications, Springer Science, pp 433-446. doi: https://doi.org/10.1007/978-1-4020-9079-0_19.

Kazamias, A.P., Sapountzis, M. and Lagouvardos, K. (2022). Evaluation of GPM-IMERG rainfall estimates at multiple temporal and spatial scales over Greece. Atmospheric Research, 269, 106014. doi: https://doi.org/10.1016/j.atmosres.2021.106014.

Kotroni, V., Kallos, G. and Lagouvardos, K. (1997). Convergence zones over the Greek Peninsula and associated thunderstorm activity. Quarterly Journal of the Royal Meteorological Society, 123, 1961-1984. doi: https://doi.org/10.1002/qj.49712354310.

Kotroni, V., Lagouvardos, K., Kallos, G. and Ziakopoulos, D. (1999). Severe flooding over central and southern Greece associated with pre-cold frontal orographic lifting. Quarterly Journal of the Royal Meteorological Society, 125, 967-991. doi: https://doi.org/10.1002/qj.49712555511.

Lagouvardos, K., Karagiannidis, A., Dafis, S., Kalimeris, A. and Kotroni, V. (2022). Ianos - A Hurricane in the Mediterranean. Bulletin of the American Meteorological Society, 103 (6), E1621-E1636. doi: https://doi.org/10.1175/BAMS-D-20-0274.1.

Lagouvardos, K., Kotroni, V. and Defer, E. (2007). The 21-22 January 2004 explosive cyclogenesis over the Aegean Sea: Observations and model analysis. Quarterly Journal of the

Royal Meteorological Society, 133, 1519-1531. doi: https://doi.org/10.1002/qj.121.

Lagouvardos, K., Kotroni, V., Dobricic, S., Nickovic, S. and Kallos, G. (1996). The storm of October 21-22 1994 over Greece: Observations and model results. Journal of Geophysical Research, 101D, 26217-26226. doi: https://doi.org/10.1029/96JD01385.

Lensky, I.M. and Rosenfeld, D. (2008). Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmospheric Chemistry and Physics, 8, 6739-6753. doi: https://doi.org/10.5194/acp-8-6739-2008, 2008.

Lolis, C.J., Bartzokas, A. and Metaxas, D.A. (1999). Spatial covariability of the climatic parameters in the Greek area. International Journal of Climatology, 19, 185-196. doi: https://doi.org/10.1002/(SICI)1097-0088(199902)19:2<185::AID-JOC339>3.0.CO;2-0.

Lolis, C.J., Bartzokas, A. and Katsoulis, B.D. (2004). Relation between sensible and latent heat fluxes in the Mediterranean and precipitation in the Greek area during winter. International Journal of Climatology, 24 (14), 1803-1816. doi: https://doi.org/10.1002/joc.1112.

de Lima, M.I.P., Santo, F.E., Ramos, A.M., de Lima, J.L. (2013). Recent changes in daily precipitation and surface air temperature extremes in mainland Portugal, in the period 1941-2007. Atmospheric research, 127, 195-209. doi: https://doi.org/10.1016/j.atmosres.2012.10.001.

Maheras, P., Flocas, H., Patrikas, I. and Anagnostopoulou, C. (2001). A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. International Journal of Climatology, 21, 109-130. doi: https://doi.org/10.1002/joc.599.

Maheras, P., Patrikas, I., Karacostas, T., Anagnostopoulou, C. (2000). Automatic classification of circulation types in Greece: methodology, description, frequency, variability and trend analysis. Theoretical and Applied Climatology, 67, 205-223. doi: https://doi.org/10.1007/s007040070010.

Maheras, P., Tolika, K., Anagnostopoulou, Chr., Vafiadis, M., Patrikas, I. and Flocas, H. (2004). On the relationships between circulation types and changes in rainfall variability in Greece. International Journal of Climatology, 26, 1149-1164. doi: https://doi.org/10.1002/joc.1088.

Matsangouras, I.T., Nastos, P.T., Pytharoulis, I. (2011). Synoptic-mesoscale analysis and numerical modeling of a tornado event on 12 February 2010 in northern Greece. Advances in Science and Research, 6, 187-194. doi: https://doi.org/10.5194/asr-6-187-2011.

Matsangouras, I.T., Nastos, P.T. and Pytharoulis, I. (2016). Study of the tornado event in Greece on March, 2009: Synoptic analysis and numerical modeling using modified topography. Atmospheric Research, 169, 566-583. doi: https://doi.org/10.1016/j.atmosres.2015.08.010.

Matsangouras, I.T., Pytharoulis, I. and Nastos, P.T. (2014). Numerical modeling and analysis of the effect of complex Greek topography on tornadogenesis. Natural Hazards and Earth System Sciences, 14, 1905-1919. doi: https://doi.org/10.5194/nhess-14-1905-2014.

Michailidou, C., Maheras, P., Arseni-Papadimitriou, A., Kolyva-Mahera, F. and Anagnostopoulou, C. (2009). A study of weather types at Athens and Thessaloniki and their relationship to circulation types for the cold-wet period, part II: discriminant analysis. Theoretical and Applied Climatology, 97, 179-194. doi: https://doi.org/10.1007/s00704-008-0058-9.

Michaelides, S., Karacostas, T., Sanchez, J.L., Retalis, A., Pytharoulis, I., Homar, V., Romero, R., Zanis, P., Giannakopoulos, C., Buhl, J., Ansmann, A., Merino, A., Melcon, P.,

Lagouvardos, K., Kotroni, V., Bruggeman, A., Lopez-Moreno, J.I., Berthet, C., Katragkou, E., Tymvios, F., Hadjimitsis, D.G., Mamouri, R.E., Nisantzi, A. (2018). Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmospheric research, 208, 4-44. doi: https://doi.org/10.1016/j.atmosres.2017.11.022.

Miglietta, M.M., Cerrai, D., Laviola, S., Cattani, E. and Levizzani, V. (2017). Potential vorticity patterns in Mediterranean “hurricanes”. Geophysical Research Letters, 44, 2537-2545. doi: https://doi.org/10.1002/2017GL072670.

Miglietta, M.M., Moscatello, A., Conte, D., Mannarini, G., Lacorata, G. and Rotunno, R. (2011). Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmospheric Research, 101, 412-426. doi: https://doi.org/10.1016/j.atmosres.2011.04.006.

MunichRe, Available at: http://www.munichre.com/touch/naturalhazards/en/ natcatservice/default.aspx (last access: November 2012), 2012.

Nastos, P.T, Matsangouras, I.T. and Chronis T.G. (2014). Spatio-temporal analysis of lightning activity over Greece – Preliminary results derived from the recent state precision lightning network. Atmospheric Research, 144, 207-217. doi: https://doi.org/10.1016/j.atmosres.2013.10.021.

New, M., Todd, M., Hulme, M. and Jones, Ph. (2001). Precipitation measurements and trends in the Twentieth Century. International Journal of Climatology, 21, 1889-1922. doi: https://doi.org/10.1002/joc.680.

Papadopoulos, A. (2001). A Regional Numerical Model with Special Capabilities in the Use of the Initial and Boundary Conditions (Ph.D. Thesis), School of Physics, University of Athens, p. 272.

Papagiannaki, K., Lagouvardos, K. and Kotroni, V. (2013). A database of high-impact weather events in Greece: a descriptive impact analysis for the period 2001-2011. Natural

Hazards and Earth System Sciences, 13, 727-736. doi: https://doi.org/10.5194/nhess-13-727-2013.

Petterssen, S. (1956). Weather Analysis and Forecasting. McGraw-Hill, New York, USA.

Prezerakos, N. and Flocas, H. (1996). The formation of a dynamically unstable ridge at 500 hPa as a precursor of surface cyclogenesis in the central Mediterranean. Meteorological

Applications, 3, 101-111. doi: https://doi.org/10.1002/met.5060030201.

Pytharoulis, I. (1995). Simulation of a Mediterranean Cyclone. Master Thesis, Department of Meteorology, University of Reading, United Kingdom.

Pytharoulis, I., Karacostas, T., Tegoulias, I., Kotsopoulos, S. and Bampzelis, D. (2015). Predictability of intense weather events over northern Greece. 95th AMS Annual Meeting, 4-8 January, Phoenix, Arizona, U.S.A.

Pytharoulis, I., Kotsopoulos, S., Tegoulias, I., Kartsios, S., Bampzelis, D., Karacostas, T. (2016). Numerical modeling of an intense precipitation event and its associated lighting activity over northern Greece. Atmospheric Research, 169, 523-538. doi: https://doi.org/10.1016/j.atmosres.2015.06.019.

Pytharoulis, I. (2018a). Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmospheric Research, 208, 167-179. doi: https://doi.org/10.1016/j.atmosres.2017.08.009.

Pytharoulis, I. (2018b). Numerical Study on the Influence of Surface Conditions on an Intense Storm over Northern Greece. Proceedings of the 11th International Conference of the Hellenic Geographical Society. 12-15 April, Lavrion, Greece. Available at: http://www.geochoros.survey.ntua.gr/hgs/en/11th-conference-proceedings.

Pytharoulis, I., Kartsios, S., Kostopoulos, V., Spyrou, C., Tegoulias, I., Bampzelis, D. and Zanis, P. (2023). The High-Resolution Numerical Weather Prediction System of the Agroray Project. Environmental Sciences Proceedings. Presented at the 16th International Conference on Meteorology, Climatology and Atmospheric Physics – COMECAP 2023, Athens, Greece, 25-29 September 2023.

Reed, R.J., Kuo, Y.H., Albright, M.D., Gao, K., Guo, Y.R., Huang, W. (2001). Analysis and modeling of a tropical-like cyclone in the Mediterranean Sea. Meteorology and Atmospheric Physics, 76, 183-202. doi: https://doi.org/10.1007/s007030170029.

Santurette, P. and Georgiev, C. (2005). Weather Analysis and Forecasting: Applying Satellite Water Vapor Imagery and Potential Vorticity Analysis, 1st Edition. Academic Press.

Sharifi, E., Steinacker, R., Saghafian, B. (2018). Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria. Atmospheric

Research, 206, 46-63. doi: https://doi.org/10.1016/j.atmosres.2018.02.020.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W. and Powers, J.G. (2008). A Description of the Advanced Research WRF

Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. doi: 10.5065/D68S4MVH.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W. and Powers, J.G. (2021). A Description of the Advanced Research WRF

Version 4.3 (No. NCAR/TN-556+STR). doi: 10.5065/1dfh-6p97.

Spyrou, C., Varlas, G., Pappa, A., Mentzafou, A., Katsafados, P., Papadopoulos, A., Anagnostou M. N. and Kalogiros, J. (2020). Implementation of a Nowcasting Hydrometeorological

System for Studying Flash Flood Events: The Case of Mandra, Greece. Remote Sensing, 12(17), 1-21. doi: https://doi.org/10.3390/rs12172784.

Stathopoulos, C., Patlakas, P., Tsalis, C. and Kallos, G. (2020). The Role of Sea Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones. Remote Sensing, 12(5), 1-23. doi: https://doi.org/10.3390/rs12050825.

Sungmin, O., Foelsche, U., Kirchengast, G., Fuchsberger, J., Tan, J. and Petersen, W.A. (2017). Evaluation of GPM IMERG early, late and final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrology and Earth System Sciences, 21, 6559-6572.

Toreti, A., Xoplaki, E., Maraun, D., Kuglitsch, F.G, Wanner, H. and Luterbacher, J. (2010). Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Natural Hazards and Earth System Sciences, 10 (5), 1037. doi: https://doi.org/10.5194/nhess-10-1037-2010.

Tous, M., Romero, R. and Ramis, C. (2013). Surface heat fluxes influence on medicane trajectories and intensification. Atmospheric Research, 123, 400-411. doi: https://doi.org/10.1016/j.atmosres.2012.05.022.

Uccellini, L. W. and Kocin, P. J. (1987): The interaction of jet streak circulations during heavy snow events along the east coast of the United States. Weather and Forecasting, 2, 289-308. doi: https://doi.org/10.1175/1520-0434(1987)002<0289:TIOJSC>2.0.CO;2.

Varlas, G., Pytharoulis, I., Steeneveld, G. J., Katsafados, P. and Papadopoulos, A. (2023). Investigating the impact of sea surface temperature on the development of the Mediterranean tropical-like cyclone “Ianos” in 2020. Atmospheric Research, 291, 106827. doi: https://doi.org/10.1016/j.atmosres.2023.106827.

Varlas, G., Anagnostou, M., Spyrou, C., Papadopoulos, A., Kalogiros, J., Mentzafou, A., Michaelides, S., Baltas, E., Karymbalis, E. and Katsafados, P. (2019). A Multi-Platform Hydrometeorological Analysis of the Flash Flood Event of 15 November 2017 in Attica, Greece. Remote Sensing, 11 (1), 45. doi: https://doi.org/10.3390/rs11010045.

Vergni, L., Di Lena, B. and Chiaudani, A. (2016). Statistical characterization of winter precipitation in the Abruzzo region (Italy) in relation to the North Atlantic Oscillation (NAO). Atmospheric Research, 178, 279-290. doi: https://doi.org/10.1016/j.atmosres.2016.03.028.

Xoplaki, E., Luterbacher, J., Burkard, R., Patrikas, I. and Maheras, P. (2000). Connection between the large-scale 500 hPa geopotential height fields and precipitation over Greece during wintertime. Climate Research, 14, 129-146. doi: 10.3354/cr014129.

Yamamoto, M. and Hirose, N. (2007). Impact of STT reanalyzed using OGCM on weather simulation: A case of a developing cyclone if the Japan Sea area. Geophysical Research Letters, 34, L05808. doi: https://doi.org/10.1029/2006GL028386.

ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

Δημητριάδου, Ζ. (2023). Αριθμητική μελέτη περίπτωσης έντονης χιονόπτωσης στην Ελλάδα και της ευαισθησίας της στις επιφανειακές θερμοκρασίες της θάλασσας. Μεταπτυχιακή

Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Δημητριάδου, Κ. (2017). Δορυφορική μελέτη βαρομετρικών χαμηλών με χαρακτηριστικά τροπικού κυκλώνα στη Μεσόγειο. Μεταπτυχιακή Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας,

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Καραγιαννίδης, Α. (2009). Στατιστική, Συνοπτική και Δυναμική Μελέτη Επεισοδίων Εξαιρετικής Βροχόπτωσης στον Ευρύτερο Ευρωπαϊκό Χώρο. Διδακτορική Διατριβή, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Καρακώστας, Θ. (2013). Σημειώσεις Συνοπτικής και Δυναμικής Μετεωρολογίας, Τμήμα Γεωλογίας, Α.Π.Θ.

Κατσαφάδος, Π., Μαυροματίδης, Η., Παπαδόπουλος, Α. & Πυθαρούλης, Ι. (2010). Ο ρόλος της επιφανειακής θερμοκρασίας θάλασσας και των φυσιογραφικών χαρακτηριστικών στην ανάπτυξη εκρηκτικής κυκλογένεσης. 10ο COMECAP 2010, Πρακτικά Συνεδρίου.

Πυθαρούλης, Ι., Φείδας, Χ., & Καρακώστας, Θ. (2012). Μελέτη ενός επεισοδίου αστραπών-κεραυνών με την βοήθεια υψηλής ανάλυσης προσομοιώσεων. Γεωγραφίες, 20, 51-78.

Φείδας, Χ. (2010). Σημειώσεις Δορυφορικής Μετεωρολογίας. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Χατζούδης, Χ. (2018). Μελέτη της ευαισθησίας ενός αριθμητικού μοντέλου πρόγνωσης καιρού στην παραμετροποίηση της ανοδικής μεταφοράς. Μεταπτυχιακή Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

ΔΙΑΔΙΚΤΥΑΚΕΣ ΠΗΓΕΣ

https://www.ecmwf.int/

https://www.meteo.gr/

https://www.metoffice.gov.uk/

http://212.232.25.232/ng-maps/

https://www.esa.int/

https://www.wetter3.de/

https://www2.mmm.ucar.edu/

https://giovanni.gsfc.nasa.gov/

http://eumetrain.org/

https://weather.uwyo.edu/

https://polar.ncep.noaa.gov/sst/ophi/

https://www.ecmwf.int/en/forecasts/datasets/

https://data.marine.copernicus.eu/product/

https://cds.climate.copernicus.eu/


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.